航空技術學院學報 第十一卷 第一期（民國一○一年）
航空技術學院學報 第十一卷 第一期 第15－22頁（民國一○一年）

Journal of Air Force Institute of Technology, Vol. 11, No. 1, pp. 15-22, 2012

Modular Multiplication Algorithm Design and Theoretical Number Theory Analyses for RSA Public-Key Cryptosystems

RSA密碼系統快速模乘演算法設計應用與複雜度理論研究分析
吳嘉龍
Chia-Long Wu
空軍航空技術學院一般學科部航空通電系專任教授兼任系主任
Professor and Director, Department of Aeronatic Communication Electronics, AFIT, ROC
摘要

基於以上數學理論來深入分析蒙哥馬利、高基底位元、加法鍊、二元法、指數摺疊、共同乘數法與符號編碼演算法，進一步加以改進現存的快速演算法或者設計出更加快速有效進階的模運算演算法儼然蔚為趨勢。模指數運算演算法設計分析在RSA公開金鑰密碼學應用與複雜度分析性數論研究上有相當重要的地位，其中針對RSA公開金鑰密碼系統加速軟體或硬體設計，基於數學理論（Number Theory）分析探討演算法中的運算複雜度，我們需要有效降低模指數運算乘法量。在RSA公開金鑰密碼系統中，我們用C = ME mod N來將訊息進行加密，並用M = CD mod N解密還原明文，其中(E, N)為公開金鑰，其中(D, N)為私密金鑰。經由數論研究分析，由於符號編碼與計點演算法可有效減少運算重複出現，利用這個優點，我們可有效的降低在模算術運算過程中的冗餘乘法運算量，進而減少了整體模運算演算法的計算複雜度，本文並將根據數論分析演算法計算複雜度深入探討說明。
關鍵字：RSA密碼系統、密碼演算法、數論分析研究、模乘運算、運算複雜度。
Abstract
The modular exponentiation is a common operation for most cryptosystems, such as the RSA encryption scheme. For software or hardware design for RSA cryptosystem, one needs to reduce total number of modular multiplications. In RSA cryptosystem, the public key is (E, N), and the private key is (D, N). The key (E, N) is used to encrypt a message and the key (D, N) is used to decrypt a message. We use C = ME mod N to encrypt the message for each message block M and use M = CD mod N for each ciphertext block to decrypt the ciphertext. It is important for us to explore and improve fast modular multiplication algorithms such as the Montgomery reduction method, high-radix method, addition chains method, binary method, exponent-folding method, common-multiplicand multiplication and signed-digit recoding method to speed up modular operation. In this paper, I will describe a new method to put dots and complements methods together to speed up the operation of multiplication. I will also use number theoretical analyses detailed depict its computational complexity.
Keywords: RSA cryptosystem, cryptographic algorithm, number theory analysis, modular multiplication operation, computational complexity.
1. Introduction

The RSA cryptosystem has been considered more and more important in data security processing and transmission. The computation of large modular exponentiation is a time-consuming arithmetic operation used in cryptography. An efficient multiplication computation is very important and useful for many cryptosystems. Therefore, we need efficient modular multiplication algorithms such as the Montgomery reduction method, common-multiplicand multiplication, high-radix recoding, look-up table, addition chains, square-and-multiply, parallel exponent -folding, key-size-partitioning and signed- digit recoding methods [1-9].

 The rest of the paper is organized as follows. The modular multiplication methods are depicted in Section 2. In Section 3 introduces dots method [1] and analyzes its complexity. In Section 4 explains the complements methods [2]. The proposed method combining dots and complement methods and its complexity analyses will be described in Section 5. Some examples will be provided in each section to show these methods respectively. Finally, we briefly give the conclusions and future works in Section 6.
2. Modular Exponentiation
Modular exponentiation can be time consuming, and is often the dominant part of modern cryptographic algorithms for key exchange, electronic signature, and authentication. “Binary algorithm”is the basic method for fast modular multiplication and squaring. Algorithms including “high-radix recoding method”, “dot counting method”,“look-up table method”, “modular multiplication”,“modular squaring” and “modular inverse” have be investigated in many research papers [3-8].
In RSA cryptosystem, the public key is (E, N), and the private key is (D, N). The key (E, N) is used to encrypt a message and the key (D, N) is used to decrypt a message. The message is divided into a sequence of blocks, and is considered each block as an integer between 0 and N-1. We use C = ME mod N to encrypt the message for each message block M and use M = CD mod N for each ciphertext block to decrypt the ciphertext. Exponentiations are performed by repeated squaring and multiplication operations. A simple way to perform modular exponentiation is to repeat the modular squaring and modular multiplication operations from the least-significant bit of E. In this method, iterations are needed and modular multiplications are the fundamental operations during iterations [9-15].
3. Number Theory
In fact, the multiplicand X and multiplier Y can be expressed in binary form as follows.
[image: image1.wmf]1212

(...)

uu

XXXXX

-

=

and
[image: image2.wmf]1212

(...)

vv

YYYYY

-

=

 are two unsigned binary integers, where
[image: image3.wmf]uv

³

. It means there are u and v bits in X and Y respectively [15-20].

Multiplicand X and multiplier Y are recorded in two rows and keep abreast of right. Insert 2u-1 spaces and each space is expressed by a “ – ” between the two rows to represent the 2u-1 new positions as shown in figure 1. The row of new positions is defined by Q(new). The ith position, which is denoted Qi(new) is counted from right to left in Q(new) for i = 1, 2, …, 2u-1 [20].

Xu Xu-1 Xu-2 … X2 X1 (X
－ － － － － … － － － (Q (new)

Yv Yv-1 Yv-2 … Y2 Y1 (Y
Figure 1 Insert a row of spaces for computing product XY.

The Dots methods for multiplication can be described by using step 1 and step2.

Step 1 Dots determination process
First, we check each bit in the multiplicand X and multiplier Y. If there are k pairs of symmetric 1s from the row above and below Q(new), then place k dots above the “ – ” at Q(new). This process can be preceded for X and Y. Let us take an example and consider X = 11011 and Y = 1001. There are two pairs of 1s symmetric Q4(new): (X1, Y4) and (X4, Y1) as shown in Figure 2. Counting dots can be deduced as above process [18-20].

Step 2 Binary-restoring process
We assume a sequence S = SmSm-1 … S2S1, where Si is a nonnegative decimal integer. Binary-restoring S is a procedure of transforming the decimal number into the binary number in this sequence. For example, a sequence S “011022011” in decimal number can be obtained. By applying binary-restoring procedure, the binary representation of the product XY is 11110011 [19-25].

	X5
	
	X4
	
	X3
	
	X2
	
	X1
	
	X

	1
	
	1
	
	0
	
	1
	
	1
	
	

	
	．
	．
	
	．
	．
	
	．
	．
	
	

	
	
	
	
	．
	．
	
	
	
	
	

	－
	－
	－
	－
	－
	－
	－
	－
	－
	
	Q(new)

	
	
	1
	
	0
	
	0
	
	1
	
	

	
	
	Y4
	
	Y3
	
	Y2
	
	Y1
	
	Y

Figure 2 Dots determination.

Let us take a sequence 341 and it means C3 = 3, C2 = 4, and C1 = 1. We assume the binary-restoring result of the sequence is the binary number (C5’C4’C3’C2’C1’)2. The following procedures are described for the binary-restoring method [20-26].
C1’ : (C1+0) /2=0…1 (C1’ = 1,

C2’ : (C2 +0) /2=2…0 (C2’ = 0,

C3’ : (C3+2) /2=2…1 (C3’ = 1,

C4’ : (C4+2) /2=1…0 (C4’ = 0,

C5’ : (C5+1) /2=0…1 (C5’ = 1.

Then we get the binary-restoring result of the sequence is 10101 [22-25].

3.2 Complexity Analyses

The computational complexity of the Dots methods for multiplication will be analyzed as follows. We assume there are u bits in X and v bits in Y, where u > v. The multiplicand X and multiplier Y are expressed in binary form as follows [20-33].

[image: image4.wmf]1212

(...)

uu

XXXXX

-

=

and
[image: image5.wmf]1212

(...)

vv

YYYYY

-

=

 are two unsigned binary integers. We assume
[image: image6.wmf]uv

³

. In average, the numbers of 1 are
[image: image7.wmf]2

u

 in X and the numbers of 1 are
[image: image8.wmf]2

v

 in Y. If we calculate the product of the numbers of 1 in XY, the worst case of the product is
[image: image9.wmf]2

4

u

 [20].
But we let the 1’s positions of the multiplier Y form a LUT (Look Up Table) pre-computed [25-27], we could reduce the multiplications in the product of XY to become
[image: image10.wmf]2

u

.

	
	
	1
	
	0
	
	1
	
	0
	
	1
	
	0
	
	1
	
	1
	
	X

	
	
	
	.
	
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	
	Step 1

	
	
	
	
	
	.
	
	.
	
	.
	.
	.
	.
	.
	
	
	
	
	

	
	
	
	
	
	
	
	.
	
	.
	
	.
	
	.
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	.
	
	
	
	
	
	
	
	
	

	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	
	Q(new)

	
	
	
	
	1
	
	0
	
	1
	
	1
	
	1
	
	0
	
	1
	
	Y

	
	
	
	1
	0
	2
	1
	3
	1
	4
	2
	3
	2
	3
	1
	1
	1
	
	(decimal)

	
	
	
	1
	1
	1
	1
	1
	0
	0
	0
	0
	1
	1
	1
	1
	1
	
	Step 2

Figure 3 Computational result analysis for X*Y, where X = 10101011 and Y = 1011101.

3.3 Examples

Here we take an example to represent the dots method for multiplication. Find the product of X*Y, where X = 10101011 and Y = 1011101. Step 1 computes the dots on the pairs of symmetric 1s in X and Y. Binary-restoring procedure is determined in step 2. For the dots descriptions see figure 2. The result is shown as Figure 3 [27-33].

4. Complements Description

4.1 Mathematics Preliminaries
There are two categories in the complements. One is 1’s complement and the other is 2’s complement. Here we discuss 1’s complement. Let W be an integer with the binary representation and there are r bits in W. W is indicated as
[image: image11.wmf]121

...

rr

WWWW

-

, with the leftmost bit is the most significant one [28].

We define the symbol of the 1’s complement of W to be
[image: image12.wmf]W

. The
[image: image13.wmf]W

in which is the 1’s complement additive inverse of a number is its bit-wise complement (replace 0s with 1s and 1s with 0s). It is easy to know
[image: image14.wmf](1)

(100...00)1

rbit

WW

+

=--

, where
[image: image15.wmf]11

...

rr

WWWW

-

=

 and
[image: image16.wmf]i

W

= 0 if
[image: image17.wmf]i

W

= 1, or
[image: image18.wmf]i

W

= 1 if
[image: image19.wmf]i

W

= 0, for i = 1, 2, 3, …, r [29-33].

4.2 Examples

Now we take an example to describe the complement. Find the W = 101101, the
[image: image20.wmf]W

 = 1000000 – 101101 – 1 = 010010. It is the correct result [31-32].

5. Proposed Method

5.1 Method Description

The proposed fast binary multiplication method is proposed by using dots and complements techniques. Based on the definition shown in Section 4, we can transform the complements of X and Y into
[image: image21.wmf]X

and
[image: image22.wmf]Y

 respectively. Then the original multiplication result of XY can be rewritten as follow [32-33].

[image: image23.wmf]1

[(100...00)1]

u

X

+

--

 EMBED Equation.DSMT4 [image: image24.wmf]1

[(100...00)1]

v

Y

+

--

 =
[image: image25.wmf]1

(100...00)

uv

++

 –
[image: image26.wmf]1

(100...00)

u

Y

+

 –
[image: image27.wmf]1

(100...00)

u

+

 -
[image: image28.wmf]1

(100...00)

v

X

+

 +
[image: image29.wmf]*

XY

 +
[image: image30.wmf]X

 -
[image: image31.wmf]1

(100...00)

v

+

 +
[image: image32.wmf]Y

 +1. (1)

5.2 Complexity Analyses

One note is defined as following:

Ham (X) defines Hamming weight of X. It means the 1’s numbers in the binary form for X. For example: if X = (11111111)2, in the binary form, it means the Ham (X) = 8 [33].

There are u and v bits in X and Y respectively. Normally, four cases should be discussed for the product of XY. That is

Ham (X) >
[image: image33.wmf]2

u

 and Ham (Y) >
[image: image34.wmf]2

v

,

Ham (X) >
[image: image35.wmf]2

u

 and Ham (Y) <
[image: image36.wmf]2

v

,

Ham (X) <
[image: image37.wmf]2

u

 and Ham (Y) >
[image: image38.wmf]2

v

,

Ham (X) <
[image: image39.wmf]2

u

 and Ham (Y) <
[image: image40.wmf]2

v

.

Because the 1s position of the multiplier Y can be stored by Look Up Table (LUT) in advance, it shouldn’t be analyzed its complexity and the Ham (X) is considered as following two cases [30-33].

Case 1: Ham (X) >
[image: image41.wmf]2

u

 including Ham (Y) >
[image: image42.wmf]2

v

 and Ham (Y) <
[image: image43.wmf]2

v

Ham (X) >
[image: image44.wmf]2

u

, hence, Ham (
[image: image45.wmf]X

) <
[image: image46.wmf]2

u

.

There are nine items in (1). We only consider
[image: image47.wmf]*

XY

 item and the other items are only considered shift position problem [8-9]. That is, other eight items are not considered for their complexity [8-9] because we can use LUT for
[image: image48.wmf]Y

. Then the multiplications for the product of XY are
[image: image49.wmf]2

u

, where u is the Hamming weight of X [30-33].

Case 2: Ham (X) <
[image: image50.wmf]2

u

 including Ham (Y) >
[image: image51.wmf]2

v

 and Ham (Y) <
[image: image52.wmf]2

v

Since the Hamming weight of X is smaller than
[image: image53.wmf]2

u

 and the 1s position of the multiplier Y can be stored by LUT in advance, the multiplications for the product XY are
[image: image54.wmf]2

u

[31] .

5.3 Examples

Let us consider the product of X*Y, where X = 10101011 and Y = 11011101. Because the Ham (X) > 4 and Ham (Y) > 4, this example can be applied to the method of case 1. We find means
[image: image55.wmf]X

 = 01010100 and
[image: image56.wmf]Y

 = 00100010 [30-33].
The product of
[image: image57.wmf]*

XY

 is only calculated. (01010100) * (00100010) = 101100101000. The answer can be preceded by using (1), and then the answer is obtained. The computational complexity for the product of X*Y is 3. The other example is taken for case 2. Let us compute the product of X*Y, where X = 110000 and Y = 100100. The product of X*Y can be obtained directly. The answer is 11011000000. The computational complexity for the product of X*Y is 2 [20-33].

6. Conclusions and Future Work
The modular exponentiation is a common operation for scrambling secret message and is used by RSA public-key cryptosystem and DSS digital signature. Modern cryptographic systems are based on modular exponentiation, wherein the operands are considerably large. In general, modular exponentiation arithmetic is implemented by using a chain of modular multiplications. Some methods of fast modular exponentiation have been proposed and applied to the above mentioned cryptosystems in past years [1-5].
Generally, modular exponentiation is implemented using a chain of modular multiplications. One way of improving the throughput of a cryptographic system implementation is reducing the number of the required modular multiplications. In fact, to reduce “multiplications” is very important in information security usages. In this paper, we will describe a new method to put dots and complements methods together to speed up the operation of multiplication [20-24].

Multiplications are fundamental and important operations in information security and public-key cryptosystems. In this paper, we present a novel computation method by combining dots and complements techniques in binary multiplications. The LUT scheme is used by this proposed method, which could efficiently reduce the numbers of the multiplications. Furthermore the proposed method can be easier implemented for the hardware. The dots methods can reduce the multiplications in the product of XY [31-32].
In this paper, we will describe a new method to speed up the operation of multiplication. The proposed method can efficiently reduce the multiplications in the product of XY by combining dots and complement methods. From the examples shown in this paper, we can easily show that the proposed binary multiplication method can thereby work very effectively by reducing the numbers of multiplication. In the future work, we will explore how to apply this proposed technique to fast evaluate modular exponentiation and division operations for cryptographic application [30-33].

References

[1] N. Nedjah, L.M. Mourelle, Two hardware implementations for the Montgomery multiplication: sequential vs. parallel, Proceedings of the 15th Symposium on Integrated Circuits and Systems Design, IEEE Computer Society, 2002, pp. 3–8.
[2] N. Nedjah, L.M. Mourelle, Minimal addition chains for efficient modular exponentiation using genetic algorithms, Proceedings of the 15th International Conference on Industrial & Engineering Applications of Artificial Intelligence & Expert Systems, Cairns, Australia, Lecture Notes in Computer Science, vol. 2358, Springer, Berlin, 2002, pp. 88–98.
[3] B. Q. Liu, D. H. Chen, C.G. Xiong, and K. Xing, “New Methods for Binary Multiplication”, International Journal of Computer Mathematics, vol. 82, no. 1, Jan. 2005, pp. 13-22.

[4] C.-C. Chang, Y.-T. Kuo, and C.-H. Lin, “Fast Algorithms for Common-multiplicand Multiplication and Exponentiation by Performing Complements”, Proceedings of the 17th International Conference on Advanced Information Networking and Applications, IEEE, 2003, pp. 807-811.

[5] N. Nedjah and L.M. Macedo, “Fast Reconfigurable Systolic Hardware for Modular Multiplication and Exponentiation”, Journal of Systems Architecture, vol. 49, no. 7-9, Oct. 2003, pp. 387-396.

[6] J.-H. Hong and C.-W. Wu, “Cellular-array Modular Multiplier for Fast RSA Public-key Cryptosystem Based on Modified Booth's Algorithm”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 11, no. 3, June 2003, pp. 474-484.

[7] F. Huang and Z.-H. Guan, “A Modified Method of a Class of Recently Presented Cryptosystems”, Chaos, Solitons and Fractals, vol. 23, no. 5, Mar. 2005, pp. 1893-1899.

[8] C. Heuberger and H. Prodinger, “Carry Propagation in Signed Digit Representations”, European Journal of Combinatorics, vol. 24, no. 3, Apr. 2003, pp. 293-320.

[9] A. K. Jukka, “Non-injective Knapsack Public-key Cryptosystems”, Theoretical Computer Science, vol. 255, no. 1-2, Mar. 28, 2001, pp. 401-422.

[10] A.A. Ziya and S. Remziye, “A Hardware Version of the RSA Using the Montgomery's Algorithm with Systolic Arrays”, Integration, the VLSI Journal, vol. 38, no. 2, Dec. 2004, pp. 299-307.

[11] O. Nibouche, M. Nibouche, and B. Ahmed, “New Iterative Algorithms for Modular Multiplication”, Signal Processing, vol. 84, no. 10, Oct. 2004, pp. 1919-1930.

[12] N. Murabayashi, “On the Field of Definition for Modularity of CM Elliptic Curves”, Journal of Number Theory, vol. 108, no. 2, Oct. 2004, pp. 268-286.

[13] F. Claudia, M. Enrico, and M. Fabio, “How to Fake an RSA Signature by Encoding Modular Root Finding as a SAT Problem”, Discrete Applied Mathematics, vol. 130, no. 2, Aug. 2003, pp. 101-127.

[14] A. Cilardo, A. Mazzeo, L. Romano, and G.P. Saggese, “Exploring the Design-space for FPGA-based Implementation of RSA”, Microprocessors and Microsystems, vol. 28, no. 4, May 2004, pp. 183-191.

[15] O. Nibouche, A. Bouridane, and M. Nibouche, “Architectures for Montgomery's Multiplication”, Computers and Digital Techniques, IEE Proceedings, vol. 150, no. 6, Nov. 2003, pp. 361-368.

[16] A.F. Tenca and C.K. Koc, “A Scalable Architecture for Modular Multiplication Based on Montgomery's Algorithm”, IEEE Transactions on Computers, vol. 52, no. 9, Sept. 2003, pp. 1215-1221.

[17] C. McIvor, M. McLoone and J.V. McCanny, “Modified Montgomery Modular Multiplication and RSA Exponentiation Techniques”, Computers and Digital Techniques, IEE Proceedings, vol. 151, no. 6, Nov. 2004, pp.402-408.

[18] J. L. Beuchat and J.M.Muller, “Modulo M Multiplication-addition: Algorithms and FPGA Implementation”, Electronics Letters, vol. 40, no. 11, May 2004, pp. 654-655.

[19] C.O. Rourke and B. Sunar, “Achieving NTRU with Montgomery Multiplication”, IEEE Transactions on Computers, vol. 52, no. 4, Apr. 2003, pp. 440-448.

[20] D.-C. Lou, C.-L. Wu and C.-Y. Chen, “Fast Exponentiation by Folding the Signed-digit Exponent in Half,” International Journal of Computer Mathematics, vol. 80, no. 10, Oct. 2003, pp. 1251-1259.

[21] H. Nozaki, A. Shimbo, and S. Kawamura, “RNS Montgomery Multiplication for Duplicate Processing of Base Transformations,” IEICE Transactions on Fundamentals, vol. E.86-A, no. 1, Jan. 2003, pp. 89-97.
[22] V. Bunimov and M. Schimmler, “Area and Time Efficient Modular Multiplication of Large Integers”, IEEE International Conference on Application-Specific Systems, Architectures, and Processors, June 2003, pp. 400 – 409.

[23] J.-H. Oh and S.-J. Moon, “Modular Multiplication Method”, Computers and Digital Techniques, IEE Proceedings, vol. 145, no. 4, July 1998, pp. 317-318.

[24] J.-H. Hong and C.-W. Wu, “Cellular-Array Modular Multiplier for Fast RSA Public-key Cryptosystem Based on Modified Booth's Algorithm”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 11, no. 3, June 2003, pp. 474-484.

[25] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures and Public-key Cryptosystems,” Communication. ACM, vol. 21, no. 2, Feb. 1978, pp. 120–126.
[26] A. A. Gutub and A. F. Tenca, “Efficient scalable VLSI architecture for Montgomery inversion in GF(p)”, Integration, the VLSI Journal, vol. 37, no. 2, May 2004, pp. 103-120.

[27] T.-S. Chen, “A threshold signature scheme based on the elliptic curve cryptosystem”, Applied Mathematics and Computation, vol. 162, no. 3, March 25, 2005, pp. 1119-1134.
[28] Intel, MCSTM51 family of micro-controllers architectural overview, http://www.intel.com, 2005.
[29] Z. Navabi, VHDL—Analysis and Modeling of Digital Systems, 2nd Edition, McGraw-Hill, New York, 1998.
[30] C.-L. Wu, “Advanced fast binary modular arithmetic algorithms design and number theory analyses for public-key cryptosystems,” Journal of Air Force Institute of Technology, vol. 10, no. 1, pp. 15-22, Aug. 2011.

[31] C.-L. Wu, “Advanced mathematical and complexity analyses for theories of cryptographic algorithms Design on Modern Cryptosystems,” Journal of Air Force Institute of Technology, vol. 10, no. 1, pp. 23-32, Aug. 2011.
[32] C.-L. Wu, D.-C. Lou and T.-J. Chang, “Fast modular multiplication based on complement representation and canonical recoding,” International Journal of Computer Mathematics1, vol. 87, no. 13, pp. 2871-2879, Oct. 2010.
[33] C.-L. Wu, “Modular arithmetic and fast algorithm designed for modern computer security applications,” 2012 Conference Management System of (ACIIDS-2012), 4th Asia Conference of intelligent information and database systems, LNCS 7198, Kaohsiung, Taiwan, Mar. 19-21, 2012, pp. 276-285.
22
21

_1175405419.unknown

_1175430008.unknown

_1175447564.unknown

_1175694984.unknown

_1175948676.unknown

_1175697658.unknown

_1175447642.unknown

_1175694972.unknown

_1175447589.unknown

_1175447527.unknown

_1175447563.unknown

_1175436866.unknown

_1175436867.unknown

_1175435570.unknown

_1175405845.unknown

_1175406230.unknown

_1175406490.unknown

_1175406581.unknown

_1175406457.unknown

_1175406221.unknown

_1175406229.unknown

_1175405943.unknown

_1175406168.unknown

_1175405613.unknown

_1175405614.unknown

_1175405612.unknown

_1175405250.unknown

_1175405284.unknown

_1175405324.unknown

_1175405262.unknown

_1175402872.unknown

_1175403813.unknown

_1175403823.unknown

_1175402892.unknown

_1175321033.unknown

_1175321119.unknown

_1175402871.unknown

_1175321049.unknown

_1175319534.unknown

_1175321017.unknown

_1175319407.unknown

