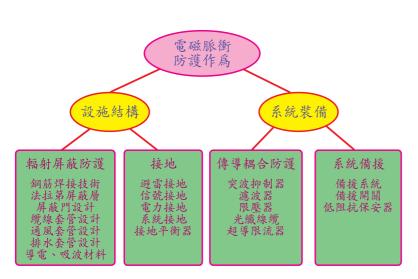


作者/張衍智 博士

提要

本文主要研究電磁脈衝侵襲設施時,最外層的鋼筋混凝土結構之鋼筋網屏蔽效應分析與 接地之基本技術,並進行鋼筋施工方法之研究。就規範所訂定的鋼筋焊接與通常所使用的綁接 方法,進行屏蔽效值之實驗探討,結果顯示兩種施工方式的屏蔽效值是約略相同的。據此可了 解規範所訂定之焊接施工,是爲了使鋼筋網結構成一連續的電氣迴圈,並使其接地阻抗維持在 2Ω以下,而且毋須擔心其是否會因年代久遠而腐蝕的問題。本文也描述鋼筋網的屏蔽分析方 法,以及理論分析之結果,與實驗結果是相當吻合的。


首前

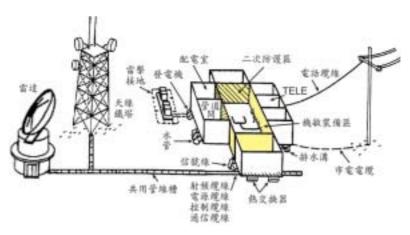
伴隨科技的進步與作戰思維的改變,電 磁脈衝武器的攻擊已成爲未來戰爭中制敵機 先的最有效戰術手段之一。它不僅會干擾, 甚至於破壞國防的指管通資情監偵(C⁴ISR) 系統;亦會癱瘓民生所需的電力、電信與資 訊系統。任一C4ISR設施的結構,通常是鋼 筋混凝土,其鋼筋網就是電磁脈衝輻射侵襲 的第一層屛蔽防護。因此有必要去了解其屛 蔽防護的效益,並進一步執行設施內二次、 三次防護工程的設計。

雷磁脈衝的分層防護

任何C'ISR設施之標準電磁脈衝防護作 爲,依其侵襲途徑可分類爲:設施結構防護 與系統裝備防護等兩大部分,如圖一所示。 其中,設施結構防護指的是任何軍事建物, 或是機動載台的輻射屏蔽工程,其防護作為 可分為:分層屛蔽與良好之接地設計。而設 施結構內所置放的系統裝備,其防護作爲則 分爲:傳導耦合防護與系統備援。其中達成 傳導耦合防護的方法是加裝箝壓濾波器,且 必須與屛蔽工程相互整合(1/2/3)。

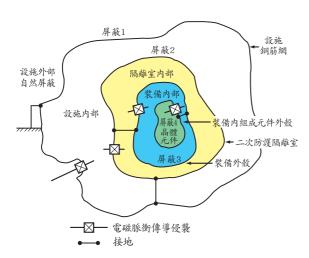
- ① 張衍智,金屬屏蔽效應評估,中山科學研究院電子所電力電子組,民國91年1月。
- ② 蔡德平,電磁脈衝之防護研究基礎,中山科學研究院電子所電力電子組,民國89年6月16日。
- ③ Bell Laboratories:" EMP engineering and design principles", 1986.

▲圖一 完整之電磁脈衝防護作爲(作者自繪)


就一C¹ISR設施之標準配置可如圖二所示。通常,該設施皆具有雷達、天線裝置、外接市電、電話線、通信線、各式冷熱水管、廢水排放管道,以及緊急備用發電機。其土建設施大多爲鋼筋混凝土結構,而其內部放置有各式機敏設備,以處理各種天線所傳入之電子訊息。就鋼筋混凝土結構而言,其鋼筋網有焊接的、綁接的,或是用不同的

方法,使所有的鋼筋連結處 與交叉點都是電氣連結的, 因此形成許多連續的導電迴 圈或路徑;而且廣布建築物 全體,並藉由混凝土與大地 相接,因此整個結構體可作 爲一個接地電極,此種方式 統稱爲「Ufer接地」。

同時,這種鋼筋網結構 配置可對低頻場提供一定程 度的屛蔽;然而對高頻入射 電磁場,因鋼筋之間形成的 孔洞,則無法有效的屛蔽。 ④設施結構一經施工灌漿 後,若該設施不能達到原先 的設計能力,就需要破壞部 分結構、甚至重做,既費時 又花錢,不得不讓人們注意 其施工方法。


就電磁脈衝防護的有效 作爲與成本考量,通常採取 「因地置宜」與「分層防護」 爲原則。「因地置宜」的原 則就是考量設施所在之地理 環境,就其自然環境對電磁

脈衝的屏障而規劃,並設計出最佳之電磁脈 衝防護作為。而「分層防護」的原則是就設 施內之裝備,依其重要性、機敏性與脆弱 性,分區分層配置,以最佳化的成本而達到 全防護之目的。為進一步闡述該等原則,可 將圖二的設施防護,就電磁脈衝侵襲方式、 電磁波由外至內行經途徑、裝備配置、接地 方式進行一拓樸分析,如圖三所示。

▲圖二 設施之電磁脈衝防護(作者自繪)

① US Army, "Engineering and Design EMP and TEMPEST Protection for Facilities", 1990.

▲圖三 C⁴ISR設施之電磁脈衝防護拓樸分析 (作者自繪)

由圖三可知,電磁脈衝侵襲機敏裝備, 是逐步通過外界天然屛障、鋼筋網、二次防 護隔離室、裝備機殼,以及組成元件之外殼 後,所殘存的電磁波以及感應電流才可影響 電子晶體元件。爲使其正常運作,通常需先 了解裝備及元件之耐受度後,再進行鋼筋網 與二次防護隔離室之防護能力評估。由於設 施建築物也可埋入地下,此時土壤層即爲對 電磁脈衝之第一層屛蔽,而後爲鋼筋網,因 此須討論與分析其屛蔽防護能力。⑤

設施鋼筋網的屏蔽效益

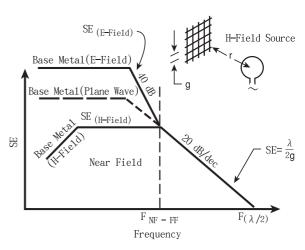
可定義兩個電磁脈衝的隔離防護指標: 一是屛蔽因數(Shield Factor) η_F 和 η_H ,另一 個則是屛蔽效值(Shielding Effectiveness)SE 和SH,分別表示電磁脈衝的電場和磁場。

$$\eta_E(\omega) = \frac{E_t(\omega)}{E_t(\omega)}$$
, $SE(\omega) = -20 \log |\eta_E(\omega)|$ (1)

$$\eta_{II}(\omega) = \frac{H_I(\omega)}{H_I(\omega)}$$
, $SH(\omega) = -20 \log |\eta_{II}(\omega)|$ (2)

上述兩公式中E₁, H₁分別表示照射電磁波的電場和磁場場強;E₁, H₁則分別表示穿透電磁波的電場和磁場場強。通常屏蔽因素和屏蔽效值並非固定值,會隨電磁脈衝的弦波分量頻率和所穿透介質內的位置而改變。

一平面金屬網格的屏蔽理論


鋼筋網可視為一平面金屬網格,其屏蔽效值之分析,依頻段之不同,可分成:平面波照射遠場條件(Plane Wave Far Field)、近場條件(Near Field)以及極低頻之金屬板磁場屏蔽等方式,如圖四所示。

(一)平面波照射遠場屛蔽效值

平面金屬網格遠場屛蔽之公式為:

$$SE = 20\log(15000/g_{cm} f_{MHz}) dB, g_{cm} \le 15000/f_{MHz}$$

= 0, $g_{cm} \ge 15000/f_{MHz}$ (3)

其中,g爲鋼筋間距,單位須取 cm。 二近場屛蔽效值

▲圖四 平面金屬網格屛蔽分析方式⑥

⑤ 張衍智,地下掩體屏蔽分析與模擬,(桃園:中山科學研究院電子所,民國92年6月)。

⁽⁶⁾ Donald R.J. White and Michel Mardiguian," A Handbook Series on EMC, Volume 3: Electromagnetic Shielding", Interference Control Technologies, Inc., 1988.

平面金屬網格近場屛蔽分析可分為: 近場電場屛蔽與近場磁場屛蔽兩個方式,此 與電磁場之近場特性有關。⑦⑧

近場電場屛蔽公式為:

$$SH_{(H)} = 20 \log(\frac{\pi r}{g}), \ r < \frac{\lambda}{2\pi} \ and \ r >> g$$
 (5)

其中, γ 爲電磁場源之距離,依據 MIL-STD-188-125規範,⑨在量測屛蔽效値 時, γ 是被設定爲2.05m。

(三)極低頻之金屬板磁場屛蔽

在極低頻時,平面金屬網格之磁場屏蔽效應,可以視同爲一相同厚度、材質之金屬平板之磁場屏蔽效應,⑩⑪因此可以應用該金屬平板屛蔽效值公式。只是在應用此一公式時,須計算出金屬網格的金屬比例(Percent Coverage),而將原來公式裡金屬材質的導電率,乘以此金屬比例,即可決定出相對之金屬平板屛蔽效值。其公式爲:

$$SH = 20 \log \left\{ e^{\alpha t} \frac{(1+K)^2}{4K} \left[1 - (\frac{K-1}{K+1})^2 e^{-2\gamma t} \right] \right\}$$

(6)

其中,對於近場電場而言,

$$K = \frac{1}{2}\pi r f \varepsilon_0 \sqrt{2\pi f \mu / \sigma}$$
 (7)

對於近場磁場而言,

$$K = r \sqrt{2\pi f \sigma \mu_0 / \mu_r}$$
 (8)

對於遠場平面波而言,

$$K = \frac{1}{\sqrt{2\pi f \,\mu_r \,\varepsilon_0 / \sigma}} \tag{9}$$

t爲金屬板厚度; γ 爲電磁波傳播常數, $\gamma = \sqrt{j\omega\mu(\sigma + j\omega\epsilon)}$ 。 α 爲衰減常數, $\alpha = \sqrt{\pi\mu f\sigma}$ 。而 $\sigma = \sigma_r \sigma_{Cu}$, $\mu = \mu_r \mu_o$ 。其中 σ_r 表示介質與銅相比較的相對導電係數, $\sigma_{Cu} = 5.8 \times 10^7 m hos/m$ 則是銅的導電係數。 μ 表示介質的導磁率(permeability), μ_r 表示介質相較於空氣的導磁率, $\mu_o = 4\pi \times 10^7 H/m$ 則表示空氣的導磁率。 ϵ_r 表示介質相較於空氣的導磁率。 ϵ_r 表示介質相較於空氣的有電係數, $\epsilon_o = 1/36\pi \times 10^9 F/m$ 。考慮一鋼筋網格的間距 g爲15cm,鋼筋直徑 d爲8mm。則鋼筋網格的金屬含量可利用下列公式:

Percent Coverage =
$$\frac{1}{g}d(2-\frac{1}{g}d)$$
 (10)

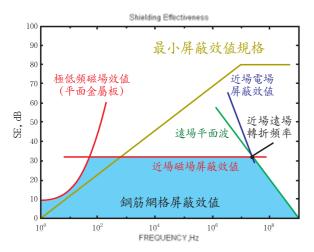
經計算後鋼筋網格的金屬含量爲 0.104。就極低頻段而言,應採用公式(6)與 式(8)。

本節介紹的分析公式,是經由理論再配合實驗數據而得之經驗公式。所算出的屛蔽效值為一最大臨界值,但仍與實驗的量測數據相差不多,不失為一值得利用的速算公式。②

二鋼筋網格結構體的屏蔽效值分析

現今國軍的陸基設施,爲達抗炸需求, 所設計之鋼筋網格的間距通常爲15cm,而鋼

⁽⁷⁾ 同註(6)。


F.M. Tesche, M.V. Ianoz, T. Karlsson, "EMC Analysis Methods and Computional Models", John Wiley & Sons, (New York, 1997).

⑨ 張衍智,吳國祥,朱建中,電磁脈衝防護規範,(桃園:中山科學研究院電子所,民國90年12月)。

① 同註(1)。

① 同註⑥。

① 同註(8)。

▲圖五 設施鋼筋網之屛蔽效値(作者自繪)

筋直徑通常爲8mm。利用公式(3)至(10)來計算上述鋼筋網格的屛蔽效值,可得出如圖五之屛蔽效值。③由圖中可看出在近場時,計算出電場的屛蔽效值遠比遠場屛蔽效值大上許多,這種現象代表著電場的干擾是不值得去憂慮的,反而是防治近場磁場的干擾才是要去注意的。在本案例,近場磁場屛蔽效值約爲32dB,是鋼筋網格之近場屛蔽效值的爲32dB,是鋼筋網格之近場屛蔽效值。至於極低頻時,平面金屬板的磁場屛蔽效值隨頻率減少而降低。

圖五淺藍色區域,即為計算出的設施鋼筋網結構體之屏蔽效值。是將此一屏蔽效值 與防護規範與相比較。由圖中可看出該鋼筋網結構體,在頻率40KHz以上的電磁波,是 無法滿足最小屏蔽規格之需求。

三地上與地下設施的屏蔽效值分析與比較

一般建築設施皆具有地面上與地面下之 樓層。在此舉一新建工程案爲例。⑤地上建 築物爲鋼筋混凝土,地下建築物其四周擋土 牆的結構,也是採用鋼筋混凝土之方式,而 地上、下設施間之樓板結構則為一整片厚約 15mm之鋼板,其上再鋪上鋼筋混凝土。

根據電磁波照射建築物之觀點,地上建築物是完全暴露在電磁脈衝的環境裡,而地下建築物受到電磁脈衝侵襲之途徑,則為:

- (一)電磁波照射到建築物四周的地面,部 分電磁波反射回空氣,剩餘的電磁波則穿透 泥土層。殘餘在泥土層的電磁波,是否會由 四周擋土連續壁穿透到地下設施,則取決於 泥土層對電磁波的衰減特性。
- 二電磁波直接由地面一樓層板穿透到地下設施。

由於上、下設施間之鋼板結構具有極佳 之電磁脈衝屏蔽防護能力,因此本文不予考 慮電磁脈衝侵襲途徑2之效應。在前面已進 行地面上鋼筋建築物之電磁屏蔽效能分析 (如圖五),在此節僅進行地面下鋼筋建築物 之電磁屏蔽效能分析,並進行比較。首先討 論土壤對於電磁波的衰減效應。

四電磁波於泥土層的能量傳播分析

一般而言,土壤對於電磁波的傳導不是良導體,其導磁係數約爲1,而其介電係數與導電係數隨不同的土壤材質而有不同,如表一所示。⑥如上述,當電磁波照射到泥土層時,會有一部分電磁波反射回空氣,而其餘能量則穿透泥土層。在此,所要分析的是:穿過泥土層後的殘餘電磁波能量如何?因爲此一物理量表示埋於地面下的建築設施,所承受的電磁環境。若要詳盡分析電磁脈衝的隔離防護,是一個複雜且不易求得完

⁽¹³⁾ 同註(1)。

⁽¹⁴⁾ 同註(9)。

⁽⁵⁾ 同註(5)。

⁽¹⁶⁾ 同註(4)。

表—	不同土壤材質之介電與導電値(作者整理)
1.8	了一吧!被少! 目 K . 儿 电 类 . 子 电

泥土層材質	介電係數, ε _r	導電係數, σ (mhos/m)
乾泥土	10	2×10^{-3} 8×10^{-3}
森林地	12	8×10^{-3}
富含水分之農地	12 15	$ \begin{array}{c c} 10 \times 10^{-3} \\ 5 \times 10^{-3} \end{array} $
山丘	13	5×10^{-3}
山丘 岩石高山 山區	10 5	2×10^{-3}
山區	5	1×10^{-3} 5×10^{-3}
水	80	5×10^{-3}
海水	80	4

整解答的工作。在實際的工程應用上,必須設法簡化問題,以求得近似的分析結果。

由金屬屏蔽理論,當電磁波自開始接觸導體表面(介面),到通過導體平板(介面)的路徑上,其電磁場將不論電磁波照射到導體平板上的入射角度爲何,始終會保持TEM波的特性,並且會隨著穿入導體的距離而衰減如下式:

$$\begin{bmatrix} \mathbf{E}(z) \\ \mathbf{H}(z) \end{bmatrix} = \begin{bmatrix} \mathbf{E}_{s} \\ \mathbf{H}_{s} \end{bmatrix} e^{-(1+j)z/\delta}$$
 (11)

此一衰減特性稱爲肌膚效應(Skin Effect),而(11)式中 E_s , H_s 分別是z=0處開始 穿入的電場和磁場強度; δ 稱爲肌膚深度 (Skin Depth),其定義爲場強衰減8.69dB的 穿入距離,可以計算如下:

$$\delta = \frac{1}{\sqrt{\omega\mu\sigma/2}} \tag{12}$$

而 $\sigma = \sigma_r \sigma_{Cu}$, $\mu = \mu_r$ μ_o , 其中 σ_r 表示介質與銅相比較的相對導電係數, $\sigma_{Cu} = 5.8 \times 10^7$ mhos/m則是銅的導電係數。 μ 表示介質的導磁率, μ_r 表示介質相較於空氣的導磁率, μ_o

 $=4\pi\times10^7$ H/m 則表示空氣的導磁率。另外, f_{MHz} 則表示以百萬赫 爲單位的頻率。

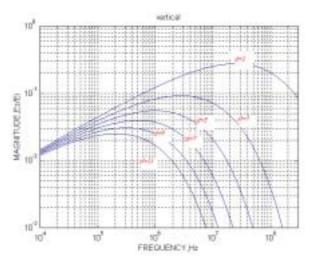
雖然土壤不是像金屬般的 良導體,但也絕不是電的絕緣 體。因此,電磁波於泥土層的 傳播與上述理論是相似的。由 電磁波傳播控制方程式:

$$\nabla^2 \mathbf{E} = \gamma^2 \mathbf{E} \tag{13}$$

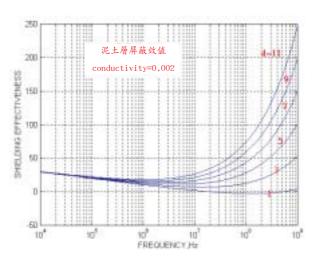
其中, γ 爲傳播因子,其公式 爲: $\gamma = \sqrt{j\omega\mu(\sigma + j\omega\epsilon)}$ 。依據註釋①、⑧, 計入反射與穿透係數,可求出於泥土層之電 場解析爲:

$$\mathbf{E}(d) \approx 2\mathbf{E}_{inc} \cos \phi \sqrt{\frac{j\omega\varepsilon_0}{\sigma_G}} \exp[-(1+j)d/\delta] \qquad (14)$$

其中,φ爲電磁波入射地面時之方位 角,通常取0度。d爲由地面往下之地層深 度。爲泥土之肌膚深度,其定義與公式(12) 相同,在不同含水量的土壤肌膚深度與穿透 衰減值可如表二所示。表示土壤的相對導電 係數,分析時通常取10²mho/m。


將公式(14)求解,可得出如圖六所示之 不同深度下穿透電磁場的電場場強。就核爆

表二 不同含水量之土壤肌膚深度與穿透衰減值(作者整理)


含水量(%)	1%		10%		50%	
頻率 (Hz)	δ(m)	A(dB/m)	δ(m)	A(dB/m)	δ(m)	A(dB/m)
1k	950	0	172	0.1	50	0.2
10k	280	0	53	0.2	16	0.5
100k	80	0.1	16	0.5	5	1.7
300k	40	0.2	9	0.9	2.8	3 . 0
1M	18	0.5	4.9	1.8	1.5	5 . 6
3M	8.7	1.0	2.7	3.2	0.87	9.9
10M	3 . 5	2.5	1.3	6.7	0.46	18.7
100M	0.56	15.6	0.28	31.2	0.12	68.5

DEdward F. Vance, "Coupling to Shielded Cables", John Wiley & Sons, (New York, 1978).

¹⁸ 同註(8)。

▲圖六 不同深度下之電場分布(作者自繪)

▲圖七 乾地泥土層之屛蔽效值(作者自繪)

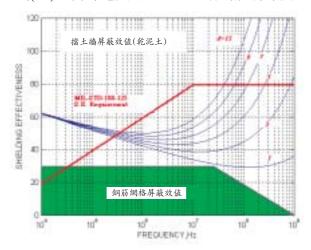
電磁脈衝的電磁頻譜範圍內(約爲300MHz 以內),由圖中可看出隨著泥土層的深度愈 深,電場衰減得更厲害。從另一角度而言, 泥土層本身就是一個屛蔽層。經由計算出的 地面下設施之泥土層電磁環境,可以利用前 面所提及之金屬網格屛蔽經驗公式,分析地 下化設施的屛蔽效能。

五地下設施擋土牆的屏蔽效值分析

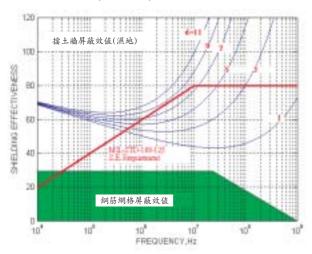
就地下化的設施來看,因其埋置在泥土

裡,設施四周的擋土牆所面臨的電磁環境,就是電磁波穿透泥土層後,在泥土層傳播之電磁場。由前述的電磁波在泥土層之傳播分析,可應用公式(14)求出不同泥土層深度下的穿透電磁波,與入射電磁波之場強比例。由屏蔽效值基本定義,如公式(1),而可求出泥土層之屏蔽效值。

$$SE_{dB} = 20\log(\frac{E_{Incident}}{E_{Transmissioni}})$$
 (15)


不同含水量的泥土層,泥土的物理特性 值就不同,如表一所示。如圖七所示,爲不 同深度下乾地泥土層的屛蔽效值,表一中其 導電係數爲0.002 mhos/m。由圖可觀察出, 深度愈深,其對高頻電磁場之屛蔽效能愈 佳。

擋土牆的屛蔽效能分析,可利用上述求出的泥土層屛蔽效值,加上鋼筋網格的屛蔽效值,即可求出擋土牆的屛蔽效值。在此所採用的鋼筋網格間距爲15cm、直徑爲8mm,與前面(三)所述相同。此分析方式,是以"乾地"以及"溼地"兩種泥土層,求出擋土牆的屛蔽效值,計算出的結果分別如圖八、圖九所示。於圖中,同時也比較相同之鋼筋網格,將其暴露於大氣中(綠色區塊),與埋置地下時的屛蔽效值不同。由分析結果可知,具有天然泥土層屛蔽的鋼筋網格之屛蔽效值較佳。


由分析出的屏蔽效值可看出,位於愈深的泥土層,擋土牆對高頻電磁波的屏蔽效值愈佳,但仍不能滿足規格需求。離地表1米深度的擋土牆部分,則完全不能屏蔽高頻電磁波。至於低於300 KHz以下的低頻磁場則具有極佳之屏蔽效能。另外由圖九之埋置於溼地泥土層裡的擋土牆屛蔽效值,可看出較

佳的屛蔽效能。由於溼地的導電係數爲 0.01 *mhos/m*,爲乾地導電係數的5倍。由公 式(12),當導電度愈大,泥土層的肌膚深度

▲圖八 擋土牆埋置於乾地泥土層之屛蔽效値 (籃色曲線)(作者整理)

▲圖九 擋土牆埋置於溼地泥土層之屛蔽效值 (籃色曲線)(作者整理)

就愈淺,再由公式(14),穿透泥土層的電磁 波就會衰減得愈快,因而屏蔽效值就愈大。 若擋土牆埋置於溼地時,且離地表9米以上 的深度時,其屏蔽效值就可以滿足規格之需 求。表三所示,是將圖八、圖九之數據,就 各不同深度、泥土土質以及遠近場頻段範 圍,擋土牆屏蔽效值所能滿足屏蔽規格需求 之頻段範圍,以供參考。

鋼筋網施工法

一美軍規範訂定的施工法

依據美陸軍規範,⑩設施鋼筋網的標準構造,必須是連續環繞在被屏蔽空間的四周,且需要按照一定的方式施工。如此不僅是爲了結構支撑,以及增加屏蔽效值;同時,也是爲了接地需求而可成一連續的電氣 迴圈。其要點如下:

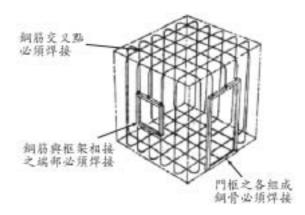
- (一)爲了增加鋼筋的屛蔽效值,所有的鋼筋交叉點都必須焊接,以確保在交叉點有最小的電阻,如圖十所示。
- (二)如果鋼筋之疊接是無法避免的,疊接 處的焊接長度至少爲鋼筋直徑的三倍以上, 如圖十一所示。同時,爲確保其機械強度, 可額外以其他的機械方式再次繫結或綁紮。 但是其施工方式仍應遵循標準實務施作。
- (三)在任何情況下,環繞整個牆體的鋼筋網,必須要形成連續的電氣迴圈。亦即,在鋼筋的節點(或交叉點),以及鋼筋與框架

\pm $-$	一一一	//一十/・市ケエロ、
衣二	擋土牆合乎規格需求之頻段範圍(作有楚理)

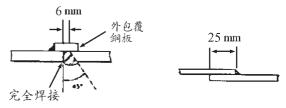
	頻 段	低頻磁場		高 頻	電電	磁場	(Hz)	
土	質	(Hz)	1m	3m	5m	7m	9m	11m
乾	地	<300K	NO	>800M	>250M	>120M	>70M	>40M
溼	地	<500K	NO	>100M	>30M	>12M	OK	OK

▲圖十 鋼筋交叉點都必須焊接⑩

可額外使用繁結或鄉接等方式 以增強網筋之機械強度 網筋量接焊接長度為: L-3~5D


▲圖十一 鋼筋疊接之標準施工方式②

相接端部的所有鋼筋都應該形成迴圈,並牢固的焊接在一起。連續電氣迴圈鋼筋網的中斷位置(即:鋼筋與框架相接之端部),如通風口或門,應該與該等框架焊接在一起,如圖十二所示。


四鋼板與鋼板間的焊接方式,隨鋼板的厚薄而有不同之焊接方式,如圖十三(a)所示,通常較薄的鋼板是以疊接之方式來焊接。至於鋼板與角鐵架(Angle Iron),或其它種類結構體之焊接方式,隨不同的情況而有不同之焊接方式,如圖十三(b)所示。同時,上述施工方式,也可適用於鋼筋與鋼板間,或與其它種類結構體之焊接。

二鋼筋綁接與焊接施工法的討論

依據上述美陸軍規範所訂定的施工方法 (一)與(二),鋼筋的交叉點與疊接處都必須焊接。實際上,就國內的施工方法,通常是綁

▲圖十二 連續的電氣迴圈②

厚重鋼板間之焊接

疊接鋼板間之焊接

▲圖十三(a) 鋼板與鋼板間之焊接方式②

兩不同鋼板與結構體 之焊接方式

兩不同鋼板成角度時之焊 接方式,需利用一角鐵架

▲圖十三(b) 鋼板與其它種類結構體之焊接 方式⑩

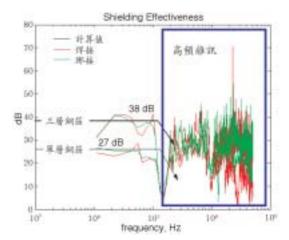
接在一起。可以了解規範所訂定的焊接施工,是爲了使鋼筋網結構成一連續的電氣迴圈,以降低其接地阻抗。通常採用此一施工方式而成的結構體,其接地阻抗可維持在2Ω以下,而且毋須擔心其是否會因年代久遠

²⁰ 月註(4)。

② 同註(4)。

② 同註(4)。

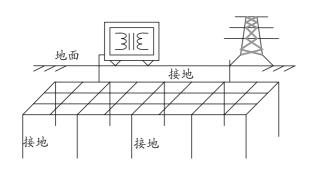
② 同註(4)。


^(%) 同註(4)。

而腐蝕的問題。然而此種焊接施工,是否真 的會增加鋼筋的屏蔽效值。

針對此一疑問,曾進行實驗,將綁接與 焊接的鋼筋網分別置入HEMP模擬器內,並 以一微型電通微分感測器(D-dot Sensor)量測 其屛蔽效值。其中,鋼筋直徑爲10 mm、鋼 筋間距爲15cm,實驗情形如圖十四所示。 量測結果則如圖十五所示,由該圖中可知, 無論綁接與焊接的施工方式,皆不會顯著影 響其屛蔽效能,國外的研究也得出相同之結 論。②同時,由此一實驗結果可與理論分析 之結果相比較,如圖十五所示。由圖可看出 理論分析的屛蔽效值爲一最大臨界值,與實 驗之量測數據相差不多,分析出的結果可作 爲設施設計之參考,以及是否進行機敏設備 區的二次防護工程之依據。另外也再次證明 鋼筋網結構只對低頻磁場有一定的屛蔽效 能,對於高頻則需進行其它的防護工程。

▲圖十四 焊接與綁接屛蔽效能之實驗 (作者自繪)



▲圖十五 鋼筋網之屛蔽效能實驗與理論結果 (作者自繪)

接地

接地是將建築物內的用電裝備與裝置連接至大地,這種與大地相接的目的,是要建立一條低阻抗的路徑,反饋至電源一變壓器、發電機,或蓄電池,以避免火災與電擊的危害,容許快速的故障排除。⑩⑰⑱⑲經由用電裝備的接地,所建立低阻抗的路徑,能減少人體暴露在危險電壓的威脅,通常這種電壓是因故障而產生的。達成各種接地所需的所有電性連接之導體即構成接地系統,可分爲兩大部分,即埋設於地下的導體及地上的導體,前者稱爲接地電極(Ground Electrode),後者稱爲接地導體(Grounding Conductors),接地導體在於引導電流流入接地電極,再由接地電極散入大地,如圖十六所示。

- ② T. Karlsson, Private Discussion, December 2003.
- M ANSI/IEEE std 81-1983 " IEEE Guide for Measuring Earth Resistivity. Ground Impedance, and Earth Surface Potentials of a Ground System", 1983.
- ② ANSI/IEEE std 81.2-1991 "IEEE Guide for Measurement of Impedance and Safety Characteristics of Large. Extended or Interconnected Grounding Systems", 1991.
- ® IEEE Std 142-1991," IEEE Recommended Practice for Ground-ing of Industrial and Commercial Power Systems". 1991.
- ② 國防部統一通信指揮部,「地線設施與地阻值測試」,(技術通報,第131期,民國87年5月),頁1-7。

▲圖十六 接地電極之接地網與接地棒圖例 ③

一接地的種類描述

接地種類可分:系統接地、設備接地、 避雷接地、信號接地及屛蔽接地,各種接地 的意義及其目的可說明如下:

(一)系統接地(System Grounding)

電力系統中,某一帶電導體之接地稱 爲「系統接地」;如:發電機或變壓器Y繞 組中性點之接地、Δ繞組一角接地、3Φ4W 式輸電線中性線之接地等。系統接地的目 的,在於穩定相電壓及接地故障發生時提供 接地電流迴路,以便保護驅動電驛。系統接 地使大地成爲電路的一部分,只要有迴路形 成,電力系統電流將透過系統接地點流入大 地。此一設計在接地系統故障時,固然是可 達到所期望的保護效果,但在平時則是一種 地電流的汙染(雜散電流及雜散電壓),故規 劃系統接地時應避免平時對地迴路的形成。

二設備接地(Equipment Grounding)

將任何設備或設施不帶電的金屬部分加以接地則稱「設備接地」;例如:各種設備的金屬外殼、配電盤箱體、控制台、鐵欄杆、圍籬、鐵架(塔)等各種管路之接地皆爲設備接地。設備接地的目的,在於確保人員

的安全及保護設備於接地事故或漏電時,使 外殼與人體同電位,並配合系統接地所提供 之迴路,檢測接地電流,驅動斷路器跳脫。 一般設備接地尙具有屛蔽電場干擾及消除靜 電功能,且提供信號接地,故具有多重角 色,非常重要。

(三)避雷接地(Lightening Protection Ground)

為防止自然界直接雷擊,及線路雷電感應突波所造成的破壞,而實行的接地即為「避雷接地」;包括,建築物避雷針系統、架空接地線及線路或設備的避雷器接地。避雷接地主要是提供洩放突波能量於大地,避免突波對人員、設備或建築物的閃絡(Flash Over),故主要目的在於安全防災、系統與設備之保護。通常,避雷接地僅在突波發生時才有作用。

四信號接地(Signal Grounding)

「信號接地」在於提供電子電路的信號,一穩定的參考電位、迴路,以及消除雜訊;例如PC板接地匯流排、IC接地基板(Ground Base)等之接地。信號接地目的在於降低雜訊,但接地點的電位變動則可能引進更多雜訊。

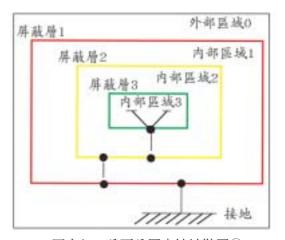
(五)屛蔽接地

利用接地以屏蔽電磁場及防止電流干擾,例如:通信線路屏蔽隔離網的接地、屏蔽變壓器屏蔽層的接地、屏蔽室(Shielded Room)的接地。屏蔽接地主要目的在於降低雜訊干擾及人員安全防護。

二接地技術

一分區分層的接地

室內各用電裝置的接地設計,可依據設施內的屛蔽隔離層之設計,由內至外分


⑩ 吳國祥,設施接地網路協調分析,(桃園:中山科學研究院電子所,民國92年6月)。

層、分區整合,③如圖十七所示。不論各屏 蔽層的隔離效能,其內之接地都必須以相同 的方式來處理,如此可確保接地網路系統之 單純與一致。由圖中可看出,由內到外依序 將各屛蔽層以單獨的接地導線,連結至大 地。就低頻磁場而言,通常採用單點接地; 而高頻系統,其接地通常是就近接地,以避 免接地引線過長而導致明顯的大地阻抗,因 此採取多點接地。因此實際的設施接地裝 置,涌常是單點(低頻系統)與多點(高頻 系統)組合的接地方式。多點接地需依據 MID-STD-188-124所要求的等電位平面。接 地導線不得貫穿分區之屛蔽層,以確保屛蔽 效能不被減損。假如接地導線須貫穿屛蔽層 時,就必須裝設限幅器、濾波器,或其它的 穿孔箝壓、濾波保護裝置。

二土壤爲電流消散媒介物

在設施外部區域的導體,如電力線、信號線與提供自來水、燃料、污水管線等公用管道設備,會成為一潛在的HEMP能量收集器。此時若設施內所建置的裝備為敏感之

▲圖十七 分區分層之接地裝置②

通訊、資訊交換與電腦等電子裝備時,這些 外部區域的導體會等同天線般,攔截HEMP 能量而產生潛在的破壞電壓和雷流,並由設 施的穿孔耦合進入設施內,因而成爲一項特 殊的挑戰。爲了對設施威脅的程度降到最 低,必須在設施進入點裝設箝壓濾波裝置, 以將外部導體所感應的電壓和電流,降至相 等於或低於設施內部重要裝備的損害限值。 此時,由於十壤是一種會將電流消散的電介 質,能有助於消散外部導體所收集、感應的 HEMP能量。爲了有效的利用土壤做爲消散 雷流之媒介物,由外部區域通過設施至內部 屛蔽層的外部導體,可深埋於地表下,但是 仍需審慎的設計。同時,也必須裝設接地電 極系統,以符合HEMP所需之高頻效能接地 裝置。

(三)替代的接地裝置方法

通常國家電氣法規允許電氣安全接地,連接至外部的公用金屬設備管路,如: 冷水幹管。然而當外部的管路是塑膠材質的 情況時,就必須使用法規所指定的「人工製 的」電極,包含接地棒、柵網、接地銅板或 其他的被埋入金屬的構型。每一種人工製的 電極都有其優點與缺點,如表四所示。就 HEMP接地裝置,水平的導線是最佳的選 擇,因爲其具有低脈衝的阻抗值。垂直的接 地棒可以被附加至水平的導線,以獲得適合 於電力安全接地裝置所需的較低、較穩定的 接地電阻。

(四)環形接地

避雷的接地實務,著重於使用埋入地下的水平裸露導線,並環繞建築物,以形成

③ 同註(4)。

③ 同註(4)。

表四	接地電極的類別與其相對的優缺點	(作者整理)
111		(1) 日正性/

類 別	優點	缺點
垂直的接地棒(rods)	垂直的設計。 最容易安裝(特別是在既有設施的四周)。 金屬附件隨時可獲得。能被延伸至地下水 位。	高的衝擊阻抗。 當有靠近地表面的大規模 岩層時, 電高故學期間,在 在電擊期間 步階電壓將會非常大。
水平的柵網(grid)	最小的表面電位梯度。 如果在施工之前已完成,是垂直的裝置。 在岩層會阻礙垂直接地棒使用的區域,能獲 得低的電阻。 能與垂直接地混合使用以穩定電阻的波動變 化。	若垂直接地棒未被使用, 會因土壤的乾燥而發生電 阻波動現象。
接地銅板(plates)	能在有限的範圍內獲得低電阻的接觸。	安裝最困難。
水平的銅導線(wires)	在岩層會阻礙垂直接地棒使用的區域,能獲 得低的電阻,低的衝擊阻抗。 當以星型配置時是優良的RD接地網路。	當土壤乾燥時易於發生電 阻波動的現象。
附屬的電極(公用設備管路、建築物基礎、設於地下的貯存槽)	如果維持電氣連續性,能展現非常低的電 阻。一般而言,有非常低的初期成本(由其 他部分產生)。	在未來的改建時,只有少 部分或完全無法控制。

一種環形的接地系統。各種可能的雷電放電路徑,如朝向地表的導線、鐵塔的柱腳、與建築物的柱子,都必須連接至這種環形的接地。環形接地電極的主要優點,是能提供極低的雷擊脈衝電流與大地間之接觸阻抗。另一優點是在雷擊放電的電流進入土壤之前,可縮短其放電傳輸的距離,因爲電極可以被配置在最靠近雷擊的位置。能符合電氣安全與避雷最低需求的環形接地電極構型,對於長方形與不規則形狀的建築物設計。

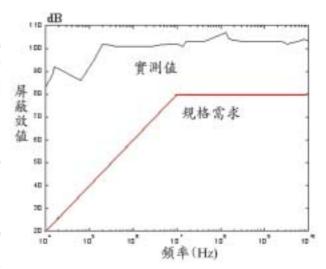
三接地系統間之協調

對於各接地系統是否採共同接地、或是獨立接地,長久以來一直是學者及工程師們爭議的焦點。而共同接地最大的優點即是當發生雷擊時,各接地設備均為等電位,能夠有效降低步階電位及接觸電位,以避免人員的傷亡及設備的損害。但對於精密的電子設備而言,由於電力系統不可能是理想之三相

平衡狀態,電源中性線必定有些許電流,而 中性線的些許電流即可能透過共同接地之路 徑,對精密電子儀器造成嚴重干擾甚至損 壞。另外,當設備外殼積存電荷,或是電力 設備絕緣破壞,均可能經由共同接地路徑, 對電子裝置產生干擾或破壞。相反地,獨立 接地卻能解決精密電子器干擾的問題,但對 於雷擊發生時,卻對地電位差所造成的問題 東手無策。因此,各國對於是否要共同接 地,或要獨立接地,均有不同看法。以我國 爲例,根據建築法規第五節之規定,一般建 築物之接地,如:澼雷接地,丰雷力接地, 電腦設備接地,電話通信接地,和其他水管 接地等均分開。但歐美地區有鑑於分開接地 之雷擊事故仍有增無減,於是改採地線合一 之共同接地方法。爲有效解決爭議問題,可 採取以下的解決方式:

(一)對於無精密電子裝備的地區,其接地

系統採共同接地方式連接。


(二)對於較精密的裝備系統,爲防範受地線干擾,精密電子裝備採獨立接地,其餘接地系統(如:電力系統接地、設備接地及避雷接地等)採共同接地,再使用暫態接地箝制器(Transient Earth Clamp)裝置,將裝備系統地線與避雷接地系統連接,使平時各接地系統分開,發生雷擊時地線接通合一。③

電磁脈衝二次防護工程

前述基本電磁學之理論,以及屛蔽的半經驗公式,進行土建設施鋼筋網的屛蔽效值實驗與分析,就一設施遭受電磁脈衝攻擊時,其天然屛障與鋼筋網僅有一定的屛蔽防護能力,仍無法滿足規範之需求。然而此一分析方式,是假設鋼筋網爲一連續無窮大之平面網,並無任何缺口存在。實際上,任何設施皆具有門、窗、管道與線纜穿入口存在,這會造成設施的屛蔽效值降低。卻為

爲使設施在電磁脈衝的侵襲下仍可安然 運作,因此有必要進行二次防護工程。通常 任何執行電磁脈衝防護工程之團隊,都會建 議在設施內的機敏裝備區,建構防護隔離 室。其內含有金屬屛蔽牆面、電磁脈衝防護 隔離門與窗、接頭面板、箝壓濾波模組、導 波管等防護組件。

電磁脈衝屏蔽防護隔離室的技術牽涉層 面甚廣,從材料的選用評估、組件設計製 作、施工工法品質、測試驗證、維修與監護

▲圖十八 二次防護隔離室屛蔽效值

等均需妥善規劃與執行,其中EMP防護組件 需於系統安裝施工前先行驗證,以確實掌握 整體屛蔽效值。

本院在國防部的支持下,進行防護隔離室研發,所完成的二次防護隔離室,圖量測出的屏蔽效值可滿足規範需求,如圖十八所示。該隔離室的設計,除了考量到防護電磁脈衝的功能外,還考量到耐震與人因工程。同時可依據國軍現有既存設施面積之限制,建構適當之隔離室。除了電磁脈衝防護視窗外,隔離室內各種防護組件皆爲市售商品,其規格與特性則可參考文獻。⑤隔離室之組裝正法與前述之工法大致相同。然而在施工組裝時,若是承商經驗不足,致使防護隔離室接收與驗證測試無法滿足規範之需求,且光是修改之花費將會使得建構成本暴增。⑧

③ 同註③ 。

③ 同註③。

³⁵ 月註(8)。

³⁰ 張衍智等,電磁脈衝二次防護隔離室,(桃園:中山科學研究院電子所,民國93年1月)。

③ 電磁脈衝防護組件型錄,(合豐公司,2003年)。

³⁸ 月註36。

結論

本文運用基本電磁學理論,以及屛蔽的 半經驗公式,進行土建設施鋼筋網的屛蔽效 値分析,其結果是與實驗數據相吻合的。所 進行之焊接與綁接鋼筋網的屛蔽效值實驗, 顯示出兩者之屛蔽效值是約略相同的。據此 可以了解規範所訂定之焊接施工,是爲了使 鋼筋網結構形成一低接地阻抗,及連續的電 氣迴圈。然而,爲了確保鋼筋網所形成電氣 迴圈的可靠度,本文仍強烈建議國軍各 C*ISR設施之鋼筋網以全焊接方式施工。

同時,由分析與實驗的結果顯現出:鋼筋網僅對低頻磁場具有一定的屏蔽效能,而無法屏蔽高頻段之電磁波。因此,對於設施之全頻段電磁波屏蔽防護,必須是經由不同防護方法來達成的,比如說:善用設施之自然環境,地下化設施之屏蔽效能就是比地面上設施來的好。地下化設施埋置在溼地是比埋置在乾地者,約多出10 dB之屏蔽效值,因此種植綠色植物,不僅可美化營區,也可保持泥土濕潤,增進屛蔽電磁防護效能。

由於不同的設施結構,如金屬架設、微波鐵塔、電力或通訊傳輸線,在不同的接地形式時,可能產生不同的電磁脈衝感應突波電壓或電流。本文也提供接地系統的觀念,以及許多接地系統改善的可行之道。此外,在充分了解接地系統觀念的情況下,才有辦法落實相關搭接措施,確保接地安全。

其實,在電磁脈衝防護的作法上,就是 多層防護的觀念。可將建築物本身的外層鋼 筋結構視爲法拉第籠,並善加利用天然環境,作爲屏蔽的最外層保護,再於機敏裝備 區進行電磁脈衝防護二次工程,以確保設施 的屏蔽防護。然後再利用突波保護器,來作 進一步的限壓及濾波。最後確實做好接地及 搭接工作,便能有效抑制突波、降低突波損 害而達到防護目的。所以說,接地及搭接的 工作是非常重要的。

依據現已勘查過的軍事設施現況,爲達 到有效防護之目的,有下列建議:

- (一)改善現有之接地網路系統。
- (二)善加利用天然之屛障,如:覆土層。
- (三)請軍事設施使用人依其任務需求,將機敏裝備分類並集中,以進行隔離室建構之二次防護工程。

四電力系統、雷達、通信系統需加裝突 波保護器。

(五)將置放於隔離室內之機敏裝備,加裝 突波保護器與濾波器。

(六)請軍事設施使用人建構備援裝備。

作者簡介

張衍智博士,成功大學航空工程學系、臺灣大學應用力學研究所碩士、臺灣大學應用力學研究所博士。曾任助理研究員、副研究員。現任中山科學研究院電子系統所電力電子組副研究員。