
美國空軍先進複合材料運輸機

空軍備役中校 魏楞傑

提 要

相較於飛機上傳統使用的鋁合金,複合材料具有重量輕、強度與勁度俱高、耐熱、耐腐蝕,又有絕佳的抗疲勞性,因此在講求性能的軍用飛機上應該是最受歡迎的材料,但事實上美軍各型軍機上的複合材料使用重量百分比,與美國空軍的預期有很大的出入,原因在於複合材料較貴,且航太業界對其尚無充分信心。為鼓勵航太業界廣泛使用複合材料,美國空軍在2009年試飛了一架幾乎全複合材料的貨機,希望建立起業界對複合材料的信心,進而開發出性能超卓越的新航空器。

複合材料是由強度較高的纖維(fiber), 與強度低但能使纖維維持於一定位置的基體 (matrix)材料所組成。纖維使基體的強度增 加,而基體又將纖維固結在一起,使各纖維 平均分擔負載,並保護纖維免於外物的機械 性或化學性磨損,二者相得益彰。日常生活 中我們常碰到的鋼筋混凝土就是複合材料的 一種,其中鋼筋就是纖維,而混凝土就是基 體。複合材料會因不同的纖維成份而有不同 的性能,即使同一成份的複合材料,由於纖 維在基體中排列方向的不同,而顯示出千差 萬別的性能,人類就是利用這種差異使複合 材料可以充分發揮其獨特的性能,這是金屬 材料萬萬不及的。

纖維+基體=複合材料(圖片來源:參考文獻11)

發展簡史

複合材料在飛機上的運用早在二次大戰時就開始了,當時的飛機雷達單就是用玻璃纖維強化塑膠(Fiberglass-Reinforced Plastic)做的,但那只是普通的複合材料,複合材料發展到今天,先進複合材料已成為主流,這種材料主要是由碳纖維(石墨纖維)、硼纖維、陶瓷(ceramic)纖維等,與環氧樹脂(epoxy)、聚珠亞胺樹脂(polyimide)等基體所組成的複合材料。

先進複合材料的發展,始於1960年代對 纖維絲(filament)及積層板(lamina)的研究,當 時對複合材料的結構零件的設計與製造,也 不遺餘力大力開發,這些努力的成果造就了 硼纖維/環氧樹脂複合材料蒙皮,首次應用 於F-14戰機的生產型水平尾翼上。與金屬件 相比較下,重量減輕百分之十八,但它的製 造工法只是把複合材料當做金屬的代用品,而且用在不承受主要負載的次要結構處,這樣既能擁有複合材料的輕重量優點,也比較能得到航太業界低風險訴求的認同,因此在隨後的幾年中,C-5的前翼縫板(slat)、F-4的方向舵、F-5的襟翼、F-11的擾流器(spoiler)、F-15的減速板、B-1的武器艙門、C-17的副翼、F-16的起落架艙門…等,紛紛使用先進複合材料來減輕結構重量。當時航太業界仍在摸索複合材料的特性,因此這些零件都不是主結構,以避免在大負載下有飛安的顧慮。

1958年,美國俄亥俄州克里夫蘭市 (Cleveland)的帕馬技術中心(Parma Technical Center),一位物理學家貝肯(Roger Bacon)發現了高性能碳纖維,其後的數年中,該中心的科學家就開發出一套工法,將人造絲 (rayon)經由熱拉伸(hot-stretching)方式,讓碳纖維分子對齊而增加纖維的勁度(stiffness),製造出高模數(high-modulus)的碳纖維。

1960年代中期,日本和英國的研究 人員相繼開發出不需熱拉伸,而是經由 氧化(oxidize)再碳化(carbonize)聚丙烯晴 (Polyacrylonitrile, PAN)纖維,就可製出高強 度(high-strength)、高模數的碳纖維。1970至 1980年代中葉時,碳纖維搭配環氧樹脂由於 性能、價格都比硼纖維搭配環氧樹脂優異, 成為最受歡迎的複合材料原料,結構成品散 見於F-15、B-1、F-16的生產型結構件上。 1978年時,碳纖維複合材料開始用在戰機主 結構,出現在美國海軍的F-18及AV-8B的翼盒 (wing box)上,和金屬件比較下,這兩件各減 輕了百分之十一及百分之十七的重量。先進 複合材料早期應用於美國軍機的情況請參見 附表。

此時期一些飛機的結構發展,如:格 魯曼(Grumman)的X-29前掠翼驗證機、尺 寸複材公司(Scaled Composites)不需空中加 油即能繞飛全球的航行家(Voyager)、波音 的V-22魚鷹號(Osprey)斜旋翼機,也只有 複合材料方才適用。X-29的機翼蒙皮是由 單向性(unidirectional)複合材料預浸布(preimpregnated),沿不同方向一層層黏貼而成, 讓機翼結構具有正向性(anisotropic)特性, 以滿足氣動力發散(divergence)及顫震(flutter) 的需求;航行家使用碳纖維蜂巢三明治結 構, 在輕重量下提供足夠的強度與勁度, 讓 飛機起飛時所攜帶的燃油重量,足足達到結 構重量的十倍以上; 魚鷹號的結構重量中, 複合材料佔了百分之四十二,它的複合材料 轂軛(yoke)是連接槳葉及旋轉樞軸(rotor hub) 的關鍵零件,承受槳葉的離心力及升力、 傳送引擎的扭力到槳葉、容許槳葉的撲動 (flapping)、調整獎葉的傾角(pitch)。這幾型飛

唯有複合材料才能滿足X-29A前掠翼驗證機的機翼 氣動力設計需求(圖片來源:Internet)

機端賴複合材料優異的特性,才能滿足它們的設計需求。

1990年代時期,先進複合材料的發展 重點在維持原先結構性能的條件下,降低它 的製造成本。之前的複合材料設計及製造, 都只是把複合材料當成金屬的替代品,製造 出來的零組件仍得用固定件(fastener)相互接 合,大幅抵銷複合材料輕重量的優點,而組 裝複合材料零件耗費人力較多,也加重了它 的整體成本,因此此時期的發展重心,在於 把複合材料的製造及組裝成本,降低到小於 金屬零件的程度。

1990年代初期,美國空軍研究院(Air Force Research Laboratory)體認到與傳統金屬材料比較下,先進複合材料雖然具有大幅減輕飛機結構重量的潛力,但航太業界卻不甚領情,僅少量應用於新開發的飛機中。譬如在F-22專案的初期,預定複合材料使用量會佔全機重量的一半,但專案底定後,實際使用量只佔全機重量的四分之一。雖然美國當時一些其他的戰機如:F-15、F-16、F-18上,都已有少量使用複合材料的先例,但F-22在考量複合材料結構的製造成本後,還是降低了原定的使用量。為了消弭航太業

複合材料平價性倡議開發的類似F-35機翼結構 (圖片來源:參考文獻8)

界對先進複合材料成本高昂的疑慮,美國 空軍研究院乃啟動了複合材料平價性倡議 (Composites Affordability Initiative)。

平價性倡議

複合材料平價性倡議團隊發現要使複合材料價格平易近人,關鍵因素得放在降低結構組裝成本。軍用飛機上有著數以千計的結構件,以數以萬計的固定件完成組裝,而挖鑽這些固定件孔及安裝固定件,最是耗費大量人力,若能以一體成形方式造出結構零件,並以膠結(bond)方法相互接合,結構組裝費用就能大幅度降低。因此複合材料平價性倡議的目標,就是要讓航太業界對複合材料大型膠結式結構的強度,建立足夠的信心。

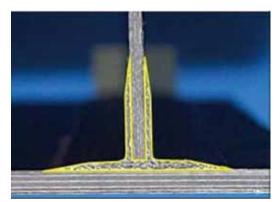
在為期十餘年的專案期程中,複合材料 平價性規劃團隊針對一體成形結構及膠結式 結構,完成兩項重要的技術開發:真空輔助 樹脂轉注成模(Vacuum-assisted Resin Transfer Molding)以及π形接頭(Pi joint)。

真空輔助樹脂轉注成模多年來廣用於大型遊艇製造業上,它是把乾燥的複合材料纖維布疊放在模子(mold)內,藉助略低於大氣壓的真空壓力,將液態樹脂灌入複合材料纖維疊層間,在低溫〔相較於熱壓爐(autoclave)內溫度而言〕熟化(cure)的一種工法,和傳統把複合材料放入熱壓爐加以熟化的方式相比較,它有兩個很大的優點:一、不需要熱壓爐,因此可省下不少的設備投資成本,零件尺寸也不會被熱壓爐的大小所拘限;二、典型的真空輔助樹脂轉注成模程序中,樹脂是

複合材料平價性倡議開發的類似F-35前機身座艙結構 (圖片來源:參考文獻8)

在較低的溫度熟化,夾持零件的工具採用中等密度的纖維板(fiberboard)即可,不必使用熱壓爐中所需的耐高溫材料。

真空輔助樹脂轉注成模工法中的真空壓 力不到每平方英吋十五磅,遠小於熱壓爐內 每平方英吋一百磅的壓力,無法充分擠壓複 合材料纖維布,因此會有多餘的樹脂殘留在 疊層間,與熱壓爐比較下,此工法製出的複 合材料零件一般會較厚、較重。


但大尺寸熱壓爐的設備投資成本相當昂貴,這有個典型的實際案例:美國太空總署(NASA)為熟化一直徑十公尺的太空發射載具桶形複合材料結構,曾建置了一座直徑十二公尺,長二十四公尺的熱壓爐,事後檢討直接製造成本大約是四千萬美元,但安裝及後續操作、維持經費則高達六千萬美元。由於國防經費逐年緊縮的壓力,美國國防部對未來軍事載具的開發要求是必須時間短、價格便宜,美國空軍認定唯有發展前述不需熱壓爐(Out-of-autoclave)的複合材料製造工法,才能滿足這兩項需求。

雖然航太業界多年來也有真空輔助樹

脂轉注成模的使用經驗,但都是用在次要結構上,複合材料平價性倡議證明了它也是製造主要結構的有效工法。複合材料平價性倡議以各種全尺寸飛機結構零件,包括:類似F-35聯打機(Joint Strike Fighter)的一件式前機身、機翼、垂直尾翼;類似X-45A的油箱及機翼穿越結構(wing carry-through);類似X-45C的機翼;C-17運輸機的加勁(stiffener)蒙皮主輪艙門,以試驗證明經此工法做出的結構零件,不論是複合材料內的纖維含量或是每片材料的厚度,都能和由熱壓爐做出來的相媲美。

美軍現役的F-18大黃蜂號(Hornet)戰機及全球鷹(Global Hawk)無人飛行載具(UAV),已有使用膠結式結構接頭,但航太業界由於過去的經驗,對此種接合方式還是不太放心,主要原因就是很難分辨膠結「良好」與膠結「不良」的差異,成為阻礙此種結構接合方式廣泛應用的元凶。

複合材料平價性倡議在膠結式結構的研究成果,主要是 π 形接頭,它是剖面形狀類似希臘字母 π 的加勁結構,可和機體蒙皮及其搭接結構同步熟化(co-cure)或是同步膠結(co-bond),具有許多優點:首先是提供結構餘裕度(redundancy), π 形接頭的兩根垂直凸緣,作用類似雙搭接剪力(double lap shear)接頭,可增加與搭接結構(如:樑、肋、保形框、加強條…等)膠結的面積,形成強固的傳力接合件; π 形接頭的水平凸緣與蒙皮大面積膠合,提供充裕的膠結強度,若此部位因膠結不良須以金屬固定件補強時,也能承受固定件的承載(bearing)應力。另外,膠

複合材料平價性倡議開發出的π形接頭 (圖片來源:參考文獻9)

結式結構在使用膠料時,都得注意膠料暴露 於空氣中會逐漸失去黏著性的外置時間(out time), π 形接頭在塗抹膠料時,耗費時間相 對較短,因此比較沒有黏著性失效的問題。

複合材料平價性倡議所做的試驗顯示: 在低溫下與結構蒙皮同步熟化的 π 形接頭, 其本身強度是它與蒙皮搭接強度的五倍,換 言之,若是用在飛機主結構上,它不會是最 先破壞的結構弱點。複合材料平價性倡議將 類似X-45A的機翼穿越結構及類似X-45C的 機翼,依序進行了設計限制負載(design limit load)靜力試驗(static test)、帶有損傷情況下 的二倍服役壽命疲勞試驗(fatigue test)、設計 極限負載(design ultimate load)靜力試驗、以 及最後的結構損壞負載測試,證明外力需超 過設計極限負載,才會造成兩試驗結構完全 損壞。另外還以F-35聯合打擊戰機機翼的全 尺寸結構試驗件,進一步證明了複合材料結 構對槍、砲彈射擊有相當好的抵抗性,且結 構組裝時間還可以大幅度減少。和傳統的零 件接合先對齊、鑽孔、去除鑽孔毛邊、再對 齊、安裝固定件的施工時間相比較,依結構 尺寸大小,以π形接頭接合的組裝時間可以 省下百分之五十到八十,換算成組裝成本, 約可節省百分之二十到五十。

複合材料平價性倡議雖然成功開發了真空輔助樹脂轉注成模及 π 形接頭,但國防航太業界對此並不十分捧場,只有C-17運輸機把它用在主起落架艙門,另外洛馬(Lockheed Martin)的聯打機規劃書中,計畫在主要承受負載結構件上採用 π 形接頭,而第一架的系統發展暨驗證(System Development and Demonstration)飛機,也的確使用此種結構,但後來洛馬的生產型F-35在遭遇經費超支及重量超重問題時,公司高層決定把 π 形接頭改用金屬接合來取代,聲稱這樣可以降低成本和減輕重量。

複合材料平價性倡議團隊檢討後,認 為若能有一大型複合材料一體成形暨膠結式 結構的飛行驗證,國防航太業界在往後發展 新飛機時,必能增加它們使用複合材料的信 心。

複合材料平價性倡議開發的C-17運輸機加勁蒙皮及 主輪艙門(圖片來源:參考文獻1)

大型結構驗證

2006年時,複合材料平價性倡議團隊有了個絕佳的好機會,當時的空軍參謀長維恩 (Michael Wynn)想製造一架驗證型運輸機,指示空軍研究所針對下述需求,提出可行性建議。

- ■以複合材料為主要使用材料
- 經費不超過一億美元
- 發展期程必須很緊湊,簽約後三十個 月進行首飛
 - 擔負軍事任務的運輸機

在接到命令後,空軍研究院和波音、洛 馬、諾格(Northrop Grumman)簽訂可行性研究 合約,請三家公司研究在八千萬美元經費及 三十個月發展期程的限制下,能否造出一架 以複合材料為主要使用材料的軍事運輸機, 且符合下述需求:

- 四百六十到五百一十公尺跑道的短場 起降能力
 - ■可在泥土跑道上起降
- 貨艙可容納兩個美軍標準3,463公升 貨櫃,或20名全副武裝士兵加一輛高機動 性多用途輪式車(High Mobility Multipurpose Wheeled Vehicle, HMMWV)

三家公司依據各自製造經驗提出的概念 設計,在設計方式、載運能力、使用技術上 有很大的差異,但設計出的機型大小則很相 近,大約是C-130運輸機的四分之三大。因為 機型大小雷同,所以三家公司的經費需求也 很接近,約需二億美元,若經費上限為八千 萬美元,只能造出一架約C-130運輸機四分之 一大的機體,根本沒有所需的載運能力。

空軍研究院對這個結果十分震驚,因 為國防部多年來在降低機體製造費用上,投 入大量研究經費,而這些研究成果顯然未獲 得航太業界的採用。空軍研究院將三家公司 的結論交給部隊及武獲室審查,兩單位的回 覆意見認為航太業界的經營觀念有待改進, 空軍高層因而制定了一嚴格的重點機關宣言 (Broad Agency Announcement):

- 經費有限,限制經費不超過五千萬美 元
 - 製程加快,2009年10月前首飛
- 使用複合材料平價性倡議開發(或類似)的複合材料科技

在空軍指示下,空軍研究院在2007年 1月公開此宣言,並要求航太業界提出先進 複合材料運輸機(Advanced Composite Cargo Aircraft)的承製規劃書,內容須包括:載運 量、結構觀念、材料、製程、以及在2009 年9月30日前完成首飛的發展規劃。這架 運輸機將由聯邦航空總署(Federal Aviation Administration)認證為實驗型飛機,且須滿足 下述設計及軍事運輸能量需求:

- ■可在未整備的跑道上起降
- 全加壓式機艙,貨艙最多可容納兩個 美軍標準貨櫃
- 結構可容忍服役期間發生的一般性損傷,包括槍、砲彈射擊損傷
- 可停放貨櫃或輕型輪式車輛的地板, 以及提供進出的後開式貨艙門
 - 巡航速度大於每小時七百四十公里

第一階段

先進複合材料運輸機第一階段工作內容 是發展並完成飛機設計,合約商必須將概念 設計轉化成包含結構細節及各系統的細部設 計、定義所採用的特殊關鍵科技、發展詳盡 的製造計畫、制訂降低首飛風險的規劃,目 標在建立進入第二階段的信心。空軍研究院 收到九家公司的承製規劃書,由其中選定洛 馬和曙光飛行科學(Aurora Flight Sciences)進 行第一階段的工作。

曙光飛行科學設計

曙光飛行科學的設計是一架以烏克蘭 An-72軍用運輸機為骨幹,另外開發新的複合材料機身、機翼、垂直尾翼、水平尾翼。原機的飛行座艙、引擎、次系統…等,則完全保留。採用現有他型飛機為骨幹的優點是:不需大量經費即可獲得經實際驗證的次系統(弓|擎、起落架、座艙…等),可完全掌握飛行品質,而且唯有採取此種方式,才能滿足經費和時程的要求。曙光飛行科學的設計使用先進複合材料集團(Advanced Composite Group)開發的MTM-45預浸布(prepreg),不需熱壓爐即能熟化,搭配複合材料平價性倡議所發展的π形接頭接合技術。MTM-45低溫熟化後的強度,較熱壓爐熟化後的強度略遜一籌,因此目前只能用於實驗型飛機上。

曙光飛行科學的飛機機身分為前、後兩段,前機身為複合材料蒙皮,再膠結到以連續壓模製造的熱塑性保形框(frame)上。起落架及某些承受機翼負載的隔框,則沿用自原機體。後機身為分段式金屬件接合的三明治

曙光飛行科學的設計(下)以An-72(上)爲骨幹 (圖片來源:參考文獻3)

式蒙皮,再膠結到隔框上;貨艙斜板及後艙 門沿用自原機體;機翼分成三段,中段當做 機翼油箱,由複合材料製造的蒙皮、翼肋、 翼樑以π形接頭膠結接合;垂直尾翼、水平 尾翼為三明治式蒙皮,以π形接頭和翼肋膠 結接合。

洛馬設計

洛馬的設計以德國多尼爾公司(Dornier) 的Do-328區間噴射客機為骨幹,開發新的複合材料機身及垂直尾翼,原機的飛行座艙、引擎、次系統…等,則完全保留。和曙光飛行科學公司相同,洛馬的飛機結構也是使用先進複合材料集團的MTM-45預浸布,以及複合材料平價性倡議所發展的π形接頭接合技術。機身採全複合材料膠合搭接,零件總數只有原零件的十分之一;機身較原機為寬,以載運兩個美軍標準貨櫃,還有新的複合材料貨艙門;垂直尾翼以先進的纖維排列觀念(fiber placement concepts)做一體式加強,

再以π形接頭膠結接合。

第二階段

先進複合材料運輸機專案第二階段的目標,是在2009年9月30日前製造並首飛一架複合材料新飛機。第一階段由曙光飛行科學和洛馬提出的設計都具可行性,但洛馬的設計風險較低,因此空軍決定由洛馬繼續進行第二階段。

洛馬設計的新機身及垂直尾翼,總共只有三百零六個零件,大約只有原飛機結構零件數量的十分之一,而固定件的數量,也減到只有原數量的百分之二。機身加寬以符合美軍標準貨櫃的寬度,機身尾部外形也重新修改,以容納一後開式貨艙斜板。新機身外形經風洞吹試,確認外形改變不會使原本的Do-328飛控品質變差。

新機身長19.8公尺,機頂及機腹蒙皮、 保形框、地板支撐結構、貨艙門、壓力隔 框、整流罩,都是使用MTM-45非熱壓爐複 合材料。航太業界複合材料標準樹脂都得在 熱壓爐內以高壓及攝氏177度高溫予以熟化, 須有堅硬的夾具配合,而且零件尺寸也受

洛馬的設計以Do-328噴射客機爲骨幹,淺色區域結構沿用自原機體,深色區域結構爲新製件 (圖片來源:參考文獻9)

熱壓爐大小所限制;而MTM-45只需真空壓力,並加溫到攝氏71到93度就能熟化,沿零件四周很容易安裝加溫設備,零件尺寸不會受到熱壓爐大小的侷限。

機身蒙皮、主要的保形框、地板支撐結構,皆為三明治結構,由複合材料外皮搭配 Hexcel公司的HRH-10泡棉夾心;保形框、地板支撐結構、壓力隔框、貨艙門基礎結構… 等,都以三維(3D)編織型態的π形接頭,與 機頂或機腹相搭接。

機頂及機腹蒙皮以雙搭接剪力接頭的方式相互接合,搭接時先仔細調整,讓兩蒙皮間的最大間隙不超過百分之三英吋,接縫處施塗FM-300黏膠。在兩蒙皮接合處內、外覆蓋多層的MTM-45複合材料纖維布,然後推進加溫室進行熟化。

垂直尾翼高3.8公尺,翼根寬1.7公尺,翼 尖寬1公尺,蒙皮、翼樑、翼肋、加強條先依 照航太業界標準程序製造並膠結後,再以 π 形接頭與機身相互接合。前翼樑及後翼樑則 是先分別製妥,待後機身控制面操控組件安 裝於垂直尾翼內部後,再以金屬固定件與蒙 皮接合。

雖然洛馬的設計使用大量的複合材料,但還是有少部分的金屬結構件,譬如:鈦合金製的機翼接合凸耳(lug)、不銹鋼製的起落架門耳軸(trunnion)、鋁合金製的貨艙門門(latch)、鉸鍊、致動器支架、垂直尾翼與機身搭接的三件接頭等;貨艙門是預製成形的鋁合金外皮三明治平板結構。為防止鋁合金與複合材料間產生電位腐蝕(galvanic corrosion),兩者的界面處需貼上玻璃纖維隔

洛馬設計的機身上、下蒙皮及保形框 (圖片來源:參考文獻3)

離布。

2008年9月及10月,Do-328原本的飛行座 艙與新的複合材料機身進行組裝,電位腐蝕 隔離布已預先貼於機身上,經過加墊片及局 部修磨後,飛行座艙與機身完全密合,兩者 再以金屬固定件進行搭接。2008年11月安裝 垂直尾翼,將翼根的三件金屬接頭以金屬固 定件接合於機身隔框上。在此組裝階段內, 後續各種試驗的量測儀電,還有電氣、飛 控、液壓…等次系統,也同時回復安裝。

結構試驗

2008年12月,飛行座艙、複合材料機身、垂直尾翼完成結合,進行全尺寸驗證試驗(full scale proof test),以確保後續飛試的安全。此試驗將驗證機體承受機身彎矩(bending moment)及垂直尾翼彎矩/扭轉(torsion)百分之百設計限制負載時,機體仍然保有完整的結構剛性(structural integrity)。

整體而言,試驗過程中量得的應變 (strain)數據,和有限元素模型(finite element model)的預測值相當一致。在機身彎矩試驗

過程中,當接近百分之百設計限制負載時, 許多試驗人員聽到靠近機翼接合位置處有輕 微的「噼啪」聲,相當符合複合材料受力時 的反應。在垂直尾翼試驗過程中,百分之百 設計限制負載保持約十五秒後,試驗人員聽 到一聲巨大的金屬聲響,但試驗機體並沒有 任何移位情況,試驗人員回報發出聲響的位 置是在後機身貨艙門附近。完成試驗後,設 計及應力(stress)分析人員進入試驗機體內部 執行目視檢查,未發現任何可解釋發生聲響 的可疑跡象。

試驗結束後,機身蒙皮及垂直尾翼與機體結構相接合的位置,進行詳細的超音波非破壞性檢驗,在機翼接合支座附近發現有幾處脫膠的空穴(void)缺陷,但只有一處發生在π形接頭,其他的空穴則發生於機翼接合支座與機身蒙皮間的液態墊片(liquid shim)處,沒有結構強度方面的顧慮。發生空穴的π形接頭處經審視應力分析數據,在驗證試驗負載下的安全係數很大,因此脫膠不可能由驗證試驗所造成,比較可能是原本的膠結情況不佳,又逃過非破壞性檢驗的結果。

由於目視檢查及非破壞性檢驗都沒有發現飛機損壞的跡象,應力分析人員研判垂直 尾翼測試時所聽到的巨大聲響,應該是貨艙 門鉸鍊栓被摩擦力夾住後突然滑開的聲音。 由於在一個貨艙門鉸鍊上發現有摩擦痕跡, 可做為此研判的依據。

機身結構完成驗證試驗後開始進行最後 組裝,2009年1月,Do-328原本的機翼、水 平尾翼、引擎也通通裝上機身結構。2009年 4月,機身結構進行壓力測試(pressure test),

洛馬飛機進行結構試驗時的試驗夾具及施力方式安排(圖片來源:參考文獻3)

原規劃中預定加壓到每平方英吋七磅的限制 負載,不過加壓到每平方英吋六點五磅時, 貨艙門密封墊彈脫,貨艙門框附近的應變計 (strain gauge)讀值,顯示結構位移方向與預期 的相反。追究原因後發現是貨艙門密封墊有 問題,規定厚度是八分之一英吋,實際安裝 厚度為十一分之一英吋,不過試驗人員相信 機身結構不致因此而損壞,而且在後續第二 階段飛試中,飛機也不會加艙壓,所以密封 墊規格不符不會影響飛試。

2009年5月,先進複合材料運輸機進行全系統查核(system checkouts),完成飛試前的一切準備。

飛行測試

2009年6月2日太平洋時間(Pacific Time) 早上六點五十五分,洛馬的先進複合材料運 輸機由該公司位於加州龐戴爾(Palmdale)的臭 鼬鼠工廠(Skunk Works)第四十二號跑道上起 飛,先向東飛去,然後轉彎向西飛行,爬升 到大約三千公尺的高度後,兩位駕駛員駕著 飛機進行了一連串的速度、安定性、操控性 測試。專案表示由這些測試可瞭解複合材料 在不同速度、高度、姿態下的反應,因此非 常重要。此次首飛共歷時87分鐘。

美國空軍之後將先進複合材料運輸機編 號為X-55A,並預定繼續執行一系列擴充飛 行包絡線(flight envelop)的飛行測試,以獲得 飛機的基本性能數據,並驗證複合材料的結 構性能,以確定先進複合材料運輸機所使用 的科技,確可融入未來的飛機製造專案中。 美國海、空軍的認證單位,以及聯邦航空總 署(Federal Aviation Administration, FAA),目 前也都深信這些科技的轉移,將不會有任何 技術上的困難。

結 語

複合材料剛引入航空界時,由於對其特性缺乏瞭解及信心,因此只限用於非結構件的整流罩位置。1960年代開發出先進複合材料後,由於其優異的減重性能,開始用於飛機的次要結構上。到了1990年代,已能與金屬結構件相互搭配用於主結構件上,但限定於小型結構,例如美國最新的第五代戰機

美國空軍先進複合材料運輸機於2009年6月2日完成 首飛(圖片來源:參考文獻10)

F-22猛禽號(Raptor),機翼主樑就是複合材料 樑搭配鈦合金樑,這是因為製造大型複合材 料結構件所需的大型熱壓爐,建置成本非常 昂貴,在成本考量下,複合材料一直無法大 量應用於航空界,美國空軍企圖藉由新材料 一舉大幅提昇飛行載具性能的夢想,勢必難 以成真。

眼見於此,美國空軍乃於1990年代初期 啟動複合材料平價性倡議,希望在維持所需

美國戰機生產型零件金屬/複合材料重量比較			
結構件位置	金屬件重量 (磅)	複合材料件 重量(磅)	重量減少%
後機身			
F-111水平尾	1142	866	24
F-14 水平尾	1005	825	18
F-15 水平尾	527	395	25
F-5 垂直尾	119	85	30
機翼			
AV-8B機翼	1143	949	17
F-18 機翼	1843	1641	11
機身			
AV-8B前機身	229	171	25
B-1脊背縱樑	1485	829	44
控制面			
F-5襟翼	34	25	26
B-1襟翼	87	73	16
F-4方向舵	64	42	20
其他位置			
C-5前翼縫板	241	190	21
B-1前翼縫板	74	61	18
F-15減速板	112	89	21
A-7 減速板	123	74	40
F-11擾流器	20	17	15
F-16起落架艙門	53	42	20
B-1 武器艙門	147	129	12

(資料來源:參考文獻6)

的機械強度前提下,開發出新的複合材料製程,以大幅降低大型結構的製造成本,其中著力最深的就是開發不需熱壓爐熟化的複合材料。

在複合材料平價性倡議的支持下,先進複合材料集團在1990年代中期,開發出不需熱壓爐熟化的LTM系列預浸布,但它們熟化後的機械強度不符航空界的要求,直到2005年時,該公司接續推出的MTM-45以及賽鐵工程材料公司(Cytec Engineered Materials)推出的CYCOM-5215,熟化後的品質終於可以與熱壓爐熟化相媲美,也為複合材料的應用開創了新紀元。

目前,隨著洛馬先進複合材料運輸機的 試飛成功,不需熱壓爐熟化的複合材料結構 已能在航空界立足,未來隨著相關技術的持 續精進,後續將會有非常廣闊的發展空間, 將來的軍、民用航空器若因此而能全面採用 複合材料,預期屆時的性能表現,將會有革 命性的躍昇。

參考文獻

- "Composites Affordability Initiative: Transitioning Advanced Aerospace Technologies through Cost and Risk Reduction", The AMMTIAC Quarterly, Volume 1, Number 3
- "Composites Affordability Initiative Phase
 Concept Design Maturation", AIAA-98-1874, American Institute of Aeronautics and Astronautics
- 3. " Advanced Composite Cargo Aircraft",

軍事科技 ||||||

IRCRAFTAir Force Doctrine Document 2-1.6, September 30, 1998

- "Composites Affordability Initiative", AIAA-2000-1379, American Institute of Aeronautics and Astronautics
- "Retrieving the time-critical target",
 International Defence Review, November 1,
 2000
- 6. "Evolution of U.S. Military Aircraft Structures Technology", January–February 2002, Journal of Aircraft
- "Composites Affordability Initiative, Part
 I", High-Performance Composite, March
 2007
- 8. "Composites Affordability Initiative, Part II", High-Performance Composite, May 2007
- 9. "Flight Vehicle Composite Structure",

- AIAA 2008-8976, American Institute of Aeronautics and Astronautics
- "USAF tests rapidly developed composite aircraft", Jane's Defence Weekly, June 5, 2009
- 11. "Composite Materials for Aircraft Structures", Department of Mechanical and Industrial Engineering, Montana State University, Fall 2009
- "Next fiber", Aviation Week and Space Technology, July 15, 2013
- "Lean Fighter", Manufacturing Engineering, March 2005

作者簡介別常

魏楞傑先生,空軍備役中校,現任職於中科院第一研究所。

日本BK-117試飛測量用直升機,隸屬防衛省技術研究本部(照片提供:張詠翔)