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摘要

由於符號元編碼表示法相較於一般二元表示法其特性可以減少非零位元的出現，運用對摺指數演算法（folding-exponent algorithm）加以記錄共同乘法的部份時，則可以改進傳統二元掃瞄演算法的運算效率，進而減少了模指數運算的計算複雜度，而且當對摺一次時可以降低最多的乘法量，獲得最佳的計算複雜度。針對於所提出的改進式符號元編碼演算法我們可以運用平行處理技術（parallel computing）加以平行有效的執行模指數的運算。若配合使用高根位符號元編碼演算法與改進蒙哥馬利法，配合平行演算，數論分析加速運算與硬體（hardware design）的設計分析，透過驗證說明，我們可以預期得到模指數運算最佳的整體計算複雜度，這些成果將可有效運用在通訊系統應用與密碼資訊安全領域上。
關鍵字：蒙哥馬利馬法、符號元編碼、演算法、密碼系統、數論分析。
Abstract

As the “signed-digit recoding algorithm” has less occurrence probability of the nonzero digit than original binary number representation. By using the “common-multiplicand multiplication”technique of recording the common parts in the folded substrings, the “folding-exponent algorithm” can improve the efficiency of the binary algorithm, thus can further decrease the redundancy computation of modular exponentiation. The complexity analyses show the best performance of algorithm occurs when the exponent is folded once. As the modular squaring operation in finite field can be done by a simple shift operation when a normal basis is used, and the modular multiplications and modular squaring operations in our proposed signed-digit recoding scheme can be executed in parallel, by using our proposed generalized r-radix signed-digit folding algorithm, hardware design and parallel technique, we can effectively decrease the computational complexity. In this paper, I will describe a new method to put dots and complements methods together to speed up the operation of multiplication.
Keywords: Montgomery method, signed-digit recoding, algorithm, cryptosystem, numerical analysis.
1. Introduction

Montgomery modular arithmetic algorithm design and analyses are crucial to modern cryptosystems and complexity number theory. The motivation of studying high-speed and space-efficient algorithms for modular arithmetic algorithms comes from the applications in modern cryptography. Taking the RSA cryptosystem for example, the public and private keys are functions of a pair of large prime numbers, and the encryption and decryption operations are accomplished by modular exponentiation.“Binary algorithm”is the basic method for fast modular exponentiation [1-5]. New algorithms including “Montgomery modular reduction method”、“counting dot method”、“complement recoding method” and “sliding window method” will be full investigated in our research. I will then try to design and propose efficient algorithms for information security application usages [1-15]. 
 It is well known that modular arithmetic is the most dominant part of the computation which is performed in the RSA encryption system. The operation is time-consuming for large operands. In this research paper, I describe the modular arithmetic and some improved algorithms. These algorithms in the modular arithmetic are signed-digit recoding method, addition chain method, look-up table method and Montgomery algorithm and so on. Some improved algorithms will be depicted respectively such as dot counting method, complement recoding method, and sliding window method [1-15]. I will compare the computational complexities for the performance of the described methods. The rest of the paper is organized as follows. The modular multiplication methods are depicted in Section 2. In Section 3 introduces dots method and analyzes its complexity. In Section 4 explains the complements methods [16-25]. The proposed method combining dots and complement methods and its complexity analyses will be described in Section 5. Some examples will be provided in each section to show these methods respectively. Finally, we briefly give the conclusions and future works in Section 6 [16-30].
2. Montgomery Modular Arithmetic
The security of RSA cryptography ultimately lies on our inability to effectively factor large integers.  Admittedly this factorization uses special properties and fully general techniques for factoring numbers over 512 bits are even slower. Longer keys (1024 bits or 1k bits appear safe within the current state-of-the-art on integer factoring. Therefore, modular exponentiation can be time consuming, and is often the dominant part of modern cryptographic algorithms for key exchange, electronic signature, and authentication [26-30].
As the “signed-digit recoding algorithm” has less occurrence probability of the nonzero digit than binary number representation. Taking this advantage, I can effectively decrease the amount of modular multiplications. It shows that the average Hamming weight of a k-bit canonically recorded binary number approaches 
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 as k ( (. We should note that a number using the digit {
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, 0, 1} is not uniquely represented in binary signed-digit notation [31-45].
An addition chain of length l for an integer n is a sequence of integers [a0, a1, a2, . . . , al] such that a0=1, a1=n and ak= ai+ aj, 0≦i≦j<k≦l. The algorithm used to compute the modular exponentiation 
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 using a previously obtained addition chain. It is clear that one should not compute TE then reduce the result modulo M as the space requirements to store TE is huge. A simple procedure to compute 
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 is based on the paper-and-pencil method. This method requires E-1 modular multiplications computing all powers of T [31-45]. 
The Montgomery multiplication algorithm computes modular multiplication without performing division operations. This algorithm computes the modular multiplication, t ≡ ABR-1 mod N, while avoiding division by N. These three inputs, A, B, and N are n-bit integers. The output is t with a factor of R-1, where R is 2n. To gain the desired result, t ≡ AB mod of N, pre-computation and post-computation steps are needed [66-68]. The pre-computation is to pre-multiply all inputs, A and B, by the factor of R mod N, where R is 2n and N is an odd n-bit integer [45-50]. 
The post-computation is to multiply the final result by one with the Montgomery multiplication algorithm to eliminate the factor R mod N. As shown in Algorithm 3, pi is a result of modulo 2 as can be verified by simply checking the last bit of s[i]+aiB. The shift-to-right operation can be considered as division by 2. The modular multiplication operation can be used to compute the modular exponentiation that is presented in the next subsection [48-58]. A = 8, B = 9→ AB mod N ≡ 8*9 mod 13 ≡ 7. We now introduce some other mathematical arithmetic algorithms such as counting dot method, complement recoding method and sliding window method [59-64].
3. Complement Recoding Method 
There are two categories in the complement expressions. One is 1’s complement recoding method and the other is 2’s complement recoding method. We describe them respectively as follows [65-70].
1’s complement: Let W be an integer in binary representation and there are r bits in W. W is indicated as 
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 and the leftmost bit is the most significant one [62-70]. We define the symbol of the 1’s complement of W to be 
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. A way to find the 1’s complement is simply to take the complement of the binary number bit by bit. For example: W = (00000110)2 and 
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= (11111001)2 (replace “0” with “1” and “1” with “0”). We can use Equation (6) to compute the complement of W [55-70]. 
Let W = (101101)2. Evaluate 1’s complement of W by using 1’s complement recoding method [65-70]. According to Equation (6), 
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= (1000000)2 – (101101)2 – 1 = (010010)2 is obtained.
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2’s complement:
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Let Q be an integer in binary representation and there are d bits in Q. Q is indicated as Qd Qd-1…Q2Q1 and the leftmost bit is the most significant one. Calculate the 2’s complement of Q by using Step 1 and Step 2, which are described as follows [65-70]. First, we invert the binary equivalent of the number by changing all of the ones to zeros and all of the zeros to ones. Then, The above result adds 1 and the final result is obtained (2’s complement of Q). Let Q = (00010001)2. Evaluate 2’s complement of Q by using 2’s complement recoding method. We calculate the 2’s complement of Q and the procedures as: (00010001) , hence, (11101110). Then, (00010001)2+(1)2=(11101111)2. We can obtain 2’s complement of Q is (11101111)2[65-70].

4. Sliding Window Method 
The sliding window method is used for accelerating long-word length modulo exponentiation. This method decomposes the bits of the exponent into m-bit words. The probability of a word of length m being zero is 2-m, assuming that the zero and one bits are produced with equal probability. The siding window method first decomposes E into zero and nonzero words (windows) Qi of length L(Qi) [66-70]. We take m to be the length of the longest window, i.e. 
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, where l is the number of windows, n is the bit-length of the exponent, and m is the window size. One example is given as [65-69]. If we define m = 3, where m is the window size, we partition E = (10341)10 = (10100001100101)2 as E = 10100001100101, evaluate ME by using sliding window method. The sliding window method first performs the pre-processing multiplications and obtains Ml for l = 3, 5, and 7. Starting with 
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, it proceeds to compute X10341. 
5. The Proposed Montgomery Algorithm 

We here propose improved Montgomery algorithm (using Montgomery reduction technique) for fast evaluating 
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mod N) operation as follows [65-71].
6. Conclusions
Modular exponentiation of long integers is required in a number of public-key cryptosystem. The operands are considerably large (1024 bits). By using the presented algorithms to evaluate the modular exponentiation computation 
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 for the practical application to public cryptography where k is the bit-length of binary exponent E [43-44]. 
In several public-key cryptosystems, the main operation consists of the modular exponentiation, which is performed using successive modular multiplications. In this research paper, I introduce some methods to reduce the execution time by lowering the number of modular in order to reduce the computational complexities for modern cryptosystems. In the proposed Montgomery algorithm, the computation of 
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 (n+1) single-precision multiplications for 
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. The computational analyses of Montgomery algorithm, the probability of executing modular multiplication MMR(SC1), MMR(SC2), or MMR(SC3) in proposed Montgomery algorithm is all equivalent to the occurrence probability of signed-digit “1” in EMSD [60-68]. Multiplicative inverse operation can be evaluated as for elliptic curves or in the finite field using normal basis. Therefore, we can further speed up the proposed improved Montgomery modular algorithm by evaluating the multiplicative inverse operation over the finite filed using normal basis [65-71]. 
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Proposed Montgomery Algorithm


Input: M, EMSD, N, R           


Output: C1 = � EMBED Equation.DSMT4  ���C2 = � EMBED Equation.DSMT4  ���


D1 = � EMBED Equation.DSMT4  ���D2 = � EMBED Equation.DSMT4  ���


C1 = C2 = D1 = D2 = � EMBED Equation.DSMT4  ���;      


S = M � EMBED Equation.DSMT4  ���R mod N;    


begin       


for i = 0 to m-1 do  


begin


if (e1i = 1) then C1 = MMR(SC1); 


if (e1i = � EMBED Equation.DSMT4  ���) then� EMBED Equation.DSMT4  ���


if (e2i = 1) then C2 = MMR(SC2);


if (e2i = � EMBED Equation.DSMT4  ���) then� EMBED Equation.DSMT4  ���


S = MMR(SS);


end;


end.
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