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摘要

  本文提出以最佳化控制理論之Hamiltonian方法設計質量-彈簧-阻尼耦合系統最小能量控制輸入與軌跡，提出之方法包含最小控制輸入、最小能量控制輸入、最小消散能量控制輸入及梯形軌跡能量輸入等方法做比較，在過去文獻中，最小控制輸入之方法被視為可得到最小能量控制輸入，但由本研究發現最小控制輸入並不能獲得最小能量控制輸入，由理論模擬中可獲得結論，最小消散能量控制輸入才可獲得最小能量控制輸入。
關鍵字: 最佳化控制理論、Hamiltonian、最小能量控制
Abstract
In this paper, we have proposed the minimum energy control input and trajectories based on Hamiltonian strategy for the mass-spring-damper (MSD) system. The method of the minimum control effort (MCE), minimum input energy control (MIEC), minimum absolute input energy control (MAIEC), minimum dissipation energy control (MDEC) and trapezoidal trajectory energy control (TTEC) approaches are compared for the MSD. From the numerical result, we can find that the MDEC approach can obtain the minimum energy input for the both systems. The MCE approach was regarded as the minimum energy control in the previous study. In this paper, we have demonstrated that the MCE approach is not the minimum energy control. Finally, we proposed that the MDEC approach is the minimum energy control approach for the MSD system numerically.
Key word: Hamiltonian, mass-spring-damper (MSD), minimum control effort (MCE), minimum input energy control (MIEC), minimum absolute input energy control (MAIEC), minimum dissipation energy control (MDEC).
1. Introduction
The theme of inadequate energy sources is currently discussed and dealt with by experts and researchers in the world. According to the consumption of energy of real mechatronic system, minimum energy trajectories and control input for all mechatronic systems are the optimal stratagem ideally. The minimum energy problem with specified initial and final conditions is proposed to perform and discuss in this paper. In the previous researches, the authors had proposed the minimum energy control theory to perform the minimum energy problems [1-3]. But the definitions of input energy are not the energy physical definition. The most definitions of cost function are the sum of the square of control effort (
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) for the system. But this cost function definition is not the energy physical definition. Fortunately, Kokotovic and Singh [4] had presented the minimum-energy control for a nonlinear second-order model of a ground transportation vehicle with a dc traction motor for which regenerative braking is possible. The Hamiltonian is implemented to obtain the minimum energy control input. The definition of performance index for minimum energy is the physical energy. But the author only considers the electrical problem; the complete formulation with electrical and mechanical mechatronic system problem is not performed.
Huang et al [5] propose a novel minimum-energy point-to-point (PTP) trajectory planning method for a motor-toggle servomechanism, they employed the real-coded genetic algorithm (RGA) to search for the minimum-energy trajectory for the PTP motion profile, which is described by a polynomial with suitable conditions of position, velocity, and acceleration at the start and end points. The paper only considers the dissipation energy of the electrical resistance as fitness function and minimizes the function by the real-coded genetic algorithm. The dissipation energy of mechanism is not studied. Chen et al. [6] proposed a minimum-energy control (MEC) approach based on the simplest controller of proportional-integral-derivative (PID) controller is utilized by particle swarm optimization (PSO) approach. The control parameters of PID controller can be searched and selected by PSO to minimize the control input energy for the MSD system. But the approach can not be guaranteed the results are the minimum-energy control.   

In this paper, we proposed the simple mass-spring-damper (MSD) system and motor-MSD system as the minimum energy control analytic examples. Because of the MSD system and motor-MSD system have these advantages including the simplest mechanism, motor is utilized widely and represented most typical mechanical and mechatronic system. Firstly, we proposed the physical work definition of control input energy including control voltage and current state as the cost function for motor-MSD system. Therefore, the mechatronic state space equations are given as a voltage control matrix form. The complete mechatronic formulation of motor-MSD system is meaning and practical. Secondly, we have found the energy equation including electrical energy and mechanism energy of the motor-MSD system. Finally, we proposed the minimum control effort (MCE), minimum input energy control (MIEC), minimum absolute input energy control (MAIEC) and minimum dissipation energy control (MDEC) based on Hamiltonian function method to perform the minimum energy trajectories and control input strategy. Moreover, the trapezoidal trajectory energy controls (TTEC) with the boundary conditions of initial and final velocities are zero that is compared. 

In short, this paper is organized as follows. Chapter 1 gives the introduction. Chapter 2 the minimum energy trajectories and control input for the MSD system. Chapter 3 contains for the dynamic modeling of the motor-MSD system, dynamic equations of PMSM and complete mechatronic formulation. In chapter 3, the definition of physical control input energy is defined. The minimum energy approaches are introduced and derived entirely. The numerical simulation results, discussion and summary are depicted in Chapter 4. Finally, Chapter 5 gives the conclusions. 

2. Minimum energy trajectories and control input for the MSD system
In this paper, the MSD system is employed and it is the typical mechanism system. Then, we proposed the work definition of control input energy as the performance index for MSD system. To investigate the previous studies, the authors seldom given the work as the control input energy. Therefore, the genuine definition of control input energy is employed to the mass-spring-damper system in this paper. Furthermore, there are four approaches are employed and compared in this paper. Firstly, the traditional minimum control effort (MCE) with Hamiltonian function is applied. Secondly, the optimal regulation control (ORC) approach is implemented. Finally, we proposed the minimum input energy control (MIEC) approach, the minimum absolute input energy control (MAIEC) approach, minimum dissipation energy control (MDEC) approach and trapezoidal trajectory energy control (TTEC) are compared numerically. 

 The MSD system is geometrically shown in Fig. 1 and the dynamic equation can be obtained as follows


[image: image2.wmf]).

(

)

(

)

(

)

(

t

kx

t

x

c

t

f

t

x

m

-

-

=

&

&

&

                       (1)
where 
[image: image3.wmf]kg

m

1

=

is the mass of the slider, 
[image: image4.wmf]m

s

N

c

/

2

×

=

 is the coefficient viscous of damper, 
[image: image5.wmf]m

N

k

/

1

=

 is the coefficient of spring, 
[image: image6.wmf])

(

t

f

 is the control input force, The displacement, velocity and acceleration of the slider are 
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       Fig. 1 The model of mass spring damper (MSD) system. 

described as 
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 respectively. The dynamics equation can be rewritten as follows


[image: image11.wmf]ï

î

ï

í

ì

+

-

-

=

+

-

+

-

=

),

(

)

(

)

(

2

)

(

)

(

)

(

)

(

)

(

1

2

t

u

t

x

t

x

t

x

m

t

f

t

x

m

k

t

x

m

c

t

x

&

&

&

&

                        (2)

where
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2.1 Designing of the minimum-energy trajectory and controller 
In this paper, we proposed the mechanical work of the MSD system as the performance index to obtain the minimum-energy. The energy definition can be described as follows
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where 
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 is the work of physical definition of control input and the unit is J (Joule), 
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The energy conservation equation of Eq. (1) can be written as 
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The relationship for the sum of the input energy, dissipation energy, the potential energy and the output energy can be found as
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where 
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 is the output energy. Therefore, the cost function for MIEC, MAIEC and MDEC can be defined as   
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Minimize 
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 to find minimum input energy control (MIEC).
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Minimize 
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 to find minimum absolute input energy control (MAIEC).
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Minimize 
[image: image35.wmf]4
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 to find minimum dissipation energy control (MDEC).
2.2 Minimum control effort (MCE) approach
The minimum control effort (MCE) approach [7] is the traditional optimal control theory. For the nominal condition and the MSD system of Eq. (2) can be rewritten as follows
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The system is to be controlled so that its control effort is conserved; the cost function is 
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The first step is to form the Hamiltonian 
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where 
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 are Lagrange multipliers (costates). 

From Eqs.(6)~(7) necessary conditions for optimality are  
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and 


[image: image43.wmf]).

(

)

(

0

*

2

*

1

t

t

u

u

H

a

+

=

¶

¶

=

                                        (9-3)

If Eq.(9-3) is solved for 
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Equations (9-1)~(9-3) the costate and state equations, are a set of 2n linear first-order, homogeneous, constant-coefficient differential equations. Solving these equations gives
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where  
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The boundary conditions are the specified final state and time,  
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. Finally, the exact solutions of MCE approach minimum control effort trajectories (MCET)  
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2.3 Optimal regulation control (ORC) approach 
The optimal regulation control approach is one kind of the optimal control theory to calculate and obtain exact solution. The deriving methods between MCE and ORC are the same. But the different parts are the definition of cost function. First, the dynamics model of Eq. (6) can be rewritten as matrix form as follows
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where 
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The system is to be controlled so that its control effort is conserved; the cost function [7] can be written as  
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where 
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 Equation. (13) can be rewritten as  
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The first step is to form the Hamiltonian 
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where 
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From Eqs.(14)~(15) necessary conditions for optimality are  
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From the Eqs. (16-1~16-2), we can solve the 2n linear first-order, nonhomogeneous, constant-coefficient differential equations and obtain the 
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where 
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Equations.(17-1~17-2) are solved for 
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Equations (18-1) and (18-2) are the state equations and a set of 2n linear first-order, nonhomogeneous, constant-coefficient differential equations. Solving these equations gives
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2.4 Minimum input energy control (MIEC) approach
The above sections, the cost functions of Eq. (7) and Eq. (14) are not the definition of the physical energy. In this section, we proposed definition of the physical energy as cost function by Eq. (5-1) and is described as follow
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The first step is to form the Hamiltonian 

[image: image108.wmf]),

(

)

(

)

(

2

)

(

)

(

)

(

H

2

1

2

2

2

2

1

2

3

t

u

t

x

t

x

t

x

t

x

t

u

g

g

g

g

+

-

-

+

=

         (22)

where 
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Especially, the Hamiltonian of Eq. (22) is the meaning and power function. The Lagrange multipliers 
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From the Eqs. (23-1~23-2), we can solve the 2n linear first-order, nonhomogeneous, constant-coefficient differential equations. First, we can obtain the 
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Equations (25-1) and (25-2) are the state equations and a set of 2n linear first-order, nonhomogeneous, constant-coefficient differential equations. Solving these equations gives
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2.5 Minimum absolute input energy control (MAIE ) approach
In the real condition, the output energy may be positive or negative value. But for the energy consumption, the positive and negative energy are all the energy consumption. In this section, no matter the output energy is positive or not, we consider the energy output is the absolute of output energy. We proposed definition of the physical energy as cost function by Eq. (5-2) and is described as follow
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The first step is to form the Hamiltonian 
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Especially, the Hamiltonian of Eq. (28) is the meaning and power function. The Lagrange multipliers 
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From Eqs.(27)~(28) necessary conditions for optimality are  
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From the Eqs. (29-1~29-2), we can solve the 2n linear first-order, nonhomogeneous, constant-coefficient differential equations. First, we can obtain the 
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Equations.(30-1~30-2) are solved for 
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Equations (31-1) and (32-2) are the state equations and a set of 2n linear first-order, nonhomogeneous, constant-coefficient differential equations. Solving these equations gives
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 Finally, the minimum absolute input energy trajectories (MAIET)  
[image: image169.wmf])

(

*

1

t

x

 and 
[image: image170.wmf])

(

*

2

t

x

 are successful obtained and the MAIEC 
[image: image171.wmf])

(

*

t

u

, 


[image: image172.wmf].

)

9342

.

0

(

)

3568

.

0

(

 

)

8

.

0

)(

sgn(

)

8

.

0

)(

sgn(

)

(

6181

.

2

'

4

3819

.

0

'

3

'

2

'

1

*

t

t

t

t

e

c

e

c

e

t

c

e

c

t

u

-

-

-

+

+

-

·

+

-

·

=


(32-3)

We can find that the results of MIEC and MAIEC from Eqs. (26) and (32), the two approaches are the same. Therefore, for convenient derivation, we employ the MIEC approach to compare with the other energy control approaches.
2.6  Minimum dissipation energy control (MDEC) approach 
In the above Eq. (4-4), we had proposed definition of the physical energy as the cost function. In this section, the dissipation energy of the damper is considered for MSD system. When the control input force 
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where 
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 is the ith time, 
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The cost function of MDEC can be found as 
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The Hamiltonian function of MDEC can be obtained as 
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Where 
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 are Lagrange multipliers (costates).

From Eq. (33-1~33-3) necessary conditions for optimality are
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From the Eqs. (34-1~34-2), we can solve the 2n linear first-order, nonhomogeneous, constant-coefficient differential equations. Then these state equations gives
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2.7 Trapezoidal trajectory energy control (TTEC) approach 

The trapezoidal trajectory (TT) is a general trajectory for trajectory planning program. In this section, the trapezoidal trajectory with velocity is described in Fig. 2. The total displacement is S=1 (m), from the below displacement equation.  
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We can find constant velocity and acceleration and deceleration are shown as  
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Therefore, the TT of the displacement velocity and acceleration can be described as follow
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Fig. 2 The trapezoidal trajectory with velocity and time.
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According to the above trajectory, the TTEC control input can be written as
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3. Numerical simulation for the minimum energy trajectory and controller
In the numerical simulation, the numerical parameters values are performed and given as follows
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The boundary conditions are 
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 We have three parts for the numerical simulation, in section A, it is the MSD system and we proposed MCE, ORC, MIEC, MAIEC, MDEC and TTEC approaches to compare. Secondly, in the section B, we proposed MCE, MIEC, MAIEC, MDEC and TTEC approaches to compare for the motor-MSD system. Finally, the summary and discussion are described in section C. 
3.1  The numerical simulation for the MSD system
Figure 3 shows the comparison of the simulation results between MCE, ORC, MICE, MDEC and TTEC approaches. It can be observed from Figs. 3 (a), (b) and (c) obviously, the responses of the MCE and ORC are very similar. But the responses of TTEC are difference with the other four approaches. Figure 3 (d) and (e) shows the comparison of control effort (force) and control input energy for MSD system. The control effort of the MDEC is the largest than the other MCE, ORC, MIEC and TTEC in the initial interval. After about 0.75 second, the all control inputs are the negative value. It means that the control input become as brake force because of the boundary condition constraint with 
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. The Fig. 3(e) shows the absolute input energy of per sampling time. It is a significant comparison of the 
control input energy with the five approaches. The area under the curve line presents the input energy. It can be found that MCE and ORC are almost the same control input energy. In the all period, the input energy of MDEC seems has the minimum input energy. The obvious finding is shown in Fig 3 (f). From the final value at 1 sec, the TTEC has the largest total absolute input energy and the MDEC can get the minimum total absolute input energy. Consequently, the input energy of the five energy controllers are found and described in Table 1. A conclusion, the relations of the absolute control input energy (
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Fig. 3 The comparisons between MCE ORC MIEC MDEC and TTEC for MSD system; (a) displacement, (b) velocity, (c) acceleration, (d) control input 
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Table. 1 The numerical comparisons of the control input energy by MCE, ORC, MAIEC, MIEC, MDEC and TTEC for the MSD system.  
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<TTEC(3.7547 J, +15.9323% ,maximum). The relations of input energy, dissipation energy, potential energy and output energy are shown in Fig. 4. The input energy at per sampling time is shown in Fig. 4 (a). We can find that if the 
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, the input energy is negative value and the sum of the input energy could be decreased. It can be found that the sum of the input energy decreases after 0.75 sec which is shown in Fig. 4 (b).
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Fig. 4 The comparisons between MCE ORC MIEC MDEC and TTEC for MSD system; (a) input energy, (b) the sum input energy, (c) dissipation energy, (d) the sum of dissipation energy, (e) potential energy, (f) the sum of potential energy, (g) output energy, (h) the kinetic energy.

Therefore, the sum of input energy can not represent the real energy input; only the sum of absolute input energy can represent the input energy. There is an interesting finding is shown in Figs. 4 (g) and (h) that are output energy and the kinetic energy. If 
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, the output energy at this sampling time is negative value and the kinetic energy is decreasing. In the final time at 
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 is zero because of the velocity is zero. It means that the final kinetic energy is the sum of output energy at per sampling time. We can find the numerical results shown in Fig. 4 (g) and (h).
4. Conclusion
The method of the Hamiltonian function and co-state equations are employed to obtain the minimum energy trajectories and control input of the MCE, MIEC, MAIEC and MDEC approaches. The input energy are compared for the MSD system. In the previous studies, the researchers regard the minimum control effort (MCE) approach as the minimum energy control. But the comparison results in this paper that verifies the MCE is not the minimum energy control. We have successfully demonstrated that the trajectories and control input of the MDEC approach can obtain the minimum (absolute) input energy. Furthermore, the energy equation including electrical and mechanism is proposed and it is employed to obtain the MDEC based on Hamiltonian function. When the all parameters of the mechatronic system can be known, the strategy can be implemented for any mechatronic system to find minimum energy control input and trajectory.
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