精進「導線測量」誤差判斷技術之研究

作者:耿國慶

提要

- 一、「導線測量」與「交會法距離測量」,長久以來基於其重要性與實用性, 併列為「砲兵基本測量」。即使在「定位定向系統」為主、「傳統測量」 為輔的作業型態,惟為建立測量專業知識,配合「系統」作業與替代「系統」故障時之作業任務等考量,仍無法偏廢。就美軍砲兵測地準則觀察, 其相關內容非但未曾刪減,且增加導線測量「誤差判斷」技術,值得國軍 重視與省思。
- 二、「導線測量」常因器材條件、自然環境與人為疏失等因素,難免產生微小的「誤差」或超過許可誤差的「錯誤」,當教官、測量官(排長)經由「誤差判斷」程序適切修正後,除可確保測地時效外,亦能發現人為疏失,作為爾後施訓參考。
- 三、「誤差判斷」須先確定誤差類型,始可分析誤差來源,再透過相關技術分離誤差,達到修正成果之目的。通常導線誤差區分為距離、角度與複合、標高等類型,可使用「平行線法」、「徑誤差方位角計算法」分離角度誤差或使用「垂直平分線法」、「密位公式」分離距離誤差。各種分離技術均經過實際驗證,證實成效顯著。
- 四、砲兵測地通常以「器材」為導向,當「定位定向系統」納編後,「導線測量」等相關技術易因重要性減低而逐漸式微。惟基於專業知識、互補與替代性等考量,仍須參考民間測量學術與先進國家準則發展,將「誤差判斷」技術持續精進至科學化與標準化,俾能增進測地任務達成之能力。

關鍵詞:導線測量、誤差判斷、平行線法、徑誤差方位角計算法、垂直平分線 法、密位公式、分離誤差

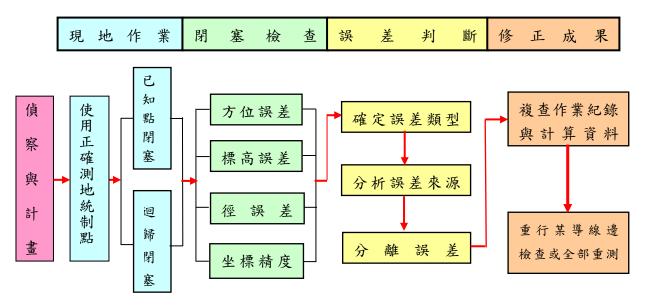
壹、前言

「導線測量」與「交會法距離測量」,長久以來基於其重要性與實用性, 併列為「砲兵基本測量」。即使在「定位定向系統」為主的作業型態,惟為建 立測量基本觀念,配合「定位定向系統」作業與替代「定位定向系統」故障時 之作業任務等考量,仍無法偏廢。美軍將「定位定向系統」、「全球定位系 統」(GPS)定義為「自動化」測量,其他方式則稱之為「傳統測量」 (Conventional survey)。¹就其「砲兵測地」相關準則觀察,內容非但未曾刪減且增加導線測量「誤差判斷」技術,值得國軍重視與省思。

「導線測量」通常由於器材條件、自然環境與人為疏失等因素,難免產生微小的「誤差」或超過許可誤差的「錯誤」,當教官、測量官(排長)經由「誤差判斷」程序適切修正後,除可確保時效,亦能發現人為疏失,作為爾後加強訓練參考。如欠缺「誤差判斷」能力時,則須重行現地作業,浪費測地資源。基此,測地人員務須具備導線測量誤差判斷能力,俾盡早修正測地成果,達成測地任務。

貳、導線「誤差判斷」程序

通常適切可行的「測地計畫」,已指導測地人員在現地作業與成果整理階段之檢查要領。惟一般性檢查並無法消除誤差,且誤差常於現地作業與計算過程中造成,直至成果整理完成後始可發現(導線測量作業程序示意,如圖一)。如誤差成因單純,經由「誤差判斷」程序即可修正;當誤差成因複雜時,則須重行現地作業致喪失時效。基此,測地人員務須具備「誤差判斷」之能力,俾盡早修正測地成果,避免浪費測地資源。²


「閉塞導線」(Closed Traverse)之「誤差判斷」程序,係先行確定誤差類型、分析誤差來源,再分離出可疑測站(方位、水平角或高低、天頂角)或導線邊(距離)。作業時須假定目前僅有一種誤差存在,其閉塞誤差必須大到足夠分析來源,且誤差並非在控制之中。再藉由「誤差判斷」指出可疑測站或導線邊,甚至包含複合誤差在內。導線「誤差判斷」程序分述如下:

- 一、導線閉塞後,先決定方位誤差、標高誤差、徑誤差與坐標精度等誤差判 斷相關資料。
- 二、確定誤差所顯示之類型,並分析誤差來源。
- 三、分離可疑測站或導線邊之誤差。
- 四、複查現地作業紀錄與計算資料誤差,並適切修正成果。
- 五、當記錄資料與計算均未發現誤差時,須返回現地重行必要之導線邊(測站)檢查或全部重測。

Tactics, Techniques, and Procedures for FIELD ARTILLERY SURVEY (FM6-2), (Washington, DC: Headquarters Department of the Army, 1993), p1-6.

[&]quot;Marine Artillery Survey (MCWP3-1.6.15 , Draft) " , (United States Marine Corps , 2000) , p10-19 \circ

圖一 導線測量作業程序示意

資料來源:作者自製

參、導線誤差類型

導線測量區分為「非閉塞導線」(Open Traverse)、「閉塞導線」(Closed Traverse)與「角導線」(Directional Traverse)等 3 種形式,其中「閉塞導線」又區分為「已知點閉塞」(Close on second station)、「迴歸閉塞」(Close on starting station)等 2 種,均可提供閉塞檢查與計算精度,俾確保符合相關之作業規範(如表一)。

測地作業因器材條件、自然環境與人為疏失等因素,難免產生微小的「誤差」(Error)或超過許可誤差的「錯誤」(Mistake)。³誤差類型判定「良好」或「失敗」,係依據表一「砲兵導線測量規範」中相關座標、標高、方位閉塞精度要求,如符合規範即為「良好」,反之則為「失敗」。通常導線測量閉塞檢查時發生之方位、坐標誤差狀況(如表二),可歸納為下列4種類型:

- (一)方位良好,坐標良好:如方位與坐標均閉塞,為良好導線,其標高 通常亦能閉塞。
- (二)方位良好,坐標失敗:當水平角測量不佳時,將導致方位失敗。因此不論迴歸閉塞或已知點閉塞導線,如方位接近精度規範,坐標則否,即顯示其為距離誤差。
- (三)方位失敗,坐標良好:1.迴歸閉塞導線:如起始或閉塞水平角之外,仍存在其他方位或距離誤差,坐標將無法閉塞。因此導線迴歸閉塞時,如方位失敗、坐標良好,誤差應出現在起始或閉塞水平角。2.已知點閉塞:如水

(X) (Y) (Y)

³尹鍾奇著,《實用平面測量學》(臺北:國彰出版社,民國 68 年 9 月五版),頁 7。

平角或距離誤差出現在其他位置,將導致閉塞導線坐標錯誤。因此如方位失敗、坐標良好時,誤差必定出現在閉塞水平角。

(四)方位失敗,坐標失敗:1.迴歸閉塞:如方位、坐標皆失敗,誤差水平角必定出現在起始或閉塞角以外的測站。惟當方位良好時,將明確顯示出自距離誤差。2.已知點閉塞:如方位、座標皆失敗,誤差並非出自閉塞水平角,而是在起始點或某一測站。因閉塞水平角誤差並不影響坐標精度,故坐標仍可閉塞。

表一 砲兵導線測量規範表

	規範	等級區分	軍團砲兵	砲 兵 營	砲 兵 連				
必要條件			(1/3,000)	(1/1,000)	(1/500)				
導線修正	<u>:</u>		需要	不需要	不需要				
座標	導線全	長<9公里	1/3,000	1/1,000	1/500				
閉 塞	導線全	長>9公里	\sqrt{K}	1/1,000	1/500				
標高	導線全	長<4公里	\sqrt{K}	±2 公尺	±2 公尺				
你 同	導線全	長>4公里	\sqrt{K}	1.2×√ K	1.2×√K				
方 (與天體觀	位 測、陀	≦6個測站	±5 秒×N	±5 秒×N	±1 密位				
螺儀或預設 比較時)		≧7個測站	±5 秒 ×√N	±5 秒×N	±1 密位×N				
方位角位	1數		1秒	0.5 密位	1密位				
實施方位	1檢查》	則站數	25	20	20				
小亚名	測量方	式	一對回	一對回	累積測角				
水平角	紀錄至		1秒	1秒	0.5 密位				
高低、	測量方	式	正、倒鏡	正、倒鏡					
天頂角	紀錄(計算)至	1秒	1秒	1密位				
+h	捲尺 (比較精度)	1/5,000	單次 (1/3,000)	單次 (須配合步 測檢查)				
距離	測距儀		看讀至 0.001 公尺	看讀至 0.001 公尺					
座標計算	至		0.01 公尺	0.01 公尺	0.01 公尺				
標高計算	至		0.01 公尺	0.01 公尺	0.01 公尺				
附		巨離千除數。							
記	N為測站數。								

表二 導線誤差類型與誤差判斷對照

導	線		誤	差	類	型	誤			差			¥	钊			斷
	區分	方		位	坐	標	迴	歸	閉	塞	時	린	知	點	閉	塞	時
	1		良好		良女	子		良	好導	線				良好	導絲	દ	
	2		良好		失貝	文		距	離誤	差			7	距離	誤差	<u>.</u>	
	3		失敗		良女	子	Ž	起始或	閉塞	水平角	i		除	塞ス	K 平	角	
	4		失敗		失貝	文		角	度誤	差		走	巴始耳	戈各 源	則站力	k平角	角

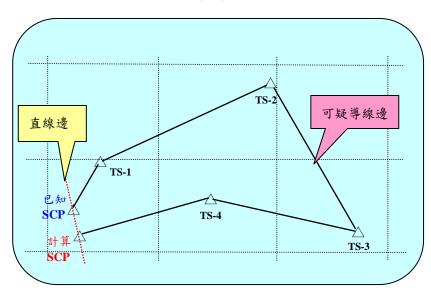
資料來源: Marine Artillery Survey (MCWP3-1.6.15, Draft) (Washing DC: United States Marine Corps, 2000),p10-20.

肆、分離誤差

導線測量經過確定誤差類型後,始可分析誤差來源,再透過相關技術分離 誤差,達到修正成果之目的。導線誤差類型經誤差判斷後,通常區分為距離、 角度與複合、標高等不同類型的誤差,各類型誤差相關之分離技術(如表三) 分述如後。

表三 分離誤差可用方法、使用時機與限制

211	>- >1	14 m at 100	era al l				
目的	方法	適用時機	限制				
距離誤	平 行 線 法	一、方位正確,惟坐標失敗。 二、徑誤差方位與距離誤差	出現一個以上的可疑邊時,須 再用徑誤差方位角計算法確 定。				
差分離	經誤差方位 角計算法	一、程課差力位與此離誤差導線方位相同時。	誤差不明顯時無法使用。				
	垂直平分線法	方位失敗且超過容許徑誤差。	徑誤差太小時無法使用。				
角度誤差分離	密位公式	一、已知點閉塞。 二、直線路徑。 三、出現一個以上的可疑測 站。	導線非概略直線或距離過短 時,無法使用。				


資料來源:作者自製

一、距離誤差分離

當導線閉塞之方位誤差小於「容許」範圍,惟坐標閉塞差(徑誤差)超過精度規範時,顯示存在「距離誤差」。不論導線距離誤差無論長或短,如閉塞差(徑誤差)方位與距離誤差之導線方位相同時,即可使用「平行線法」(Parallel line method)與「徑誤差方位角計算法」(Computation of Azimuth

of Radial Error)分離距離誤差。4

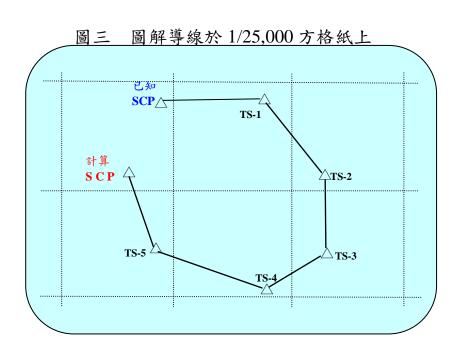
(一)平行線法:測量人員藉由一條與誤差方位相同或平行之線,確定包含距離誤差之導線。作業步驟如下:1. 圖解導線於 1/25,000 方格紙上(比例尺越大更能顯示較小之誤差框),並標示導線各測站,包括已知與計算所得之SCP。2. 在已知與計算所得 SCP 間劃一直線邊,必要時此線可超過標繪點(如圖二),包含誤差之可疑邊,其方向約與直線邊成平行線。圖二所顯示 TS-2至 TS-3 測站間之導線邊,即包含「距離誤差」。

圖二 平行線法示意

資料來源: Marine Artillery Survey (MCWP3-1.6.15, Draft), (Washington DC: United States Marine Corps, 2000), p10-20.

- (二)徑誤差方位角計算法:1.計算已知至計算所得 SCP 座標之「徑誤差」(Radial Error, RE)方位角。2.在導線之圖形或表格上,找尋一個與「徑誤差」概略成反方位角之導線邊(方位概略相差 3200 密位),且不考慮誤差距離是否相似,即為可疑之導線邊。5
- (三)誤差分析:「誤差分析」須同時考慮誤差大小與其影響層面,方可確認誤差之導線邊。就角度與距離測量而言,較小之「誤差」(error)對導線整體精度影響甚微,亦與大到足夠產生「錯誤」(mistake)之分析方式不同。當某個導線邊之方位幾乎平行於徑誤差時,即顯示其包含誤差。每一個被列入的可疑邊均須檢查紀錄資料與計算過程。如誤差並非出自紀錄或計算時,則須

⁴ <u>Marine Artillery Survey (MCWP3-1.6.15, Draft)</u>, (Washington DC: United States Marine Corps, 2000), p10-20.

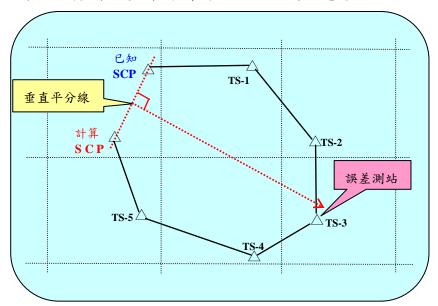

Marine Artillery Survey (MCWP3-1.6.15, Draft), (Washington DC: United States Marine Corps, 2000), p10-20.

進一步對每一個可疑邊實施重測,直至找到包含誤差的導線邊為止。

二、角度誤差分離

「角度誤差」表示導線閉塞方位超過「容許誤差」範圍。就方向盤而言,每站(次)測角誤差須小於±1 密位;測距經緯儀則為每站(次)測角誤差須小於±5 秒。當導線成果判斷為角度誤差,且超過「容許徑誤差」(Alloeable RE)時,即可使用「垂直平分線法」(Perpendicular bisector method)與「密位公式」(Mil relation formula,WoRM rule)分離角度誤差。⁶

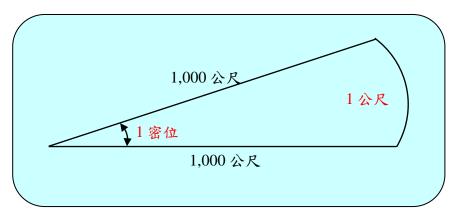
(一)垂直平分線法:「垂直平分線法」係將徑誤差之垂直平分線延伸至測量區域,其通過或最接近之測站,即為包含角度誤差之測站。作業步驟如下:1.圖解導線於 1/25,000 方格紙上(比例尺越大更能顯示較小之誤差),「須包含已知與計算所得之 SCP(如圖三)。2.以直線標繪已知與計算所得 SCP,此線可由標繪點向前或向後延伸,並定出此線之中央點。如徑誤差夠大,則可測量其距離,以確定中央位置。3.使用「半圓儀」(protractor)、扇形尺等量角器,標繪徑誤差之垂直線,並延伸至測量區域。4.垂直平分線所通過或接近之測站(TS-3),即為包含角度誤差之測站(如圖四)。


資料來源: <u>Marine Artillery Survey(MCWP3-1.6.15,Draft)</u>, (Washington DC: United States Marine Corps,2000), p10-21。

41

Marine Artillery Survey (MCWP3-1.6.15, Draft), (Washington DC: United States Marine Corps, 2000),p10-21.

⁷ 施永富,《測量學》(臺北:三民書局,2012年9月修訂三版一刷),頁295-296。


圖四 標繪垂直平分線確認 TS-3 測站包含誤差

資料來源: Marine Artillery Survey (MCWP3-1.6.15, Draft), (Washington DC: United States Marine Corps, 2000), p10-21。

- (二)密位公式:當導線行已知點閉塞或成直線路徑,且出現一個以上之可疑測站時,即無法使用「垂直平分線法」確認誤差測站,須改採「密位公式」判斷誤差測站。⁸
- 1. 密位公式說明:通常角度 1 密位在 1,000 公尺距離外之另一端,將造成 1 公尺之移動(如圖五)。密位公式係利用角度與距離之關係,藉由徑誤差對應之距離,確定某一包含角度誤差之測站。包含角度誤差之測站其距離計算以公里(千公尺)為單位,以「徑誤差」除「方位誤差」得之。

公式:R=W/m R=公里距離 W=閉塞徑誤差 m=方位誤差 圖五 密位公式示意

資料來源: <u>Marine Artillery Survey(MCWP3-1.6.15,Draft)</u>, (Washington DC: United States Marine Corps,2000), p10-22。

Marine Artillery Survey (MCWP3-1.6.15 , Draft), (Washington DC: United States Marine Corps , 2000), p10-22 °

2. 計算範例:某一測量班沿著道路成直線路徑實施已知點閉塞導線測量, 其方位誤差 10 密位、坐標閉塞徑誤差 26.32 公尺,測量班長已判斷導線失敗為 角度誤差,並使用「垂直平分線法」分析出三個包含誤差之可疑測站。如何利 用「密位公式」,計算最可疑測站之距離(R)?解:R=閉塞徑誤差/方位誤 差=26.32 公尺/10 密位=2.632 公里(即 2,632 公尺)。

三、複合誤差分離

「複合誤差」係指方位與距離兩者皆發生誤差,或超過一個方位或距離誤差。當導線出現複合誤差時,將同時顯示方位誤差,應依程序先判斷方位(角度)誤差,並確認存在此誤差之可疑測站。如經複查作業記錄與計算資料後,仍未發現誤差所在,此時應對全部導線重行測量。⁹

四、標高誤差分離

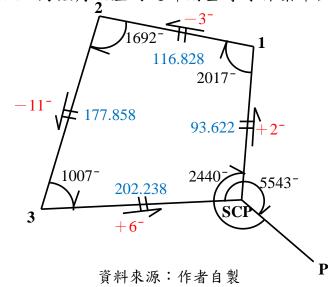
「標高誤差」源自高低(天頂)角誤差。當導線標高誤差超過容許誤差規範時,可利用計算與地圖定點比對標高之方式分離可疑測站。¹⁰

- (一)「迴歸閉塞導線」:高低(天頂)角正、負值相等,當正、負值差異甚大時,標高誤差極為明顯。
- (二)「已知點閉塞導線」、「非閉塞導線」:某些測站計算所得標高經 比對地圖等高線後差異甚大,顯示某一前測站出現高低角誤差,可經由檢查現 地作業紀錄與計算過程找到誤差測站。如誤差並非出自現地作業記錄或計算 時,則須返回現地重行高低(天頂)角測量。

伍、運用實例

導線測量之「誤差判斷」程序,包括確定「導線誤差類型」與「分離誤差」相關技術,皆已納入美軍 2000 年「陸戰隊砲兵測地」(MCWP3-1.6.15)中。作者為能突破理論框架,研究各種「分離誤差」法之正確作法與實際成效,甚至刻意運用錯誤方式觀察影響之結果。曾多次利用「砲兵基本測量」課程學員、生錯誤作業實際驗證,特將其中較具體且典型之運用實例分述如下。

一、標高誤差分離

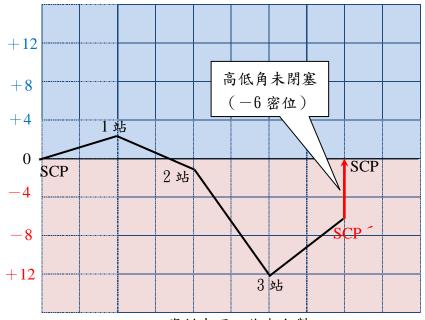

某次迴歸閉塞導線練習,成果檢查時發現方位與坐標精度良好,惟標高誤 差過大(作業草圖,如圖六)。誤差判斷、分離標高誤差,提供爾後作業改進

Marine Artillery Survey (MCWP3-1.6.15, Draft), (Washington DC: United States Marine Corps, 2000), p10-22.

Marine Artillery Survey (MCWP3-1.6.15, Draft), (Washington DC: United States Marine Corps, 2000), p10-22.

參考之要領分述如下:

圖六 高低角誤差的迴歸閉塞導線作業草圖

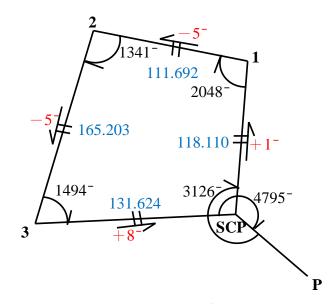


(一)確定誤差類型,分析誤差來源(如表四)

表四 高低角誤差的迴歸閉塞導線作業誤差判斷

品	分	誤	差	狀	況	誤差判斷(迴歸閉塞)	結 論		
方	位	方位 +1:			良好	良好導線			
坐	標	坐標 1/2,5	精度		良好	方位(水平)角正確 距離正確	高低(天頂)角誤差		
標	高		誤差 02 公尺		失敗	距離正確 高低(天頂)角存疑?			
高低 (天頂)角誤差 來源分析 一、M2方向盤高低管形水準氣泡與測距經緯儀水準氣泡、電子氣泡可能偏差? 二、M2方向盤是否曾實施「已知高低角法」校正? 三、整置器材時,是否踩緊腳架尖部? 四、作業中器材高與覘標高兩者是否一致?									

(二)迴歸閉塞導線高低(天頂)角誤差分離圖解(如圖七)圖七 圖解方式分離閉塞導線高低(天頂)角誤差


資料來源:作者自製

(三)依據高低(天頂)角誤差來源分析(參考表四),重行高低(天頂)角 測量與修正成果。

二、距離誤差分離

某次迴歸閉塞導線練習,成果檢查時發現方位與標高精度良好,惟坐標誤差過大(作業草圖如圖八,成果如表五)。實施誤差判斷、分離距離誤差,改進坐標精度之運用實例,分述如下。

圖八 坐標失敗的迴歸閉塞導線作業草圖

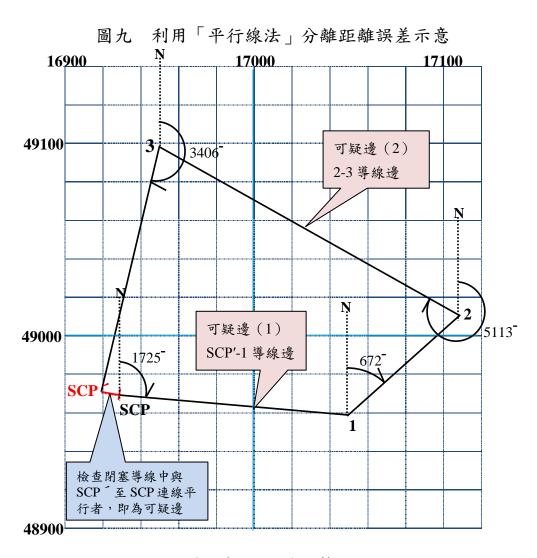
資料來源:作者自製

表五 坐標失敗的迴歸閉塞導線計算結果

SCP 已知	16930.00 48970.00	1 站	17047.21 48955.43	- 2 - 站	17106.87 49049.85	3 站	16949.50 49100.13	SCP ´ 計算	16922.69 48971.26		
	20.00		20.12		19.57		18.76	ण जा	19.79		
方位:	總閉塞差:		坐標差:					標高誤	差:		
5000	-5004		16930.0	00 - 1	6922.69=	⊢7.3	1	20.00-19	9.79		
= -2	4 密位		48970.0	00-4	=-0.21 公尺						
(合	格)		徑誤差:	$\sqrt{}$	$7.31)^{2}+($	1.26	$(5)^2 = 7.42$	(合格)			
* <	方向盤每	站	總 長:118.110+111.692+165.203+					※標高2	容許誤差		
(次)容許誤差	±1		138.6	為±2公	尺。					
密位	(±1 ⁻ x5 次	= <u>±</u>	精 度:	1/526	5.629÷7.42=	= 1/70	0.97≒0				
5-)	0			(不台							
			※ :	方向力	盤精度要求	為 1/	500 °				

資料來源:作者自製

(一)確定誤差類型,分析誤差來源:坐標精度之決定條件為方位角、距離,基於「方位總閉塞差」合格,導致坐標精度不合格之原因判定為捲尺測量的「距離錯誤」(如表六),且距離錯誤大小可由坐標差得之。本次作業 X 軸坐標差為+7.31 公尺,Y 軸坐標差則為-1.26 公尺,因 X 軸誤差較大,可將其視為概略「距離誤差值」,且初步研判可疑(距離錯誤)導線邊在東西向。


表六 坐標失敗的迴歸閉塞導線誤差判斷

品	分	誤	差	狀	況	誤差判斷(迴歸閉塞)	結 論			
方	位	方位 -4:	總閉塞差 密位	差	良好	良好導線				
坐	標		精度		失敗	方位(水平)角正確	- 距離錯誤			
_	1218	0 (\$	無精度)		<i>J</i> C/AC	距離措誤	正的 武			
標	高	標高	誤差		良好	距離措誤				
1示	回	-0.2	21 公尺		区对	高低(天頂)角正確				
			一、捲	尺測	量距離分	分劃看讀不正確?				
距	離言	吳差 二、捲尺未實施兩次測量,並利用「比較精度」驗證距離?								
來	源分	分析	三、前	、後	捲尺手ス	下正確交換測針?				
			四、捲	尺曾	因斷裂何	多理,距離發生較大誤差?)			
			· ·			ト x エ 。 ル . La . A A				

- (二)利用「平行線法」分離距離誤差與判斷可疑導線邊:1.使用適當比例尺方格紙,依據坐標將 SCP(已知)、1站、2站、3站、SCP (計算所得)之各點定於方格紙上(如圖九)。2.將 SCP(已知)與 SCP (計算所得)兩點劃上紅色連線。3.比對紅色連線與閉塞導線邊平行者,即為可疑(距離錯誤)導線。就本例而言,可疑導線邊為東西向的 SCP-1 與 2-3 兩條。
 - (三)利用「徑誤差方位角計算法」確定最可疑導線邊:「平行線法」

僅能找到可疑的導線邊,因本例可疑邊出現兩段(SCP´-1與2-3),則須再使用計算所得之「徑誤差方位角」的反方位角比對,確定出現錯誤之最可疑導線邊為<u>SCP-1</u>。

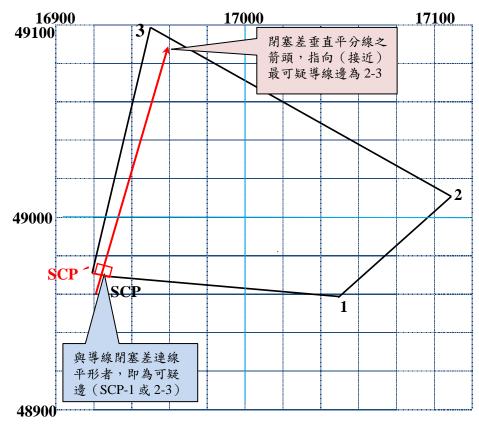
- 1. 計算「已知點」(SCP)至「計算所得」(錯誤 SCP´)坐標徑誤差之方位角(4974 密位)。
- 2. 在導線坐標計算表(或圖解方格紙)中,找到與徑誤差方位角概略成「反方位角」1774 密位(4974⁻-3200⁻)最接近的 <u>SCP-1</u>(1725 密位),即為最可疑的導線邊(如表七,圖九)。

資料來源:作者自製

表七 錯誤迴歸閉塞導線使用「徑誤差方位角計算法」檢查結果

SCP	16930.00 48970.00	1	17047.21 48955.43	2.	17106.87 49049.85	3	16949.50 49100.13	SCP 1	16922.69 48971.26	
已知	20.00	站	20.12	站	19.57	站	18.76	計算	19.79	
	<u> 15000</u>		<u></u>		<u> 1572</u>		<u></u>		<u></u>	
徑誤差 方位角			4974 密	合位	(反方位)	角 17	774 密位)			
		已多	已知(SCP)坐標:16930.00- 48970.00							
徑 誤	差方位	計算	算所得(SC	P 1)坐標:16	922.0	59 — 48971.	26		
角 計	算 法	徑言	误差方位角	(SC)	CP - SCP'	=49	73.86 = 497	4 密位		
檢 查	查 要 領 概略反方位角之導線邊: <u>SCP-1</u> (4974 ⁻ -3200 ⁻ =							$0^{-} = 177$	4-;核對	
	各測站方位角,以 <u>SCP-1</u> 的 1725 ⁻ 最接近)								<u>i</u>)	

資料來源:作者自製


(四)修正誤差,重行成果計算:經過前述誤差分離與判斷可疑導線邊程序後,確定出現錯誤之最可疑導線邊為 <u>SCP-1</u>。為確定檢查結果正確,將 <u>SCP-1</u>原距離(118.110公尺)加7.31公尺(X軸坐標差),改用125.420公尺重行成果計算(如表八),其坐標精度已由原本0(無精度),大幅提升為1/1,400,顯見誤差判斷程序正確。

表八 迴歸閉塞修正 2-3 導線邊距離後計算結果

			- 1	,	•	_		, , , ,		
CCD	16930.00	1	17054.46	2	17114.12	2	16956.76	SCP 1	16929.94	
SCP 已知	48970.00	站	48954.53	站	49048.95	站	49099.23	SCP 計算	48970.36	
	20.00	垆	20.12	巧	19.57	巧	18.76	訂井	19.80	
方位:	總閉塞差:		坐標差:					標高誤	差:	
5000	5004-		16930.0	00 - 1	6929.94=-	-0.0	6	20.00-1	9.80	
$=$ $ \omega$	4 密位		48970.0	00 - 4	8970.36=-	-0.3	6	=-0.20 公尺		
(未	长修正)		徑誤差: $\sqrt{(0.06)^2+(0.36)^2}=0.36$							
* <	方向盤每	站	總 長:	125.4	精度提	升				
(次) 容許誤差	<u>±</u> ±1]	31.6	(較修正前誤差					
密位	(±1 ⁻ x5 次	= <u>±</u>	精 度:	1/533	.939÷0.36=	= 1/14	183	減少 0.0	01公尺)	
5-)	0			≒ 1/1	※標高	容許誤差				
			評 定:	合格	為±2 公	尺。				
			※方向盘	盈精度	要求為 1/5	00 °				
	· ·						· ·	· ·		

- (五)測試「垂直平分線法」運用於距離誤差分離之可行性:距離誤差分離僅可使用「平行線法」與「徑誤差方位角計算法」,為何「垂直平分線法」 不適用?為消除學者疑惑與避免誤用,特利用本實例證明。
- 1. 利用 <u>SCP-1</u> 確定最可疑導線邊:本例(圖九)已利用「平行線法」分離距離誤差與判斷可疑導線邊為東西向的 <u>SCP-1</u> 與 <u>2-3</u> 兩條,特基於實驗需要放棄「徑誤差方位角計算法」,採用不適合的「垂直平分線法」來確定最可疑

導線邊,俾確定不適用的原因與嚴重後果。首先使用適當比例尺方格紙,依據坐標將 SCP(已知)、1站、2站、3站、SCP (計算所得)之各點定於方格紙上,將 SCP與 SCP/劃上紅色連線,並在連線中央劃一條垂直平分線(如圖十),其箭頭通過或接近 2-3。

圖十 使用「垂直平分線法」判斷最可疑導線邊為2-3

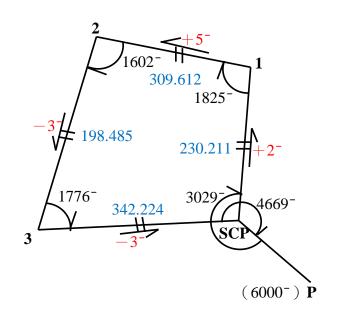
資料來源:作者自製

2. 修正錯誤,重行計算:將「垂直平分線法」所得之最可疑 2-3 導線邊修正(X 軸減 7.31 公尺)後,重行計算成果。坐標精度雖已明顯提升為 1/500 (如表九),惟不如 <u>SCP-1</u>修正後之精度 1/1,400 (表八),顯見「垂直平分線法」不適用於分離距離誤差,且將嚴重誤導結果。

表九	2-3 導線邊距離修正後之計算結果
K/L	2-3 守脉透此帐修业饭之引并临不

SCP	16930.00 48970.00	1	17047.21 48955.43	2	17106.87 49049.85	3	16956.47 49097.90	SCP 1	16929.65 48969.04	
已知	20.00	站	20.12	站	19.57	站	18.79	計算	19.83	
方位統	總閉塞差:		坐標差:					標高誤	差:	
5000	-5004^{-}		16930.0	0 - 1	20.00-19.83					
= -2	4密位		48970.0	0 - 4	=-0.17 公尺					
(未	(修正)		徑誤差:√	/ ((評定:					
* <	方向盤每	站	總 長:	118.1	10+111.69	2 + 1	157.893 +	精度提 升		
(次)容許誤差	±1	1	38.6	(較修	正前誤差				

資料來源:作者自製


(六)律定加強訓練課目:本例距離誤差出自「捲尺測量」發生錯誤,須將該課目列為訓練重點。惟為避免前、後捲尺手僅依賴「比較精度」(即「精密度」—Precision)判定距離品質,應使用測距經緯儀設立「參考基線」,以標準距離提供訓練「精確度」(Accuracy)¹¹之依據。

三、角度誤差分離

某次迴歸閉塞導線練習,成果檢查時發現方位與坐標失敗,僅標高良好 (作業草圖,如圖十一;成果如表十)。實施誤差判斷、分離角度誤差,改進 坐標精度之運用實例,分述如下。

(一)確定誤差類型,分析誤差來源:坐標精度之決定條件為方位角、距離,基於「方位總閉塞差」達-101 密位,導致坐標精度不合格之原因判定為「角度錯誤」(如表十一),且錯誤大小可由「方位總閉塞差」得之,「誤差判斷」的重點則在找到可疑測站。

圖十一 方位、坐標失敗的迴歸閉塞導線作業草圖

資料來源:作者自製

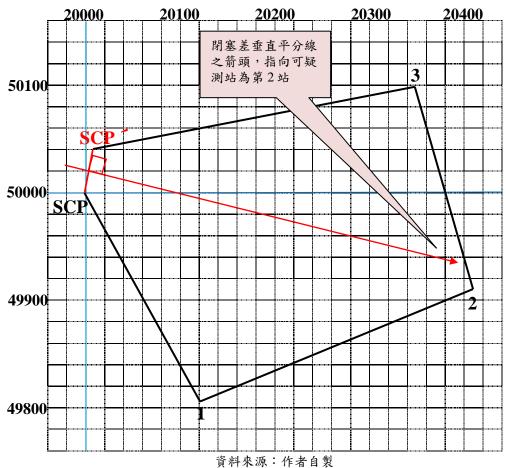
-

¹¹ 同註7,頁29。

表十 方位、坐標失敗的迴歸閉塞導線計算結果

SCP 5000		1 站		22.40 05.02	2 站	20414.32 49908.18	3 站	20348.55 50095.46	SCP ´ 計算	20010.97 50039.27		
2	0.00	ļ	2	20.45	ļ	21.97	70	21.39	미카	20.38		
方位總閉塞	〔差:		坐標	差:					標高誤	差:		
$6000^{-} - 610$	01-		20	0.000	0-2	0010.97 = -	-10.	97	20.00-2	0.38		
=-101 密	位		50	0.000	0-5	0039.27 = -	-39.	27	=-0.3	8 公尺		
評 定:失	敗		徑誤差:√ (10.97) ² + (39.27) ²							評定:合格		
※ < 方向	盤每	站	=40.77 公尺						※標高容許誤差			
(次)容言	午誤差	<u>±</u> ±1	總 長:230.211+309.612+198.485+						為±2 公	尺。		
密位(±1 ⁻ >	x5 次	$=\pm$		3	42.2	24 = 1080.5	32 公	尺				
5-) 。			精	度:1	/108	0.532÷40.7	7 = 1	1/26				
				<u> </u>	= 0 (無精度)						
			評	定:	失敗							
			*	方向盤	精度	医要求為 1/5	00 °					

資料來源:作者自製


表十一 方位、坐標失敗的迴歸閉塞導線誤差判斷

品	分	誤	差	狀	況	誤差判斷(迴歸閉塞)	結論	
方	位		方位總閉塞差 —101 密位		失敗	失敗導線		
坐	標		坐標精度 0 (無精度)		失敗	方位(水平)角錯誤 距離正確	角度錯誤	
標	高	標高誤差 -0.38 公尺			良好	距離正確 高低(天頂)角正確		
	1 1 1 1 1 1 1 1 1 1							

- (二)利用「垂直平分線法」分離方位誤差與判斷可疑測站:1.使用適當比例尺方格紙,依據坐標將 SCP(已知)、1站、2站、3站、SCP´(計算所得)之各點定於方格紙上(如圖十二)。2.將 SCP(已知)與 SCP´(計算所得)兩點間劃上紅色連線,並定出此連線之中心點。3.使用「半圓儀」描繪徑誤差中心點之垂直線,並延伸至測量區域。4.垂直平分線所通過或接近之測站2,即為可疑(方位錯誤)導線。
- (三)修訂誤差,重行成果計算:經過前述誤差分離與判斷可疑測站程序後,確定出現方位錯誤為第2測站,並將其水平角1602密位減「方位總閉塞差」(一101密位),修正為1501密位。為確定檢查結果正確,重行成果計算(如表十二),其坐標精度已由原本0(無精度),大幅提升為1/800,顯見誤差判斷程序正確。

(四)律定加強訓練課目:本例方位誤差出自「測手」未使用「累積測角」,且水平角分劃看讀錯誤,須將該課目列為訓練重點。惟為避免問題再度發生,測手須使用正確「累積測角紀錄表」,除作為計算成果依據外,並列為教官或測量官(排長)檢查項目。

圖十二 利用「垂直平分線法」找到方位錯誤之可疑第2測站

表十二 迴歸閉塞導線邊距離修正後計算結果

SCP 20000.00 1 1 50000.00 計	20122.40 49805.02 站	20414.32 49908.18	3 50088.03	SCP ´ 計算	19999.98 49998.69
20.00	20.45	21.97	21.39	,	20.38
方位總閉塞差:	坐標差:			標高誤差:	
$6000^{-} - 6000^{-}$	20000.00 - 19999.98 = +0.02			20.00-20.38	
=0 密位	50000.00 - 49998.69 = +1.31			=-0.38 公尺	
評 定:合格	徑誤差: $\sqrt{(0.02)^2+(1.31)^2}$			評定:合格	
※<方向盤每站	=1.31 公尺			※標高容許誤差	
(次)容許誤差±1	總 長:230.211+309.612+198.485+			為±2 公	尺。
密位(±1 ⁻ x5 次=±	342.2				
5-) 。	精 度:1/1080.532÷ 1.31 = 1/827				
	≒ 1/800				
	評 定:合格				
	※方向盤精度要求為 1/500。				

陸、結語

砲兵測地通常以「器材」為導向,當「定位定向系統」(ULISS-30、SPAN-7)納編後,「導線測量」等相關技術易因重要性減低而逐漸式微。惟基於建立測量基本觀念與配合或替代定位定向系統作業等考量,砲兵測地仍須參考民間測量學術與先進國家準則發展,持續研發精進,俾能提升測地作業能力。

鑒於「導線測量」常因器材條件、自然環境與人為疏失等因素,產生微小「誤差」或較大的「錯誤」。當具備「誤差判斷」能力經適切修正後,即可適時改善成果精度,不僅可確保時效,亦能發現人為疏失,提供爾後施訓參考。檢討目前測地教範與教案中,「導線測量」誤差判斷技術相關內容有限,誠宜持恆精進邁向科學化與標準化,期能迅速確定導線誤差類型,分析來源並適切分離誤差,盡早修正測地成果,達成測地任務。

参考文獻

- <u>Marine Artillery Survey (MCWP3-1.6.15, Draft)</u> (Washington DC: U S Marine Corps, 2000) •
- Tactics, Techniques, and Procedures for Field Artillery Survey (FM6-2) (Washington DC: Department of the army, 1993) •
- 三、《野戰砲兵測地訓練教範—第二版》(桃園:國防部陸軍司令部,民國 99 年10月)。
- 四、尹鍾奇,《實用平面測量學》(臺北:國彰出版社,民國68年9月)。
- 五、焦人希,《平面測量學一理論與實務》(臺北:文笙書局,民國84年)
- 六、李瓊武,《測量學新編》(臺北:九樺出版社,民國77年4月)。
- 七、耿國慶,〈美軍砲兵導線測量之研究〉《砲兵季刊》(臺南),147期, 陸軍砲訓部,民國 98年11月。
- 八、耿國慶, 〈精進砲兵連測地裝備與技術之研究〉《砲兵季刊》(臺南), 第160期, 陸軍砲訓部, 民國102年3月。
- 九、耿國慶,〈砲兵傳統測地精度規範探討〉《砲兵季刊》(臺南),第 140 期,陸軍砲訓部,民國 97 年 3 月。
- 十、施永富,《測量學》(臺北:三民書局,2012年9月修訂三版一刷)。

作者簡介

耿國慶老師,陸軍官校 66 年班,歷任排長、測量官、連、營長、主任教官,現任職於陸軍砲兵訓練指揮部目標獲得組。