

備役少將邢有光、空軍上校張政仁 副教授孫允平、助理教授梁燕祝

壹、前言

1993年美國為了增加空中武力的優勢以取代傳統戰機,提出了聯合攻擊戰機(Joint Strike Fighter,JSF)計畫,為了滿足空軍F-22的匿蹤特性以及海軍可以在航空母艦上短場起降的要求,在1996年由洛克希德馬丁(Lockheed Martin)和波音(Boeing)簽約各自成立製作一架飛機符合所有需求的競爭團隊。隨後英國、加拿大等國家的參與,提供研發經費以及後來加入的預購機隊,其市場不可限量。因此,兩家公司無不卯足勁,想盡辦法為未來的航空市場得到winner take all的獎賞。2001年,拿到獎賞的是洛克希德馬丁,它的X-35最後也成為美國未來戰機F-35的原型機,並獲得不少的國際訂單市場。經過這麼多年,事實證明,航太工業不可能速成,而在科技最尖端的航太工業可以帶動整體市場的開發與經濟的繁榮,本文以JSF的發展為例,希望讀者對於航太工業等科技,能持續有恆地予以支持,畢竟它所帶動的周邊產業以及儀器設備和通訊技術(例如全球衛星定位系統GPS),對於人類生活品質的提升,已經到了不可或缺的地步。本文介紹美、英、法、瑞典、歐洲、蘇聯、中共、以及台灣的軍用飛機發展,簡略地介紹其特色,並讓讀者對於這幾十年來戰機發展的趨勢有全盤的瞭解。

貳、軍用飛機科技的歷程

空中飛行器有很多,民航機、軍機、火箭、飛彈、衛星、甚至於熱氣球和飛船 ,但要談多樣性以及持續性和永久發展,就飛機莫屬。要談論所有飛機的發展,很 難一一列述,詹氏年鑑厚厚的一大本,更新的版本一直在累加,關鍵的時刻當然會

Air Force Officer Bimonthly

提萊特兄弟締造人類飛行的歷史。但是由螺旋槳飛機進升到噴射引擎,開創提升飛行動力性能的新紀元,是來自一九三七年英國瓦立克郡的惠特爾(Whittle),雖然大戰當時不受英國軍方青睞,但後來在一九四八年因其科技成就而被封為爵士,不難想像他的發明對人類的貢獻。很多科技的發展,是階段性層層地累積,不能中斷而且要持續地支持。軍用飛機的發展,更是尖端科技的展現,本文簡略地介紹國內外軍用飛機的發展,期使讀者在閱讀本文時對於各式各樣空中武力有淺略的瞭解。

F-117夜鷹Nighthawk,如圖一,1983年服役,為美國第一個隱形戰機機隊,單座雙引擎具備匿蹤與地面攻擊能力,在美國入侵巴拿馬(1989年)和波斯灣戰爭(1991年)都有參與,但2006年因為美國國防預算經費削減,被美國

國防部退役。

一、美國:

F-15鷹式Eagle, 如圖二,1972年首航, 它最有名的實例是在 1983年,以色列空軍在 纏鬥訓練中,發生碰撞 。F-15D的右翼只剩最 內側的0.6公尺。飛行 員沒有聽從教官要求彈 射的命令,並且成功地 將這架重創的飛機迫降 到機場。究其原因,所 以能夠成功泊降是因為 機尾巨大的水平面積, 以及引擎進氣道與機身 提供的額外升力[3]。此 型飛機的發展與生產, 見證了航太工業提升就 業機會的實例,它帶動 了美國經濟,例如2013 年,沙烏地阿拉伯訂購 F-15的數量,足夠支撐

圖一 F-117夜鷹Nighthawk (美國)[1]

圖二 F-15鷹式Eagle(美國)^[2]

淺談戰機的過去、現在與未來■

美國五萬就業人數。

F-16戰隼Fighting Falcon,如圖三,1974 年首航,通用動力公司 所發展。於1993年通用 動力公司將他的飛機製 造業賣給洛克希德公司 ,現在為洛克希德馬丁 。為西方戰機中產量最 多的機種,共4500架, 也是全世界第一個具備 9G負載操縱的戰鬥機, 日前還繼續生產給國外 買家。我國購買的型號 是AB type,有提升航 電系統,但在引擎推力 上因為費用太高而沒有 提升。在飛行展上看到 的美國空軍雷島機隊表 演,可以讓F-16戰鬥機 隊以平均時速400英里 的高速,在上下高度相 隔僅70cm的距離飛行展

示。

圖三 F-16戰隼Fighting Falcon(美國)[4]

圖四 F-18大黃蜂Hornet(美國)^[5]

F-18大黃蜂Hornet,如圖四,為美國目前海軍最重要機種,它具備航母 起降的條件,而且是全美第一架同時具備戰鬥機與攻擊機的機種,於1978年 首航,1983年服役,生產1458架。在美國,直升機用印第安那原住民部落命 名,而飛機是用動物名稱命名。生產的廠家有麥道/波音/諾斯洛普公司。設計 出此戰機的過程,類似JSF,由當時兩大龍頭通用動力和麥道競爭,最後麥道 因為找到具備航空母艦製造經驗的諾斯洛普合作而得標。但隨著時間的演進, 麥道和諾斯洛普各白生產一型以區分市場,但常外銷市場因為美國軍方採用的 是麥道生產的艦載機而欣欣向榮時,臺無商機可言的陸上基本款讓諾斯洛普和

Air Force Officer Bimonthly

麥道對薄公堂。1993年 麥道參與JSF競標案, 但它在第一回合敗給波 音和洛克希德馬丁後, 就面臨倒閉的問題,於 1997年賣給了想要進入 軍機市場的波音。

F-22猛禽Raptor ,如圖五,為單座雙引 擎匿蹤戰鬥機,不需要 後燃器就可以超音速巡 航,可以視距外作戰、 高機動性、對雷達和紅 外線具匿蹤功能。匿蹤 的發明,來自俄羅斯的 應用數學家,他發現要 隱形不在於飛機的大小 ,而在於反射雷達波的 角度,所謂的隱形,不 是在於人的肉眼,而是 雷達上偵測不易,此飛 機隱形的另一個方式在 於表面塗層技術,讓特 殊塗層吸收雷達波達到 隱形。F-22由波音和洛

圖五 F-22猛禽Raptor(美國)[6]

圖六 F-35Lightning II(美國)[7]

克希德馬丁共同生產。它的生產歷程處在一個變化多端的時代,因為飛機製造成本太高(投入800億美元,共生產約200架,因此每架成本約4億美元)、俄羅斯和大陸新戰機計畫延遲導致對敵方的作戰任務不明確、還有F-22禁止出口、再加上後來的F-35計畫執行與無人飛機市場的吸引力,都迫使F-22生產計畫停止。於2005年服役,2011年12月最後一架上線,共生產約200架。

F-35閃電IILightning II,如圖六,為洛克希德馬丁公司生產的單座單引擎匿蹤攻擊戰鬥機,為聯合打擊戰鬥機(JSF)計畫中競賽得主X-35,開發出

來的美國最新攻擊戰鬥機,因為聯合多國一起開發與經費投入,所以問題比較 多,任務多重,利用複合材料的質輕且可承受高負載特性,設計成A、B、C三 款,A傳統跑道起降、B短距離起降或垂直起降機種、C航空母艦艦載機。2006 首航,2016年將進行服役,目前初期生產100架供訓練用,主要使用者:美國 空軍/海軍/海軍陸戰隊、英國皇家海軍/空軍、澳洲皇家空軍。複合材料的設 計,促成飛機性能的提升,因為重量減少其推力就可以降低,推力減少則燃油 攜帶暈可降低,同時航程就可以擴大,這都是連鎖反應,也因此不論軍用或民 航飛機都勠力朝此方向發展。

Cross talk技術提升戰機的通訊:在過去,傳統型的第四代飛機F-15、 F-16、F-18的雷達通訊性能差,一直無法達成交互傳遞無擾頻的狀態,即使是 F-22的新戰機也是設計成只與F-22通訊,這是為了減少洩蹤與保持點對點對 接的秘密行動。但是因為F-22只有約200架服役的情況下,它必須與2016即將 服役的F-35和舊式的F-15、F-16和F-18進行通訊,才可能增強其作戰範圍。 2013年12月Lockheed Martin,進行了8小時飛行的測試,提出Link 16傳輸功能 組,利用F-22飛機、波音B737飛行實驗室測試F-35的CATbird(Cooperative Avionics Testbed) 航電測試台軟體。假如預算不是問題,年底Link 16將派上 用場。它直接將F-22或F-35彼此間的通訊技術,交互傳達到傳統型飛機上, 所以诱渦F-22或F-35的轉接,在作戰時,傳統型飛機可以在第一時間馬上藉 由Link 16系統辨識敵我,達到迅速傳遞資訊的功能。雖然尚未證實是否應用 在B-2和無人飛機上,但未來它應該會廣泛應用在需要降低無線電通訊以進行 秘密任務的飛機上,此專案被任命為"密蘇里計畫"嗯,show me,MS。

二、英國:

鷂式Harrier戰鬥 機,如圖七,是從1969 年起為英國皇家海軍服 役的飛機,此為次音速 飛機,設計用來在機場 跑道遭破壞後,可以在 馬路、停車場或空曠地 起降(包括航母)。但 2010年後,因為JSF案 成功發展的F-35陸續售

圖七 鷂式戰鬥機Harrier(英國)[9]

予英國和義大利,導致可能退役的傳聞不斷, 2011年底英國國防部終於宣佈72架鷂式戰鬥機 賣給美國海軍陸戰隊。

三、法國:

飆風Rafale戰鬥 機為法國達梭公司研發 製造的產品,約與我國 發展IDF同期,如圖 八,其進氣道設計和 IDF類似。1986年首航 但是到2000年才服役, 而且訂單量也很少,到 2014年1月止總共才 126架。完成一架飛機 最重要的是要進行功能 測試,達梭公司沒有白 己的地面測試設備,飛 機測試是在美國紐澤西 的Lakehurst海軍防空 站進行。

圖八 飆風戰鬥機Rafale(法國)[10]

圖九 幻象戰機(法國)[11]

法國:幻象Mirage戰機為法國達梭公司研發製造的產品,如圖九,1978年首航,1982年服役、2007年停止生產,總共生產601架。直到飆風戰鬥機出產後,幻象機就開始停產。幻象2000C的最佳空戰武器RDI雷達搜索距離可延伸到150公里,除了攔截機功能外,法國空軍後來也對旗下機隊雷達的對地功能升級,增加非共同目標辨識 (Non-Cooperative Target Recognition)模式。早期使用功能稍遜的RDM雷達,但台灣的幻象2000-5是最早裝更新型RDY雷達的機隊。

四、瑞典:

Saab公司生產的獅鷲Gripen戰鬥機JAS-39,如圖十,1988年首航,1996年服役,目前共295架,JAS取名Jakt(對空戰鬥)Attack(對地攻擊)Spanning(

偵察)的意思,所以它是多用途多功能的戰機,有1/4的結構是複合材料,機體輕而且線會飛控(fly-by-wire)飛行。它和臺灣的IDF機隊同時間研發,目前為止仍然在進行提升計畫加強服役戰鬥力。

五、歐洲:

圖十 獅鷲戰鬥機Gripen(瑞典)[12]

圖十一 颱風戰鬥機(歐洲國家聯合開發)[13]

西班牙空軍。目前生產400架,訂單571架。具備雙引擎,Canard(前水平尾翼)之三角翼設計,有優異的空對地攻擊力以及空中防禦功能,在2011年利比亞戰爭中展示過其實力。它對於西班牙的航空工業發展有很大的助益,同樣的因為供應鏈市場的擴展,也帶動了巴西的航空工業。

歐洲和美式飛機設計的不同:在氣動力上,法文Canard的意思是鴨子,它是指固定翼飛機的水平翼位在飛機的主翼前方,它可以產生較多的升力,和傳統的飛機設計在尾翼的方式剛好相反,如圖十二,瑞典生產的飛機Gripen 39與美國F-16可以看出明顯的差異。

六、蘇聯:

建學學是到178

Air Force Officer Bimonthly

圖十二 歐洲和美式飛機設計的不同

圖十三 米格29戰鬥機(蘇聯)[14]

米格31戰鬥機,如圖十四,也是由俄國Mikoyan公司生產,共生產約500架,是目前世界上飛的最快的飛機,所以具備超巨大推力的動力系統,可以讓飛機進行超音速巡航,但因為飛機龐大,阻力大所以油耗率極高。反之,其巨大的內裝尺寸,直到現在都可以容納不同功能的改裝。記錄顯示其低空速度可達1.23馬赫極速,高空可以達2.83馬赫,以設計的推重比計算,理論上可達3馬赫,但是在此高速下機身可能解體。從這些飛機的設計看來,蘇聯的飛機和

歐美的飛機比較起來, 是特別的生猛。

蘇愷27戰鬥機,如圖十五,由俄,國 Sukhoi公司生產680架,是設計在產680架,是設計於-15的戰機,以高裝,長程飛行。 對抗F-15的戰機,高球,高裝,內容與控性為主要無於,高求,它的でのss section area,在腰的部分一般。

蘇愷30戰鬥機,如圖十六,由俄國Sukhoi公司生產,為了設計比蘇愷27更遠的航程所生產的機隊,可以空中加油。此機型輸入到印度157架打破了亞洲地區空戰武力的平衡。

蘇愷34戰鬥機,如

圖十四 米格31戰鬥機(蘇聯)[15]

圖十五 蘇愷27戰鬥機(蘇聯)[16]

圖十七,由俄國Sukhoi公司發展自蘇愷27的新機型,1990年首飛,2007年服役,目前生產32架,到2015年將增至百架。為了並列雙座而加大機頭,但為減少氣動力阻力只好把機頭設計成扁平,所以北約國家都稱其鴨嘴獸。為何從首飛到服役耗費這麼長的時間?相較於法國的飆風戰機14年,蘇愷34戰機8年算正常,但此機型生產過程因為1991年蘇聯解體,造成的動盪以及資金不足,直到2007年俄羅斯國防部才正式接收蘇愷34。從此機型的發展觀察,到此階段,飛機的外型已經很smooth,相較於米格系列的生猛,這時候的飛機外型已經很漂亮了。

蘇愷35戰鬥機,如圖十八,由俄國Sukhoi公司發展自蘇愷27的新機型,

建军军营业的178

Air Force Officer Bimonthly

預計生產74架,到 2014年2月有34架在役 。蘇愷35比Su-27、 Su-30、Su-33具備更 大的推力與機翼,也為 了減輕重量更多的碳纖 維複合材料與鋰鋁合金 設計機身,同時它具備 二維向量推力系統。中 共購買蘇愷35飛機的主 要目的是為了獲得發動 機技術,雖然發動機技 術沒有簽署技術轉移的 協議,但稍後介紹的中 共飛機,近十年來的迅 速發展,是很不容易的 成就。

七、大陸軍機發展:

圖十六 蘇愷30戰鬥機(蘇聯)[17]

圖十七 蘇愷34戰鬥機(蘇聯)[18]

圖十八 蘇愷35戰鬥機(蘇聯)[19]

來

殲-18戰鬥機,如 圖二十一,由瀋陽飛機 公司製造,是中共第一

圖十九 殲-10戰鬥機(中國)[20]

圖二十 殲-11戰鬥機(中國)[22]

架垂直起降的隱形飛機,雖然美國或多方媒體都有報導,網路討論的文章極多,也有試飛的影片可以看到,但中共軍方從未承認。

殲-16戰鬥機,如圖二十二,也是由瀋陽飛機公司製造,是仿蘇愷30的機種,服役於中國海軍航空兵,研發製作時間和生產數據都是未知,2013年被目擊在吉林沙漠區進行測試,俄國和加拿大都有報導24架殲-16戰鬥機已經下

線裝備海航。

殲-20與F-22戰鬥 機,這是熱門的探討問 題,一架完全多功能的 戰鬥機,既要垂直起降 又要攻擊型重武力、還 要匿蹤、遠航程、纏鬥 高靈敏控制性與超音速 飛行,產生的結果就是 造價高昂養不起,不然 就是針對不同的重要需 求進行A型、B型、C型 等的改裝。美國《國際 防務科技》雜誌認為, 既是戰鬥機又是轟炸機 的殲-20存在技術缺陷 。因為要符合大載彈量 和大載油量,在超音速 巡航和機動性就不如 F-22,其空戰能力會受 到限制。同時在材料方 面:隱形的設計、塗料 、以及雷達吸波能力, 和雷裝部分的電子設備 都還沒趕上美國技術。 資料來源:參考文獻 [25] o

殲-31戰鬥機,如 圖二十三,由瀋陽飛機 公司製造,預計2019年

圖二十一 殲-18戰鬥機(中國)[23]

圖二十二 殲-16戰鬥機(中國)[24]

圖二十三 殲-31戰鬥機(中國)[26]

後服役,於2012年首航,已經至少生產兩架在測試中,是單座雙發動機匿蹤 攻擊戰鬥機,因為雙前輪起落架設計而推判是航空母艦起降的需求,中共此款

t and the second

飛機的生產,奠定了繼 美國之後,超越俄羅斯 ,第二位具備研究製造 超過一種第五代隱形戰 機的國家。

人類研發第一架火 箭到第一次登陸月球, 共歷經25年。中共能夠 在這麼短的時間內,成 就短場起降(圖二十四 : 殲-15在遼寧號起降 畫面)、匿蹤、垂直起 **隆等高武力戰機**,是不 容易的成就,固然他們 是站在美俄多數科學家 的肩膀上突破成果,但 是持續而充沛的經濟支 持,以及永續地培植現 有人才是真正成功的主 因。從過去全力網羅被 美國滯留5年的錢學森 ,以及來自台灣高雄在 日本獲得航太博士最後 到大陸幫忙解決火箭彈

圖二十四 殲-15在遼寧號起降(中國)[27]

圖二十五 AT-3自強號戰機(中華民國)[28]

頭超音速問題的錢福星,成立多所航天學院,到現在,太空發展專案負責人都四十歲出頭,這是有計畫地培育新人才的發展。

八、我國軍機發展:

中華民國臺灣:臺灣航空工業之重要里程碑是由國人自行研發的噴射教練機,AT-3自強號戰機(圖二十五)開始。由航發中心(漢翔前身)與美國Northrop公司初期進行合作研發,到最後由航發中心獨立完成。於1980年首航,1984年服役,共生產63架,最後一架為1990年生產。這是我們邁向航太工業國際化的起步,但在很多因素下,台灣沒辦法把AT-3量產賣給國外買家。在國內

Air Force Officer Bimonthly

,最常看到的就是各個 軍機場展示的雷虎表演 。經國號戰機(圖 二十六)是漢翔公司在 美國技術協助下設計、 開發、製造。通常一架 飛機花7~8年的時間設 計,從試飛、調整、到 牛產,是漫長的里程。 經國號1989年首航, 1994年服役, R/D經費 共450億台幣,它奠定 て臺灣航空工業之基礎 。IDF取名自Indigenous(本土)Defensive(防禦)Fighter(戰機), 主要強調其自製性,是 為了取代之前空軍逐漸 老化的F-5戰機而建置 ,此輕型超音速噴射戰 鬥機負責中低空防禦, 同時配合購進的法國幻 象 2 0 0 0 - 5 和 美 製

圖二十六 IDF經國號戰機(中華民國)[29]

圖二十七 NASA「超音速綠能飛行器[30]

F16-A/B成為這幾年空軍的主要空中主力。

經國號戰機設計的特色是:(1)線傳飛控飛行(fly-by-wire):具備三重設計(Triple Redundancy)功能。眾所周知,產品設計的可靠度來自於產品最重要的部分具備多重的備份設計,線傳飛控飛行可以讓飛行員迅速且輕鬆地操作一架飛機,但是這麼重要的控制翼面操縱沒有多重設計,會是可靠度低的產品。(2)失效-安全(Fail-Safe):此設計觀念是當功能失效時,馬上轉入安全備份件的設計,不論重要的結構或主系統都有縝密的安全設計。例如飛機主翼具備五大樑設計,同時有偵測監控,以預防失效。(3)人機界面(Pilot-Vehicle-Interface):配合人體工程,採取機隨人意設計,讓操控更方便。

參、結論

NASA預計2030年研發出「超音速綠能飛行器」,由洛克希德·馬丁公司設計(如圖二十七所示),利用外型的設計以及引擎裝置所載的位置,減少超音速震波產生,以降低噪音。過去在協和號的年代,超音速飛機產生的噪音一直無法通過環保的要求,所以美國聯邦航空總署(FAA)也無法核准通過美國內陸,此款設計利用引擎在機翼上方(如圖二十七),讓產生的噪音不會往下打到地面,不知未來實際研發出來產生的效應有多高,但至少在未來的環保議題上有大躍進的表現。同時對於未來戰機的發展,作者在此提出下列四項供讀者參考。(1)新材料的發展(Composite materials),不一定是纖維主體的複合材料,金屬/特殊功能(導電、透光、阻尼、耐摩擦、抗震、耐撞擊、耐腐蝕等都可以研發)。(2)更多電裝設備(More Electricity Airplanes),B787已經利用電裝設備取代更多液壓系統,雖然初期還有些問題,但是這趨勢已經是形成。(3)向量噴嘴(Vector Nozzle),如何穩定地切換向量噴嘴角度,讓飛行時由水平移動轉換成垂直起降更為順暢,這是未來還可以發展的空間。(4)隱形技術提升(Enhanced Stealth Technology),為了因應隱形設計,更多功能的偵測設備已經出爐,例如量子雷達的產生,所以,相對應地,隱形技術要更多元,或是塗料塗層上多進化。

肆、參考文獻

- [1] http://en.wikipedia.org/wiki/Lockheed_F-117_Nighthawk
- (2) http://www.boeing.com/defense-space/military/f15/f-15k/19991216f15f.htm
- (3) http://zh.wikipedia.org/wiki/F-15%E9%B7%B9%E5%BC%8F%E6%88%B0%E9%AC%A5%E6%A9%9F
- (4) http://www.diecastaircraftforum.com/military-model-aircraft/105672-hm-f-16-would-you-like-seemade.html
- (5) http://www.learning-to-fly.com/airplane-pictures-page4.html
- (6) http://www.wallpapergate.com/wallpaper11021.html
- (7) http://en.wikipedia.org/wiki/File:F35A_Prototyp_AA1_3.jpg
- (8) A. Butler, "Cross Talk: Secret Lockheed Martin demo is a step toward fixing F-22 and F-35 communications problem", Aviation week & Space technology, 2014, March 3, pp.24-25.
- (9) http://www.theguardian.com/uk/2011/nov/24/harrier-jump-jets-sold-marines
- [10]http://www.worldwide-military.com/Military%20Aircraft/EU%20Fighters/Rafale_EN.htm
- [11] http://www.worldwide-military.com/Military%20Aircraft/EU%20Fighters%20plaatjes/Grote%20foto%27s/Mirage%202000%205F.jpg
- (12)http://minhpeter.blogspot.tw/2011/04/saab-jas-39-gripen.html
- [13]http://www.worldwide-military.com/Military%20Aircraft/EU%20Fighters%20plaatjes/ Grote%20foto%27s/Eurofighter%20Typhoon 12.JPG
- [14] http://reflectionsofcoldwar.blogspot.tw/2012/07/east-german-luftstreitkrafte-majors.html
- [15]http://www.airliners.net/photo/Russia---Air/Mikoyan-Gurevich-MiG-31.../2226193/L/&sid=32b365d9ea7f 00361bfe493ddf0e4801

- [16] http://upload.wikimedia.org/wikipedia/commons/2/2e/Su-27_Russian_Knights_04.jpg
- [17]http://upload.wikimedia.org/wikipedia/commons/8/8d/Su-30SM_Russian_Air_Force.jpg
- [18] http://upload.wikimedia.org/wikipedia/commons/d/d5/Sukhoi Su-34 in 2012 %282%29.jpg
- [19] http://forums.spacebattles.com/threads/vvs-gets-its-christmas-gifts-early-su-35s.243490/
- (20)http://gb.cri.cn/18824/2008/06/03/107@2083049.htm
- [21]http://hk.crntt.com/doc/1006/6/3/1/100663197.html?coluid=7&kindid=0&docid=100663197
- [22]http://big5.china.com/zh_cn/etc/endpage/showPic.html?http://big5.china.com/gate/big5/images2.china.com/mili/zh cn/important/64/20121203/17559964 2012120309142069155700.jpg
- (23)http://bbs.tiexue.net/post 5517329 1.html
- (24)http://he.people.com.cn/BIG5/n/2014/0219/c192235-20602884-5.html
- (25)https://www.youtube.com/watch?v=1pJbhzxMf4s
- (26)http://big5.gianzhan.com/military/detail/280/130717-bd06dfa5.html
- (27)http://image.club.china.com/twhb/1013/2012/11/25/1353801483349.jpg
- [28]http://www.twwiki.com/wiki/%E5%8F%B0%E7%81%A3AT-3%E6%95%99%E7%B7%B4%E6%A9%9F
- [29]http://news.xinhuanet.com/mi1/2009-12/09/xinsrc 04212060913300622031817.jpg
- [30] http://smartablenews.com/bg/persons/nasa-supersonic-science-aims-to-shush-sonic-booms

作者簡介

空軍備役少將 邢有光

學歷:空軍官校48期、美國科羅拉多大學航太博士,經歷:漢翔航空工業股份有限公司董事長、台灣苯乙烯工業股份有限公司總經理、亞洲航空公司副總經理、經國號戰機(IDF)總工程師、中科院航空研究所副所長、1993美國科羅拉多大學傑出工程校友獎。

副教授 孫允平

學歷:國立成功大學航空太空工程研究所博士,現職:正修科技大學機械系副教授。

空軍上校 張政仁

學歷:空軍官校79年班、國立成功大學航空太空工程研究所博士,現職:空軍官校 一般教學部部主任/航太系副教授。

助理教授 梁燕祝

學歷:國立成功大學航空太空工程研究所博士,現職:空軍官校航太系助理教授。