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Abstract
    Mixed convection of water at 4℃ about a vertical cone embedded in porous media: the entire regime is numerically analyzed. The surface of the vertical cone is maintained at the variable wall temperature (VWT). The non-similar governing equations are obtained by using a suitable transformation and solved by Keller box method. The presented solution depends on the mixed convection parameter χ, the cone angle parameter m, and the exponent of VWT λ. Increasing the exponent of VWT λ increases the local Nusselt number. As the cone angle parameter m increases, the local Nusselt number also increases. Moreover, when the mixed convection parameter χ varies from 0 (pure free convection) to 1 (pure forced convection), the local Nusselt number decreases initially, reaches a minimum in the intermediate value of χ and then increases gradually.
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摘  要

本文以一數值方法來分析在飽和多孔性介質內，對於4℃的水流經一垂直圓錐體的混合對流：整個範圍。垂直圓錐體的表面維持為可變壁溫度(VWT)。吾人以凱勒盒子法來解轉換過的方程式。數值計算結果與混合對流參數 χ，圓錐體角度參數 m，與可變壁溫度指數 λ 有關。增加可變壁溫度指數 λ 會增大局部Nusselt 數。當增加圓錐體角度參數 m，也會增大局部 Nusselt 數。此外，當混合對流參數 χ 從 0 (純自然對流) 變化到 1 (純強制對流)，局部 Nusselt 數首先會減低，直至降到最低值，之後再逐漸上升。

關鍵字：混合對流，4℃的水，垂直圓錐體，多孔性介質，整個範圍
1. Introduction
    Fluid flow and heat transfer in porous media has several important applications in geothermal and geophysical engineering such as the migration of moisture through the air contained in fibrous insulation, the extraction of geothermal energy, underground disposal of nuclear wastes, and the spreading of chemical contaminants through water-saturated soil.

    Fluid density always changes as a function of temperature in a linear manner. A notable exception is the liquid water. Pure water at a pressure of 1atm has a maximum density of 999.9720kg/m3 at 4℃. Above this temperature, the density of water decreases as the temperature is increased in a manner similar to other fluids. For temperature below 4℃, the trend is reversed, the density increases with increased temperature, giving rise to a maximum density at the 4℃ point. Water and several other metals have their maximum density in the liquid phase, at a temperature Tc = 3.98℃ above the melting-point temperature. Goren [1] has shown that for a temperature sufficiently close to Tc, the relationship between the fluid temperature T and density is given by the relation, (ρ − ρc)/ρc = −β(T − Tc)2 where ρc is the maximum density in the liquid phase and β = 8.0×10−6 (◦C)−2 is the fluid thermal expansion coefficient of water at 4℃.

In the aspect of free convection in a porous medium, Blake et al. [2] investigated the natural convection near 4℃ in water saturated porous layer heated from below. Takhar and Ram [3] studied the magnetohydrodynamic free convection flow of water at 4℃ through a porous medium. Kumaran and Pop [4] presented the steady free convection boundary layer over a vertical flat plate embedded in a porous medium filled with water at 4℃. In the aspect of mixed convection in a porous medium, Raptis and Pop [5] showed the combined convection flow of water at 4℃ through a porous medium bounded by a vertical surface. Takhar and Perdikis [6] illustrated the forced and free convective flow of water at 4℃ through a porous medium. Recently, Ling et al. [7] analyzed the steady mixed convection boundary layer flow over a vertical flat plate in a porous medium filled with water at 4℃: case of variable wall temperature. Steady mixed convection boundary-layer flow over a vertical flat surface in a porous medium filled with water at 4℃: variable surface heat flux was studied by Ling et al. [8]. Khan and Gorla [9] studied the nonsimilar solution for mixed convection of water at 4℃ over a vertical surface with prescribed surface heat flux in a porous medium. Khan and Gorla [10-11] investigated the mixed convection of water at 4℃ along a wedge with variable surface flux [10] and variable surface temperature [11] in a porous medium.

    The aim of the present work, therefore, is to investigate numerically a non-similar solution for mixed convective boundary layer flow of water at 4℃ along a vertical cone with a variable surface temperature in a porous medium.
2. Analysis

    Consider the mixed convection of water at 4℃ over a downward-pointing vertical cone with half angle γ embedded in a saturated porous medium. Figure 1 shows the flow model and the physical coordinate system. The origin of the coordinate system is placed at the vertex of the vertical cone, where x and y are Cartesian coordinates measuring distance along and normal to the surface of vertical cone, respectively. The gravitational acceleration g is acting downward.
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FIG. 1 The flow model and the physical coordinate system

The flow over the vertical cone is assumed to be two-dimensional, laminar, steady and incompressible. The surface of the vertical cone is maintained at variable wall temperature Tw(x), which is larger than the ambient temperature T∞. All the fluid properties are assumed to be constant, except for density variations in the buoyancy force term.

Introducing the boundary layer approximation and the Darcy law, the governing equations for the conservation of total mass, momentum, and energy within the boundary layer near the vertical cone can be written in two-dimensional Cartesian coordinates (x, y) as follows [7-11]:
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The boundary conditions are defined as follows:
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Here u and v denote volume-averaged velocity components in the x- and y- directions, respectively. T is the volume-averaged temperature. ρ, μ and β are the density, viscosity, and volumetric volume expansion coefficient of the fluid. K and α are the permeability and the thermal diffusivity of the porous medium, respectively. a is prescribed positive constant. λ is the exponent of VWT. For the cone flow problem, U∞ = B xm is the velocity of the potential flow outside the boundary layer. Here, B is prescribed constant and m is the cone angle parameter. The tabulated values γ and m are given by Hess and Faulkner [12]. The cone angles of 15°, 30°, 45°, 60°, 75° are discussed in this paper, therefore, m is 0.0316314, 0.1156458, 0.2450773, 0.4241237 and 0.6667277, respectively.

We assumed the boundary layer to be sufficiently thin in comparison with the local radius of the vertical cone. The local radius to a point in the boundary layer, therefore, can be replaced by the radius of the vertical cone r, i.e., r = x sinγ.

    The stream function 
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Therefore, the continuity equation is automatically satisfied.

Invoking the following transformations
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and inserting equation (7) into equations (1)-(5), the transformed dimensionless governing equations may be written as
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The transformed dimensionless boundary conditions are defined as follows:
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In terms of the new variables, the volume-averaged velocity components in x- and y- directions are given by
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In the above equations, the primes denote the differentiation with respect to η. Equation (8) is obtained with the help of equations (2) and (5). χ is the mixed convection parameter. It is noticed that χ = 0 and 1 correspond to pure free and pure forced convection cases, respectively. Rax and Pex are the modified local Rayleigh number and the local Peclet number, respectively.
    The most important physical quantity for the problem is the local Nusselt number Nux which is defined by the following relation:
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where h is the local convective heat transfer coefficient, k is the thermal conductivity and the Newton’s law of cooling is 
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    From the Fourier’s law of heat conduction, the rate of heat transfer qw is given by
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Substituting Eqs. (7) and (15) into Eq. (14), thus we get 
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It is observed that similar solutions are obtained for the case of χ = 0.0 or χ = 1.0. When χ = 1.0 and λ = 0, Eqs. (8)-(9) can be reduced to
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Solving the above Eqs. (17)-(18) and boundary conditions (10)-(11), by separation of variables, we can find
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3. Numerical Method
The present analysis integrates the system of equations (8)-(11) by the implicit finite difference approximation together with the modified Keller box method of Cebeci and Bradshaw [13]. To begin with, the partial differential equations are first converted into a system of three first-order equations. Then these first-order equations are expressed in finite difference forms and solved along with their boundary conditions by an iterative scheme. This approach gives a better rate of convergence and reduces the numerical computational times.

Computations were carried out on a personal computer with Δχ = 0.05; the first step size Δη1 = 0.01. The variable grid parameter is chosen 1.01 and the value of η∞ is 10.0. The iterative procedure is stopped when the error in computing the 
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4. Results and Discussion

    In order to verify the accuracy of the present method, we have compared our results with those of the analytical solution from Eq. (19) and Yih [14]. The comparison in all the above case is found to be in good agreement, as shown in Table 1.

TABLE 1 Comparison of the values of 
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	Yih [14]
	Eq. (19)
	Present results

	0.0316314
	-
	0.9823
	0.9823

	0.1156458
	-
	0.9959
	0.9958

	0.2450773
	-
	1.0163
	1.0163

	0.4241237
	1.0440
	1.0440
	1.0440

	0.6667277
	-
	1.0804
	1.0804


For the purpose of the comparison with the future study, Table 2 shows the values of 
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TABLE 2 Comparison of the values of 
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	χ
	λ
	m
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	0.0
	0.0
	0.0316314
	0.6522

	0.5
	0.0
	0.0316314
	0.5939

	1.0
	0.0
	0.0316314
	0.9823

	0.0
	0.5
	0.0316314
	1.1908

	0.5
	0.5
	0.0316314
	0.7474

	1.0
	0.5
	0.0316314
	0.8827

	0.0
	2.0
	0.6667277
	1.7437

	0.5
	2.0
	0.6667277
	1.1142

	1.0
	2.0
	0.6667277
	1.3654


    Numerical results are presented graphically for the mixed convection parameter χ ranging from 0.0 to 1.0, the exponent of VWT λ ranging from 0.0 to 2.0, and the cone angle parameter m ranging from 0.0316314 to 0.6667277.

The effect of the mixed convection parameter χ on the dimensionless temperature profiles (λ = 1, m = 0.1156458) is shown in Fig. 2. The pure forced convection and pure free convection are represented by χ = 1 and 0, respectively.
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FIG. 2 Effect of mixed convection parameter on the dimensionless temperature profiles

Figure 3 illustrates the effect of the exponent of VWT λ on the dimensionless temperature profiles (χ = 0, m = 0.4241237). It is clear that, increasing the exponent of VWT λ reduces the thermal boundary thickness δt and increases the dimensionless surface temperature gradient 
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FIG. 3 Effect of the exponent of VWT on the dimensionless temperature profiles

The effect of the cone angle parameter m on the dimensionless temperature profile (χ = 0.5, λ = 2.0) is presented in Fig. 4. Both the dimensionless temperature profiles decrease and the dimensionless surface temperature gradient enhances, when the cone angle parameter increases. The dimensionless temperature profiles decrease monotonically from the surface of the vertical cone to the ambient, as shown in Figs. 2 to 4.
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FIG. 4 Effect of the cone angle parameter on the dimensionless temperature profiles

Figure 5 presents the three values of the exponent of VWT λ on the local Nusselt number. When the exponent of VWT λ increases from 0.0 to 1.0, the local Nusselt number increases. This is due to the fact that the increase in the value of the exponent of VWT λ reduces the thermal boundary thickness δt, as shown in Fig. 3. The thinner the thermal boundary layer thickness, the larger the local Nusselt number.
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FIG. 5 Effect of the exponent of VWT λ on the local Nusselt number

The local Nusselt number for three values of the cone angle parameter m is illustrated in Fig. 6. It is clear that, increasing the cone angle parameter m increases the local Nusselt number. This is because an increase in the value of m gives the larger dimensionless surface temperature gradient, as shown in Fig. 4; thereby, increases the local Nusselt number. However, for χ = 0 (pure free convection), the effect of the cone angle parameter m is disappeared, as can be seen from equation (9). Hence, there is no change in the local Nusselt number for all values of m.

Besides, when the mixed convection parameter χ varies from 0 to 1, the local Nusselt number decreases initially, reaches a minimum in the range of 0 < χ < 1, and then increases gradually, as shown in Figs. 4 and 5. This is due to the nature of Nux/(Pex1/2+Rax1/2) vs. χ plot and does not imply that the actual Nux value for mixed convection are smaller than those for the pure free and the pure forced convection. For instance, let us consider the present results of λ = 2.0, m = 0.6667277 and χ = 0.5. If the Peclet number is taken as Pex = 100, the corresponding Rayleigh number can be found to be Rax = 100 from Eq. (7.1). The value of Nux for mixed convection (Pex = 100, 
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= 100) is 22.284, but for pure free convection (Rax = 100), and for pure forced convection (Pex = 100) the value of Nux is found to be 17.437 and 13.654, respectively. From these results, it is obvious that the predicted value of Nux for mixed convection is higher than that for pure free convection and pure forced convection.
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FIG. 6 Effect of the cone angle parameter on the local Nusselt number
5. Conclusions
The present paper numerically studied the mixed convection of water at 4◦C over a vertical cone with the variable wall temperature in a porous medium. The entire regime of the mixed convection is included, as the mixed convection parameter χ varies from 0 to 1. The transformed nonlinear system of equation is solved by using an implicit finite difference method. The local Nusselt number increases with increasing the exponent of VWT λ. As the cone angle parameter m increases, the local Nusselt number increases. The variation of the local Nusselt number with the increase of χ has the phenomenon of minimum.

Nomenclature
a
Prescribed positive constant

B
Prescribed positive constant

f 
Dimensionless stream function

g 
Acceleration due to gravity

h 
Convective heat transfer coefficient

K 
Permeability of the porous medium

k
Thermal conductivity

m 
Cone angle parameter

Nux 
Local Nusselt number

Pex 
Local Peclet number
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Loal heat flux

r
Local radius of cone

Rax 
Modified local Rayleigh number

T 
Temperature

U∞ 
Velocity of the potential flow outside the boundary layer
u, v 
Velocity components in x- and y-direction

x, y 
Coordinates along and normal to cone surface

Greek symbols

α 
Thermal diffusivity of porous medium

β 
Thermal expansion coefficient for water at 4℃
γ 
Half angle of the cone
η
Pseudo-similarity variable

θ 
Dimensionless temperature
λ 
Exponent of VWT
μ 
Absolute viscosity

ν 
Kinematic viscosity

ρ 
Fluid density

χ 
Mixed convection parameter
ψ 
Stream function

Subscripts

w 
Wall

∞
Condition at infinity
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