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肘節機構之順滑模態控制與適應性模糊順滑模態控制之比較

The comparisons of the sliding mode control and adaptive fuzzy sliding mode control for a motor-toggle mechanism
陳崑永
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空軍航空技術學院 機械工程科 少校講師
Department of Mechanical Engineering, Air Force Institute of Technology 
摘要
   本研究針對由永磁伺服馬達帶動肘節機構之機電系統做運動控制研究，首先運用漢彌耳頓定理(Hamilton’s principle)及Lagrange乘子等方法推導系統數學模型，以此數學模型為基礎分別推導順滑模態控制與適應性模糊順滑模態控制等兩種控制器比較，在外力及摩擦力干擾情況下，比較兩控制器之軌跡追蹤性能表現，由理論比較結果，適應性模糊順滑模態控制有較好的收斂性及強健性，另此一控制器也不需系統數學模式，可用於其他機電系統。
關鍵字: 漢彌耳頓定理(Hamilton’s principle)、 Lagrange乘子、順滑模態控制。
Abstract
The dynamic motion tracking control of the punching machine which is made up by a toggle mechanism driven by a permanent magnet synchronous servomotor (PMSM) is studied in this paper. First, Hamilton’s principle, Lagrange multiplier, geometric constraints and partitioning method are employed to derive its dynamic equations for numerical simulations. The control gains of the sliding surface and integral-operation sliding surface in the sliding mode control (SMC) are varied to analyze and compare. The output responses are compared for the periodic sinusoidal trajectories with the varied control gains. The quick and sluggish convergence performances are compared for the different control gains of the sliding surface and integral-operation sliding surface. Finally, SMC and adaptive fuzzy sliding mode control (AFSMC) are studied and compared in this paper.

Keywords: Hamilton’s principle, sliding mode control.
1. Introduction
The punching machine which is made up by a toggle mechanism driven by a permanent magnet synchronous servomotor (PMSM) is studied in this paper. The motion controls of a toggle mechanism have been studied previously [1-8]. References [1-4] proposed the fuzzy logic controller and fuzzy neural network controllers based on the concept of hitting condition without using the complex mathematical model to a motor-mechanism coupled system. The variable structure control [5-6] was employed to a toggle mechanism, which was driven by a electro-hydraulic and linear synchronous servo motor and the joint coulomb friction was considered. However, the implement of the pin joint coulomb friction for toggle-mechanism is incomplete in the dynamic mathematical formulation. The variable-structure control strategy implementing the sliding mode is an effective way to deal with external disturbances and uncertainties for the servo control of the motor-mechanism system [9-12]. Recently, many researches have been done to apply the adaptive fuzzy sliding mode control (AFSMC) systems, which combine the capability of fuzzy rule base in handling uncertain system and the capability of adaptation update law, in the control fields to deal with uncertainties of the control systems [13-16]. The AFSMC can be applied in the closed-loop control of nonlinear systems without using the complex mathematical model of the system due to the on–line learning ability of the fuzzy rule base. Moreover, the adaptive law systems enable to estimation uncertainties and bound in an effective way. Therefore, the friction moments of pin joints of the motor-mechanism are considered in the mathematical modeling and the dynamic model is investigated completely in this paper. However, the general problem in the design of a SMC for the mechanical systems is that the exact mathematical model and the bound of the uncertainties of the mechanical system are difficult to obtain in advance for practical applications. The periodic sinusoidal and triangular trajectories are implemented to certify that the AFSMC has the excellent control performances and robustness. Eventually, the output responses are compared numerically.

2. Dynamic analysis of a motor-toggle mechanism

2.1 Mathematical model of a motor-toggle mechanism

The toggle mechanism driven by a PMSM is geometrically shown in Fig. 1(a) and its experimental equipment is shown in Fig. 1(b), where the mechanism is set up horizontally. The screw is a media that makes the smaller torque 
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 to convert into the larger force 
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 acting on the slider C. The conversion relationship is 
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where 
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 is the lead of screw, and 
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 is the gear ratio number.
  According to the joint Coulomb friction concepts developed [17], the generalized contact friction force in each [image: image6.emf]C
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Fig. 1 The toggle mechanism driven by a PMSM; (a) The geometric model, (b) The experimental equipment. 

joint can be expressed as
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 is Lagrange multiplier associated with the constraint force, 
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 is the friction force vector and 
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 is the coefficient of the dry friction of the pin joint.

The equation (2) can be rewritten as follows
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Observing the above equation, we can obtain the normal force at pin joints shown as follows
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The friction moment at pin joints can be obtained as follows
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where 
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 is the radius matrix at joints A, B, C, D and O. 

  Then, the Hamilton’s principle and Lagrange multiplier are employed to derive the differential-algebraic equation for the motor-toggle mechanism system. By using these 

equations and Euler Lagrange equation, we obtain the equation in the matrix form as
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2.2 Reduced formulation of the differential equations of motion
  The differential-algebraic equations of the toggle mechanism motion derived above are summarized in the matrix form of Eq. (6). The following implicit method is employed to reduce the system equations.
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 which is the same as References [7-8]. We define 
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 EMBED Equation.3  [image: image40.wmf]
or in the matrix form as:
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The elements of the vectors, v and matrices
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are detailed in references [7-8]. The resultant equation (8) is a differential equation with only one independent generalized coordinate. 2.3 Field-oriented PMSM driving

   A machine model of a PMSM can be described in a [image: image50.wmf]
Fig. 2 A simplified control block diagram of the field-oriented PMSM drive.

rotating rotor and the electric torque equation for the motor dynamic [1] is
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where 
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 is the load torque, B is the damping coefficient, 
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 is the rotor speed and 
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 is the moment of inertia. With the implementation of field-oriented control, the PMSM drive system can be simplified to a control system block diagram as shown in Fig. 2, in which  
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where 
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 is the torque current command. By substituting Eq. (10) into Eq. (9), the applied torque can be obtained as follows:
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where 
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 is the torque applied in the direction of 
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3. Design of a sliding mode controller

  Rewriting the second-order nonlinear, single-input-single-output (SISO) motor-mechanism coupled system (8) as: 
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Where
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The control problem is to find a control law so that the state 
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 can track the desired trajectory 
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where 
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 Defining a sliding surface 
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Differentiating 
[image: image79.wmf](

)

t

s

;

X

 with respect to 
[image: image80.wmf]t

 is


[image: image81.wmf](

)

(

)

(

)

(

)

.

*

e

C

v

-

t

d

t

U

X; t

G

X; t

f

e

C

e

s

&

&

&

&

&

&

&

+

+

+

=

+

=

     (17)

The tracking problem mentioned above is to find a control law 
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 so that the state 
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According to references [6], a position controller is proposed in the following:
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where 
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and
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where 
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 is a positive constant. The detailed derivations of the SMC is similar to the work of Slotine and Li [18]. 

To alleviate the chattering phenomenon, we adopt the quasi-linear mode controller [19], which replaces the discontinuous control laws of Eq. (20) by a continuous one inside a boundary layer around the switching surface. That is, 
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where 
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4. Design of an adaptive fuzzy sliding mode controller

  In this section, the adaptive fuzzy sliding mode controller (AFSMC) schemes [13] are implemented to take the trajectory tracking control for the motor-mechanism without complex mathematical model. 
4.1 Fuzzy sliding-mode control 
  We define a specific reference trajectories of slider B and its position can be transferred to desired angle
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Now, this paper proposed an integral-operation sliding surface is given as 
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where k1 and k2 are positive constants. From Eq.(24), if the [image: image100.emf]
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Fig. 3 (a) Membership function of IF-part; (b) membership function of THEN-part.

state trajectory of dynamic system (8) is trapped on the sliding surface (
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 The complete rule base on a conventional fuzzy system 
with n input variables has 
[image: image104.wmf]n
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 rules, where p is the number of linguistic terms per input variable. The fuzzy rules are given in the following form [20]:

Rule i: IF 
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 EMBED Equation.3  [image: image109.wmf],...m

,

i

2

1

=

 are the singleton control actions and 
[image: image110.wmf]i

F

s

 is the label of the fuzzy set. The triangular-typed functions and singletons are used to define the membership functions of IF-part and THEN-part, which are depicted in Figs.3(a) and (b), respectively. The defuzzification of the control output is accomplished by the method of center-of -gravity [21],
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where 
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 is the firing weight of the ith rule.

4.2 Adaptive fuzzy sliding mode control 

  The dynamic system of the motor-mechanism has developed completely in Eq. (8). A feedback linearization (FL) control law that achieves 
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Substituting Eq. (28) into Eq. (14), one can obtain 
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  It expresses that 
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According to the universal approximation theorem [22], there exists an optimal fuzzy control system 
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 in the form of Eq. (32), therefore
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where 
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 is the approximation error and is assumed the bounded 
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where 
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  Therefore, the control law of this paper for the developed AFSMC is assumed the following form:
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By substituting Eq. (34) into Eq. (14), it can be written as
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Observing from Eq. (33-34), the equal equation 
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  The estimating error of the main control input 
[image: image137.wmf]fz

U

~

 can be defined as 


[image: image138.wmf].

-

)

-

ˆ

(

-

ˆ

ˆ

ˆ

~

*T

T

*T

T

e

e

W

α

α

W

α

W

α

=

=

=

=

-

-

ε

-U

U

-U

U

U

*

fz

fz

*

fz

fz

  (37)

  In Eqs.(32-33), defining 
[image: image139.wmf])

-

ˆ

(

~

*

α

α

α

=

 and Eq. (37) can be rewritten as follows
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Continuously, the adaptation law of 
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 must obtain and an energy function (Lyapunov function) for introducing a suitable control law and associated adaptation rules. In order to force the states s(t) and 
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 tend to zero, consider a Lyapunov function candidate in the following form:

[image: image143.wmf],

~

~

2

2

1

)

~

,

(

T

1

2

1

α

α

α

h

G

s

s

V

+

=

              (39)

Where 
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 is a positive constant. Differentiating Eq. (39) with respect to time and it can be obtained as 
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To achieve 
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, the adaptation law and hitting controller are selected as 
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Where 
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This expresses that 
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 is a negative semi-definite function. Defining the following equation
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Because 
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Because 
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 by Barbalats Lemma [18] and that is s(t)→0 as t→∞. Finally, the AFSMC without the bound of approximation error E is presented as follow:
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4.3 Adaptive fuzzy sliding mode control with bound estimation 

  In Section 4.1, the application of the AFSMC system requires the bound of approximation error. However, the bound of approximation error E is different in any one dynamic system for practical applications in industry. To estimate the bound of approximation error, the AFSMC system with bound estimation for the motor-mechanism is depicted in Fig. 4. Replacing E by 
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 in Eq. (46), the following equation can be obtained:
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where 
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 is the estimated bound value of the approximation error. Defining an estimated error as follows
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To force the states 
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 tend to zero, designing a Lyapunov function candidate as
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where 
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 is a positive constant. Differentiating Eq. (49) with respect to time and using Eqs. (46) and (48).  It can be obtained as 
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[image: image170.emf]
Fig. 4 Adaptive fuzzy sliding-mode control block diagram for motor-toggle mechanism.

To achieve 
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Therefore, Eq. (50) can be rewritten as
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When the value 
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 has been estimated approximation error E
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  By Barbalat’s lemma [18], it can conclude that 
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 as t→∞. In summary, the AFSMC system with bound estimation is presented as
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  To alleviate the chattering phenomenon in the AFSMC control effort for the motor-mechanism, we adopt the quasi-linear mode controller, which replaces the discontinuous control laws of Eq. (54) by a continuous one inside a boundary layer around the switching surface. That is, 
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where 
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  This leads to tracking within a guaranteed precision 
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 while allowing the alleviation of the chattering phenomenon. Finally, the proposed AFSMC with bound estimation and alleviating the chattering phenomenon for the motor-mechanism is developed as 
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5. Numerical simulations of AFSMC

  For numerical simulations, the parameters of a motor-toggle mechanism are the same in section 5.1. The control objectives are to control the position of slider 
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 following the commanded sinusoidal and triangular trajectories between 
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 is given to verify the robustness of the proposed control schemes. 

5.1 Simulation results of AFSMC
  Firstly, AFSMC control law Eq. (46) is applied for periodic sinusoidal command for the motor-mechanism. The parameters of the proposed control systems are selected as follows
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The simulation results of AFSMC control law Eq. (46) is shown in Fig. 5. The slider B has a good command step responses with sinusoidal trajectories and the tracking errors converge between -0.0001 m and 0.0002 m in Figs 5 (a) and (b). Unfortunately, the chattering phenomenon of control input is shown in Fig 5 (c). To solve the unsuitable control input, equation (57) is implemented in the proposed control of AFSMC. Then the condition with external disturbances force 
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 are shown in Fig. 6. It still has a good command tracking control responses with sinusoidal trajectories and the tracking errors converge between -0.0001 m and 0.0003 m in Figs 6 (a) and (b). The robustness of the proposed control overcomes the external disturbances sufficiently. The chattering phenomenon of control inputs are also alleviated and solved by implementing equation (57) successfully. The other control condition with the periodic triangular trajectories and external disturbance force 
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 are shown in Fig. 7. The slider B has the smooth responses following the command triangular trajectories shown in Fig. 7(a). Figure 7(b) shows that the ranges of tracking error are between 0.00185 m and -0.000625 m before 2 second. But after 2 second, ranges of tracking error converge between 0.000625 m and 0.00001 m stably.
5.2 Comparison of SMC and AFSMC

  In this section, the simulation results of the proposed control schemes SMC with sliding surface Eq. (18) and AFSMC of Eq. (57) are compared numerically. The parameters are selected in the   SMC given as C=5, 
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  Firstly, the simulation results of comparison for the periodic sinusoidal trajectories control with external disturbance force 
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 are depicted in Fig. 8. The solid lines are the expressions of SMC and the dash lines are the expressions of the AFSMC, respectively. The Fig. 8 (a) shows that the two proposed controllers are 
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Fig 5. Simulation results of AFSMC with integral operation sliding surface for periodic sinusoidal command without external disturbances; (a) position responses of slider B, (b) tracking errors, (c) control efforts.
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Fig 6 Simulation results of AFSMC for periodic sinusoidal command with external disturbances 
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; (a) position responses of slider B, (b) tracking errors, (c) control efforts.
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(c)

Fig 7 Simulation results of AFSMC for periodic triangular

trajectories command with external disturbances 
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; (a) position responses of slider B, (b) 

tracking errors, (c) control efforts.
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Fig. 8 The simulation results comparison of the SMC (solid 
line) and AFSMC (dash line) for periodic sinusoidal 
trajectories command with external disturbances 
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; (a) position responses of slider B, (b) 
tracking errors, (c) control efforts.

robustness and overcome the external disturbances force excellently. Moreover, it is difficult to identify the different characteristics between the two controllers from Fig. 8 (a). Therefore, it is obvious different in the tracking errors that are shown in Fig. 8 (b) . At 0.5 second approximately, the tracking errors of the AFSMC are larger than the SMC. After 

1 second, the tracking errors are similar and stable in the two controllers. Figure. 8 (c) shows that the control inputs of SMC are stable and the ranges are between -0.4 A and 0.4 A. On the contrary, the control inputs of AFSMC are unstable. The oscillation amplitude of control input increase with time slowly.            

  The simulation results of the comparison for the triangular trajectories with external disturbance force 
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 are depicted in Fig. 9. The solid line is the expressions of SMC and the dash line is the expressions of the AFSMC, respectively. In the Fig. 9(a), the two controllers both have a high tracking ability for the trajectories outwardly. To observe from Fig. 9(b) thoroughly, the tracking errors of the AFSMC converge toward small and stably with time. On the contrary, the tracking errors of the SMC are unstable and larger than the AFSMC. Therefore, the control precision of the AFSMC is larger than the SMC for the triangular trajectories control with external disturbance force. 
6. Conclusions
  The dynamic motion tracking control of the punching machine which is made up by a toggle mechanism driven by a permanent magnet synchronous machine (PMSM) is studied. To develop the completeness of dynamic formulation, not only the external force and slider friction force are considered, but also the friction moments of pin 

[image: image221.png]0 1 2 3 4 5
time(sec)





(a)

[image: image222.emf]time(sec)

0 1 2 3 4 5

-0.001

0.000

0.001

0.002

0.003

 

 

 

 


(b)

[image: image223.emf]time(sec)

0 1 2 3 4 5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

 

 

 

 


(c)

Fig. 9 The simulation results comparison of the SMC (solid line) and AFSMC (dash line) for periodic triangular trajectories command with external disturbances 
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; (a) position responses of slider B, (b) tracking errors, (c) control efforts.                 

joints are developed in the dynamic analysis.

Then, this paper has successfully demonstrated the adaptive technique applied to the design of the stable fuzzy controller. The adaptation laws based on the Lyapunov stability theorem can adjust the fuzzy rules automatically. Thus, the stability of the developed AFSMC can be guaranteed. An AFSMC system with bound estimation was investigated to control the motor-toggle mechanism and the excellent control performances are verified by the periodic trajectories. Finally, The tracking control results show that the AFSMC provide high-performance dynamic trajectory tracking control characteristics and are robust with uncertain external disturbances from numerically. The accuracy of tracking error for periodic trajectories, the AFSMC is superior to the SMC.
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