

提要

- 一、武器系統之性能係提升武裝部隊戰鬥能力與效率之關鍵因素,而武器系統之評選、部署與運用,端賴高度專業知識與經驗,向來均為國防戰略之重要議題。考量系統多元屬性與作戰需求,評選最理想之武器系統,無疑是一項多準則決策議題(multiple criteria decision-making, MCDM)。
- 二、本研究提出地面作戰主力戰車整合性武器系統評估流程,乃植基於TOPSIS,透過修正式德爾菲法,藉由專家群體選定系統評選指標,並結合Entropy method 客觀權重衡量之方法,評選出最理想之主力戰車武器系統。
- 三、實例驗證結果顯示,本研究提出整合性評估流程之評選結果,與近期學者應用灰 色系統進行評選之結果一致,且考量因素涵蓋之層面更為周延,顯見本研究評估 流程之可行性與可應用程度。

關鍵詞:武器系統、理想解類似度偏好順序評估法、修正式德爾菲法、熵值法

壹、前言

「孫子曰:兵者,國之大事,死生之地, 存亡之道,不可不察也。」,軍事力量乃國家 最重要國力之一,而武裝部隊之運用則為軍 事威懾力量之具體展現。現代戰場上,戰鬥 載具震懾敵軍之力量,不僅來自其機動力,更 包含其高度防禦保存力與強大之火力。由作 戰型態之觀點視之,無論從傳統戰爭至維和 任務(peace-keeping operations),地面作戰 部隊強大火力之發揮、迅速而確實地摧毀目 標,端賴複合型式武器系統之有效運作。無 疑地,主力戰車即是地面作戰中最具威脅與 震懾力之武器系統之一。

各式戰鬥任務中,高性能武器系統係提 升武裝部隊戰鬥能力與效率之關鍵因素。新 式武器系統之選取與部署、運用,由於須仰 賴高度專業知識與經驗,不僅相當耗時,且 為十分艱難之過程,是故,武器系統之選用, 向來為國防上相當重要之戰略議題。

自諸多備選方案中,考量作戰實需,選取最佳之武器系統,即是一種多準則決策 (multiple criteria decision-making, MCDM) 問題。為適切而有效地進行評估,決策者需 仰賴大量資料與考量因素,一同納入分析與 評核過程²。武器系統之選用,係在諸多因應 作戰實需之準則下,自數個可行方案中評選 適用者,然而各項評選準則之重要性並不一 定相等,必須確認各評選準則之重要程度, 賦予各項準則更為客觀之權重衡量。

本研究目的係運用定量多準則評估方法,納入武器系統之重要性能參數,並整合客觀權重衡量方式,以評選最理想之武器系統。現以三型陸軍地面作戰主力戰車之武器系統為研究對象,研究範圍設定如次:

- 一、三型備選之主力戰車分別具備不同 之武器系統,並且其武器系統效能可由類別 綜合指標作為評選之依據。
- 二、武器系統類別綜合指標細分為諸項 績效指標,並賦予標準化之數值,作為運算 之基準。

本研究建立整合性武器系統評估流程,應用修正式德爾菲法,參酌專家建議,以獲得武器系統效能指標作為評選準則,結合Entropy method³客觀熵值權重衡量,對評選準則賦予客觀權重值,將各項準則之重要程度納入系統評選流程,最終評選則運用理

^{1 《}孫子兵法》〈形〉篇。

Z. Ayag & R. G. Özdemir (2006). A fuzzy AHP approach to evaluating machine tool alternatives. Journal of Intelligent Manufacturing, 17. p.179–190.

³ C. E. Shanon and W. Weaver (1949). The mechanical theory of communication. University of Illions Press, Urbana.

想解類似度偏好順序評估法(the technique for order preference by similarity to ideal solution, TOPSIS⁴),作為系統評選之方法,獲得最佳武器系統方案。

貳、評選方法簡介

武器系統威懾力之核心,在其以複合型式所展現之火力與系統效能,進而能迅速且徹底地摧毀敵目標。在武器系統評估上,曾有學者運用模糊德爾菲法。與層級分析法。進行主力戰車之績效評估,而在作戰效能上,建構打擊力評估模型。與模糊整合評估模型。等亦曾受學者採用。

本研究首先以系統評選方法與權重衡量 方法等兩大領域為主體,回顧相關文獻,並 結合本研究整合性流程評估之目的,依其核 心概念區分如後。

一、系統評選方法

在多變環境中,要正確執行評選工作, 找到最佳或最適之系統,實質上是一項充 滿挑戰之作業[®]。素來被廣泛應用,良好之系 統評選方法包含了評分法(scoring)、排序 法(ranking)、數學最佳化法(mathematical optimization),以及多準則決策方法 (MCDM)等。

然而,評分法、排序法與數學最佳化等方法,應用於現實環境之系統評選,仍有些許使用上之限制,例如:評分法或排序法之操作步驟相當簡單,但是,卻也因為如此,導致無法完整地反映決策者之觀點;而數學最佳化法亦常因其複雜之數學模型影響,使其他決策者或管理者,並不容易理解其意義等,這些限制均應納入評選工具之考量,以有效執行系統評選作業。

定量多準則評估方法(quantitative

⁴ C. L. Hwang & K. Yoon (1981). Multiple attribute decision making: Methods and applications, A State of the Art Survey. Springer-Verlag.p.192-206.

⁵ Y. P. Xinmou Ma & J. Ma (2008). Performances Evaluation Study of Main Battle Tank Based on Fuzzy Delphi Method. Gun Launch & Control Journal. p.86-89.

⁶ L. Chang & Y. P. Xinmou Ma (2007). Based on AHP Methodology and Expert Mark Main Battle Tank Performance Synthesis Evaluation. Mechanical Management and Development. p.4-6.

⁷ L. Luo, X. Zhu, B. Jiang (2003). Combat Capability Evaluation Model of Tank Weapon System. Fire Control & Command Control. p.68-70.

⁸ B. Jiang, L. Luo, Y. Xuan (2003). Combat Effectiveness Analysis of Main Battle Tank and Fuzzy Integrate Evaluation. Fire Control & Command Control. p.39-41.

⁹ 同註釋7。

multi-criteria evaluation methods),則是依量化之技巧,衡量每一方案在各評估準則下之績效值,再運用數理分析方法,評估其優劣關係,找到較佳之計畫或方案。本研究將運用「理想解類似度偏好順序評估法(TOPSIS)」,作為有效評估工具,評選出最適之武器系統。

(一) TOPSIS評估法概念

TOPSIS評估法假設每一評估準則具「單調遞增(monotony increasing)」或「單調遞減(monotony decreasing)」之特性,當評估準則屬效益(最大化)準則時,績效值愈大,則效用偏好愈大,反之,若評估準則屬成本(最小化)準則時,績效值愈大,則效用偏好愈小。

TOPSIS之運算概念,首先分別定義其評估準則之最優與最劣值為正理想解(positive ideal solution)與負理想解(negative ideal solution),依照「鄰近最優解、遠離最劣解」之邏輯原則,找出最佳方案。

(二) TOPSIS評估法運算流程

TOPSIS評估法區分六項主要運算流程¹⁰, 分別為:

- 1. 計算標準化之評估值
- 2. 計算加權之標準化評估值
- 3. 定義正理想解A*與負理想解A-
- 4. 計算各備選方案分別相對正理想解與負理想解之距離

- 5. 計算各備選方案對理想解之相對近似度
- 6. 依其相對近似度排列各備選方案之優劣 順序

二、權重衡量方法

(一)客觀權重衡量

在多準則決策模型中,各項評估準則依 其重要程度之不同,決策者進行系統評選 前,則必須先行了解該評估準則之相對重要 程度,亦即其相對之權重值。

系統評選經常用以計算權重之方法,包含「加權最小平方法(Weighted least square method)」、「特徵向量法(Eigenvector method)」、「層級分析法(AHP)」與「熵值法(Entropy method)」等。近年,熵已廣泛應用於熱力學、影像傳輸、經濟學等領域,本研究實施武器系統評選流程,將應用「熵值法(Entropy method)」客觀權重衡量方法,以賦予各項評估準則相對之權重。

(二) 熵值法 (Entropy method)

熵(分一)原指物理現象,常用於不確定資訊量之衡量,以隨機機率分布之型式描述,其值愈大,代表不確定性愈高,則該屬性愈具參考性,亦即權重值愈大。常見之Entropy method,以其計算之方式區分,計有Shannon、Yager與Minimax disparity method等三種估算方式,其中Shannon之模型屬非線性,Minimax disparity method屬線性模型,而Yager則依照模型參數,決定其線性與否。

本研究採Shannon & Weaver (1949)¹¹提出之熵值法進行各項評估準則之權重計算, 其演算步驟於本文「參、研究方法」所撰「二、 準則權重計算—Entropy method熵值權重法」 詳述。

三、修正式德爾菲法 (Modified Delphi method)

(一) 德爾菲法 (Delphi method)

德爾菲法(Delphi method)係於1960年代美國蘭德公司(Rand Corporation)之 O. Helmer等人所發展出來之長期預測技術,屬於直覺預測方法(intuitive forecasting method)之一。德爾菲法取名自古希臘阿波羅神廟址Delphi,乃取其權威與信望之意涵。其後,德爾菲法逐漸推廣至其他領域,並廣泛應用於高階層決策問題¹²。

(二)修正式德爾菲法(Modified Delphi method)

德爾菲法具有將團體溝通程序結構化 之特性,使溝通過程更有效率,使一群各自 的決策者提供之專家意見形成整體性,有效 率地解決複雜問題,依其運用可分為三種型式:「傳統德爾菲法(Conventional Delphi)」、「即時德爾菲法(Real-time Delphi)」及「政策德爾菲法(Policy Delphi)」。

然而,由於德爾菲法之進行,經常因問卷之多次往返耗時,且回收率容易偏低,因此發展出「修正式德爾菲法(Modified Delphi method)」,亦即省略開放式問卷施測之原始步驟,改由問卷提問者先行參考大量相關文獻,將其原始步驟修改後,直接發展出結構式問卷,作為第一回合之專家問卷調查¹³。如此一來,不僅可節約冗長之問卷施問期程,並可有效統合出專家群對於該結構性問題所提出更為具體之觀點¹⁴,俾更有效率進行後續回合之問卷施問。

參、研究方法

本研究自多項武器系統績效評估準則中,運用修正式德爾菲法,匯集專家意見後, 評列出關鍵評估準則,接續遍蒐近期探究武

- 11 同註釋3。
- 12 J. Pill (1971). The Delphi Method: Substance, context, a critique and an annotated bibligraphy. Socio-Econ. Planning Science. p.57-71.
- 13 蘇欣儀,〈電視媒體品牌權益衡量指標之建構〉(銘傳大學,2002)。
- 14 袁建中、王建彬、陳梧桐,〈臺灣半導體工業未來發展預測〉《東海管理評論》,第7卷第1期,西元 2005年,頁1-38。

陳定銘,〈建構德菲法〉,國立政治大學第三部門研究中心2005年質性方法研習營課程內容。 宋文娟,〈一種質量並重的研究法-德菲法在醫務管理學研究領域之應用〉《醫務管理期刊》,第2卷 第2期,西元2001年,頁11-20。 器系統評選文獻,綜合相關準則績效值,並 應用本研究方法:整合TOPSIS與客觀權重 衡量之評估流程,進行地面作戰主力戰車評 選。

一、武器系統評選一TOPSIS評估法

本研究運用「理想解類似度偏好順序評估法(TOPSIS)」進行武器系統之多準則評估流程,演算步驟如後:

步驟一:依原始資料建構評估矩陣D。

考慮n個評估準則, C_j (j=1,2,...,n),m個備選方案 A_i (i=1,2,...,m),依其第m個方案在第n個準則下之績效值 x_{mn} ,建構原始矩陣:

$$D = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & \cdots & x_{mn} \end{bmatrix}_{m \times n}$$
(1)

步驟二:由原始矩陣建立標準化之評估 矩陣R。

原始評估準則中,包含望大屬性之效益 準則(benefit criteria)與望小屬性之成本準 則(cost criteria),為使其具有相同之方向性 (同為望大屬性或同為望小屬性),TOPSIS 評估法採用統計之總和標準化法,先將原始 矩陣予以標準化,以有效進行評估:

$$R = \left[r_{ij}\right], r_{ij} = \frac{x_{ij}}{\sqrt{\sum_{i=1}^{m} x_{ij}^2}}$$
(2)

其中,

$$i = 1, 2, \dots, m; j = 1, 2, \dots, n$$
 (3)

步驟三:考量評估準則之重要程度,建 立加權評估矩陣V。

$$V = \left[v_{ij} \right]_{m \times n} \tag{4}$$

其中,

$$v_{ij} = w_j r_{ij}, \forall i, j \tag{5}$$

w_j為各評估準則依其重要程度計算,所 得之權重值。

步驟四:選定正理想解A*與負理想解A。

正理想解與負理想解均為n維空間之單一樣本點,分別由n個評估準則之最佳與最劣績效值組成,正理想解即最大化效益準則之最大值與最小化成本準則之最小值,反之,負理想解即最大化效益準則之最小值與最小化成本準則之最大值,定義如後:

$$A^* = \left\{ \left(\max_i v_{ij} \mid j \in C_b \right), \left(\min_i v_{ij} \mid j \in C_c \right) \right\}$$
$$= \left\{ v_j^* \mid j = 1, 2, \dots, n \right\}$$
(6)

$$A^{-} = \left\{ \left(\min_{i} v_{ij} \mid j \in C_{b} \right), \left(\max_{i} v_{ij} \mid j \in C_{c} \right) \right\}$$

$$= \left\{ v_{j}^{-} \mid j = 1, 2, \dots, n \right\}$$
(7)

其中,

$$C_b = \{C_j | j = 1, 2, \dots, n_1 \}$$
 (8)

$$C_c = \{C_j | j = 1, 2, \dots, n_2\}$$
 (9)

 C_b 與 C_c 為 n_1 與 n_2 個最大化效益準則與最小化成本準則所構成之集合,同時滿足 n_1 + n_2 =n。

步驟五:計算計畫分離度 (separation) S^* 與 S^- 。

m項方案至正理想解與負理想解之 距離,可以n維歐式距離(n-dimensional Euclidean distance)表示,稱之為計畫分離 度,定義如後:

$$S_i^* = \sqrt{\sum_{j=1}^n (v_{ij} - v_j^*)^2}, \forall i$$
 (10)

$$S_{i}^{-} = \sqrt{\sum_{j=1}^{n} \left(v_{ij} - v_{j}^{-}\right)^{2}}, \forall i$$
(11)

步驟六:計算相對近似度(relative closeness)。

該指標為單一備選方案距正理想解之距 離與距正、負理想解總路徑距離之比值,其值 愈小,代表備選方案在該路徑中相對愈鄰近 正理想解,表示如後:

$$RC_i^* = \frac{S_i^*}{S_i^* + S_i^-}, \forall i$$
 (12)

其中,

$$0 \le RC_i^* \le 1, \forall i \tag{13}$$

若以其方案距負理想解之距離與其距 正、負理想解總路徑距離之比值計算,則其值 愈大,代表備選方案在該路徑中相對愈遠離 負理想解,表示如後:

$$RC_{i}^{-} = \frac{S_{i}^{-}}{S_{i}^{*} + S_{i}^{-}}, \forall i$$
 (14)

其中,

$$0 \le RC_i^- \le 1, \forall i \tag{15}$$

步驟七:依相對近似度,列序各備選方案 之優劣順序。

實施*m*個備選方案優劣排序,若其相對 近似度採(12)式之定義,考量接近正理想解 之程度,則其列序原則為:

$$A_{i} \succ A_{i'}$$

$$iff$$

$$RC_{i}^{*} \leq RC_{i'}^{*}, \forall i, i'; i \neq i'$$
(16)

若其相對近似度採(14)式之定義,考量遠離負理想解之程度,則其列序原則為:

$$A_{i} \succ A_{i'}$$

$$iff$$

$$RC_{i}^{-} \ge RC_{i'}^{-}, \forall i, i'; i \ne i'$$
(17)

二、準則權重計算一Entropy method熵值法

本研究以客觀之觀點,評估武器系統 績效值,故運用客觀權重演算-熵值權重法 (Entropy method)以計算各項評估準則之權 重,演算步驟如後:

步驟一:依原始資料建構評估矩陣D。

考慮n個評估準則,Cj (j=1,2,...,n),m個 備選方案 A_i (i=1,2,...,m),依其第m個方案在 第n個準則下之績效值 x_{mn} ,建構原始矩陣:

$$D = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & \cdots & x_{mn} \end{bmatrix}_{m \times n}$$
(18)

步驟二:建構標準化原始評估矩陣。

運用矩陣標準化,歸一各項準則之不同 評估屬性,以使各準則兼具客觀比較之基準, 求取其準則單位之一致性與可比較性,標準 化之評估矩陣如後:

$$R = [r_{ij}], r_{ij} = \frac{x_{ij}}{\sqrt{\sum_{i=1}^{m} x_{ij}^{2}}}$$
(19)

其中,

$$i = 1, 2, \dots, m$$

 $j = 1, 2, \dots, n$ (20)

步驟三:計算各評估準則之熵值。

第j個準則之Entropy method權重值以 e_j 表示之:

$$e_{j} = -\frac{1}{\ln m} \sum_{i=1}^{m} r_{ij} \ln r_{ij}$$
 (21)

其中,

$$\forall \frac{1}{\ln m} \in \text{const.}, \ \mathbf{9} \ 0 \le e_j \le 1 \tag{22}$$

$$i = 1, 2, \dots, m$$

 $j = 1, 2, \dots, n$ (23)

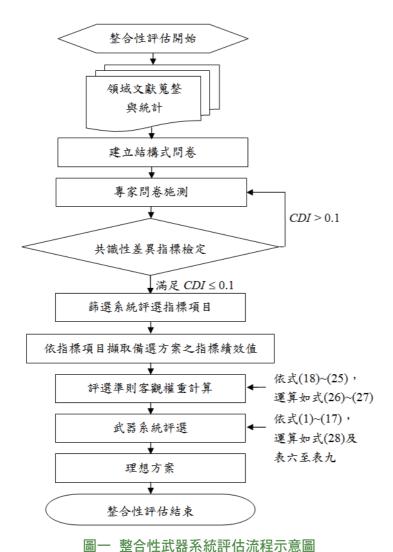
步驟四:計算各評估準則之權重w,。

$$w_{j} = \frac{1 - e_{j}}{\sum_{j=1}^{n} 1 - e_{j}}$$
(24)

其中,

$$i = 1, 2, \dots, m$$

 $j = 1, 2, \dots, n$ (25)


三、武器系統評選作業流程

上揭式(1)至式(17)係「理想解類似度偏好順序評估法(TOPSIS)」之運算程序,式(18)至式(25)係「熵值法(Entropy method)」之運算程序,其於本研究整合性武器系統評估所應用之運算流程與使用算式,詳如圖一所示。

肆、實例驗證

決定系統評估之準則,運用修正式德爾 菲法,可使專家群對預測問題判斷結果之參 考性更高,而專家對於預測問題必須具備相 關且足夠之專業知識與實務經驗,是故,選 定合適之專家即為德爾菲法之重要關鍵¹⁵,

¹⁵ 管倖生等18人,《設計研究方法》(全華科技圖書股份有限公司,西元2006年)。

(資料來源:本研究繪製)

可有效使獲取之資料更貼近真實狀況。

一、專家遴選標準與專家群組成

「專家」係指對該主題與領域極為熟

悉,擁有第一手資訊之群體或個人, 且具有下列三項特質:1、專家具一般 性廣博知識背景;2、專家於參與討 論之特定領域中,具備相當深入之知 識基礎;3、專家之行動可顯著影響 未來該主題或領域之發展方向¹⁶。

本研究遴選專家群,係採用非 機率抽樣之立意抽樣方法,專家群 均為現階中、高階軍事管理階層人員 與武器系統學者專家,在本研究主題 領域具備高度之專業素養,與豐富之 實務經驗,由其對各項指標初步進 行重要性評估,以建立本研究武器 系統績效評估準則。本研究專家群 包含國防大學系統工程教授乙員、深 造教育教學與研究教官乙員、野戰 部隊中階管理軍官2員,以及軍種司 令部高階將領乙員等,共計5員。專 家問卷調查結果分析如後。

(一)第一階段專家問卷分析

遍採近期有關主力戰車武器系統評選之文獻¹⁷,其綜合指標概分為「打擊力」、「系統作戰彈性」與「偵察力」等6大重要類別,計20項績效指標,本研究以此評選準則,作為修正式德爾菲法結構式專家

¹⁶ 余序江、許志義、陳澤義,《科技管理導論:科技預測與規劃》(五南圖書出版股份有限公司,西元2004年)。

¹⁷ L. Zhang, Y. Dong, M. Lin, G. Fan (2011). Integrated Evaluation on Weapon System of Main Battle Tank Based on Topsis Method. International Conference on Computational and Information Sciences. p.1037-1039.

問卷之問項,如表一。

為檢核專家群之共識性程度,本研究採用「共識性差異指標 (consensus deviation index, CDI)」作為評判標準,並設定共識性差異之門檻值為CDI ≤ 0.1 。

第一階段專家問卷調查,採用[0,5]尺度 衡量,共計發放5份問卷,回收5份,回收率為 100%。經共識性檢定結果,原始20項績效指標中,共識性差異指標滿足CDI≤0.1者,共計8項指標。依其平均值排序後,詳如表二。

為強化本研究評估準則之重要程度與共 識性,須滿足兩項條件:1、專家群對單一準 則評分之平均值 $\overline{X}_{\mu} \geq 4$,以示其重要程度; 2、該調查問項之CDI值須滿足 $CDI_{\mu} \leq 0.1$,

表一 武器系統績效指標18

綜合類別指標	武器系統績效指標(評選準則)
	戦車主砲口徑
	主砲彈藥攜行量(裝備採全員全裝載,同時可攜行之主砲彈藥量)
打擊力	射擊精準度
	首擊率(自發現敵目標後,較敵先完成射擊準備,開始第一次射擊)
	主砲射程
	射控系統型式
系統作戰彈性	射控系統靈敏度(系統操作至完成反應所需時間)
	砲塔迴旋速率(砲塔迴旋轉向,以變化射擊方位之速率)
	夜視距離(主力戰車搭載夜視裝備之有效夜偵視距)
偵察力	敵我識別精確性(以戰車系統為主 [,] 正確進行敵我識別之能力)
	敵我識別迅速性(以戰車系統為主 [,] 快速進行敵我識別之能力)
	通訊能力
作戰指揮管制	全球衛星定位系統
	自動化電子數位地圖
	裝甲防禦力(複合裝甲能抵禦敵砲火之能力)
戰場存活力	危險預警力(能顯示遭敵鎖定或其他立即性威脅之能力)
	電能操作時間(不使用燃油,僅依賴電力仍可操作之時間)
	系統可靠度(系統可精確執行,並完成預期功能之程度)
戰場配適度	系統可用度(使用者在學習操作、輸入/出、分析、解讀資料所需花費努力之程度)
	環境配適度(背景迷彩融合度、戰車型式對環境之適用性)

18 同註17。

武器系統績效指標	專家1	專家2	專家3	專家4	專家5	平均值	標準差	CDI*
射撃精準度	5	5	5	5	5	5.0	0.00	0.00
射控系統靈敏度	5	5	5	5	5	5.0	0.00	0.00
首擊率	4	5	5	5	5	4.8	0.45	0.09
敵我識別精確性	5	5	5	4	5	4.8	0.45	0.09
系統可靠度	5	5	5	5	4	4.8	0.45	0.09
通訊能力	5	4	4	5	5	4.6	0.55	0.12
危險預警力	5	5	5	4	4	4.6	0.55	0.12
砲塔迴旋速率	4	5	5	4	4	4.4	0.55	0.12
敵我識別迅速性	4	5	5	4	4	4.4	0.55	0.12
全球衛星定位系統	4	5	5	4	4	4.4	0.55	0.12
裝甲防禦力	4	4	4	5	4	4.2	0.45	0.11
系統可用度	4	4	4	5	4	4.2	0.45	0.11
夜視距離	4	4	4	4	4	4.0	0.00	0.00
自動化電子數位地圖	4	4	4	4	4	4.0	0.00	0.00
電能操作時間	4	4	4	4	4	4.0	0.00	0.00
主砲彈藥攜行量	4	4	4	4	3	3.8	0.45	0.12
射控系統型式	4	4	4	3	4	3.8	0.45	0.12
戰車主砲口徑	3	4	4	4	3	3.6	0.55	0.15
主砲射程	3	4	4	4	3	3.6	0.55	0.15
環境配適度	3	4	4	4	3	3.6	0.55	0.15
C								

表二 評估準則第一次專家問卷評分與共識性檢定結果

$$_{1.*}CDI_{jt} = \frac{S_{jt}}{\max\left\{\overline{X}_{jt}\right\}}, \forall j, t$$
,其中, \overline{X}_{jt} 為第t次問卷之每位專家對第j準則評分之平均數,

 S_{jt} 為第t次問卷之每位專家對第j準則評分之標準差。

2. 本研究整理。

表示該問項已達專家共識。同時滿足上揭兩 項條件之調查問項,則納入本研究評估準則, 執行武器系統評選。

依第一次問卷調查結果,設計本研究第 二次修正式德爾菲法調查問卷,並要求專 家,對每一問項之評分 x_{jt} ,若不滿足 $\overline{X}_{jt} - S_{jt} \le x_{jt} \le \overline{X}_{jt} + S_{jt}$ 時,應提出詳細理 由,俾供其他專家參酌,本次調查問卷續採 [0,5]之衡量尺度。

(二)第二階段專家問卷分析

本階段專家問卷調查,共計發放5份問卷,回收5份,回收率為100%。再次經共識性檢定結果,原始20項績效指標中,專家評分之平均值 $\overline{X}_{JI} \geq 4.5$,且共識性差異指標滿足

武器系統績效指標	專家1	專家2	專家3	專家4	專家5	平均值	標準差	CDI*
射擊精準度	5	5	5	5	5	5.0	0.00	0.00
射控系統靈敏度	5	5	5	5	5	5.0	0.00	0.00
首擊率	4	5	5	5	5	4.8	0.45	0.09
敵我識別精確性	5	5	5	4	5	4.8	0.45	0.09
系統可靠度	5	5	5	5	4	4.8	0.45	0.09
敵我識別迅速性	5	5	5	4	5	4.8	0.45	0.09
全球衛星定位系統	5	5	5	4	5	4.8	0.45	0.09
危險預警力	5	5	5	5	4	4.8	0.45	0.09
系統可用度	5	5	4	5	5	4.8	0.45	0.09
砲塔迴旋速率	4	5	5	5	5	4.8	0.45	0.09
裝甲防禦力	4	5	5	5	5	4.8	0.45	0.09
通訊能力	5	4	5	5	5	4.8	0.45	0.09
主砲射程	4	5	5	4	5	4.6	0.55	0.12
射控系統型式	4	4	5	4	4	4.2	0.45	0.11
主砲彈藥攜行量	4	4	4	4	5	4.2	0.45	0.11
自動化電子數位地圖	4	4	4	5	4	4.2	0.45	0.11
環境配適性	4	4	4	4	3	3.8	0.45	0.12
戰車主砲口徑	4	3	4	3	4	3.6	0.55	0.15
夜視距離	4	4	3	4	3	3.6	0.55	0.15
電能操作時間	4	4	4	3	3	3.6	0.55	0.15
本研究整理	本研究整理							

表三 評估準則第二次專家問卷評分與共識性檢定結果

 $\varepsilon \leq 0.1$ 者,共計12項指標,詳如表三。

二、整合式武器系統評估流程演算步驟

(一)評選準則與績效值

蒐整A、B、C等三型配備不同武器系統之主力戰車¹⁹,其績效指標與績效值詳如表四。

本研究運用修正式德爾菲法,藉專家群

專業評分與共識性檢定之結果,考量滿足單一準則經專家群評分之平均值 $\overline{X}_{ji} \geq 4$,且該調查問項之CDI值須滿足 $CDI_{ji} \leq 0.1$ 等兩項條件,本研究選定武器系統評選準則計「射擊精準度」至「通訊能力」等12項指標(表三),結合表四,擷取本研究武器系統評選指標績效值,詳如表五。

19 J. Yin, Z. Wang, J. Xue (2008). The Gray Method of Integrated Performance Evaluation of The Weapon System of One Kind of Modern Main Battle Tank. Ordnance Industry Automation. p.15-17.

武器系統績效指標	A型	B型	C型	
戰車主砲口徑	0.750	0.750	0.750	
主砲彈藥攜行量	0.750	0.750	0.750	
射擊精準度	0.625	0.625	0.500	
首擊率	0.500	0.625	0.750	
主砲射程	0.625	0.625	0.625	
射控系統型式	0.625	0.750	0.500	
射控系統靈敏度	0.500	0.500	0.500	
砲塔迴旋速率	0.625	0.625	0.625	
夜視距離	0.625	0.750	0.625	
敵我識別精確性	0.500	0.500	0.500	
敵我識別迅速性	0.625	0.625	0.625	
通訊能力	0.625	0.625	0.500	
全球衛星定位系統	0.500	0.500	0.250	
自動化電子數位地圖	0.625	0.625	0.500	
裝甲防禦力	0.625	0.625	0.500	
危險預警力	0.500	0.625	0.500	
電能操作時間	0.500	0.625	0.500	
系統可靠度	0.625	0.500	0.500	
系統可用度	0.625	0.750	0.625	
環境配適度	0.500	0.625	0.500	
戰車主砲口徑	0.625	0.625	0.625	

表四 三型主力戰車武器系統績效值

(二)評選準則客觀權重計算

步驟一:建構原始評估矩陣D。

依現有12項評估準則 C_j (j=1,2,...,12),3型 主力戰車 A_i (i=1,2,3),則其第m個方案在第n個準則下之績效值為 x_{mn} ,建構原始評估矩陣 如下:

$$D = \begin{bmatrix} .625 & .5 & .5 & .5 & .625 & .625 \\ .625 & .5 & .625 & .5 & .5 & .625 \\ .5 & .5 & .75 & .5 & .5 & .625 \end{bmatrix}$$

$$.5 \quad .5 \quad .625 \quad .625 \quad .625 \quad .625$$

$$.5 \quad .625 \quad .75 \quad .625 \quad .625 \quad .625$$

$$.25 \quad .5 \quad .625 \quad .625 \quad .5 \quad .5 \end{bmatrix}_{3\times 12}$$

$$(26)$$

^{1.}註:上表所列各項數值係經標準化之武器系統績效值。

^{2.}本研究整理

武器系統績效指標	A型	B型	C型
射擊精準度	0.625	0.625	0.500
射控系統靈敏度	0.500	0.500	0.500
首擊率	0.500	0.625	0.750
敵我識別精確性	0.500	0.500	0.500
系統可靠度	0.625	0.500	0.500
敵我識別迅速性	0.625	0.625	0.625
全球衛星定位系統	0.500	0.500	0.250
危險預警力	0.500	0.625	0.500
系統可用度	0.625	0.750	0.625
砲塔迴旋速率	0.625	0.625	0.625
裝甲防禦力	0.625	0.625	0.500
通訊能力	0.625	0.625	0.500
本研究整理			

表五 本研究武器系統評選準則績效值

步驟二:建構標準化原始評估矩陣R。

運用(19)至(20)式,歸一化(26)式之績效 值,建構標準化原始評估矩陣R:

$$R = \begin{bmatrix} .6155 & .5774 & .4558 & .5774 & .6623 & .5774 \\ .6155 & .5774 & .5698 & .5774 & .5298 & .5774 \\ .4924 & .5774 & .6838 & .5774 & .5298 & .5774 & (27) \\ .6667 & .5298 & .5392 & .5774 & .6155 & .6155 \\ .6667 & .6623 & .6470 & .5774 & .6155 & .6155 \\ .3333 & .5298 & .5392 & .5774 & .4924 & .4924 \end{bmatrix}_{3\times12}$$

步驟三:計算各評估準則之熵值。

運用(21)至(23)式,計算(27)式中各項評估準則之Entropy method權重值,第j項準則之Entropy值以 e_j 表示:

 e_{j} =(.8466, .8660, .8543, .8660, .8611, .8660, .8254, .8611, .8627, .8660, .8613, .8613)

步驟四:計算各評估準則之權重w_j。 運用(24)至(25)式,計算各準則之權重值w_j: w_j=(.0901, .0787, .0856, .0787, .0816, .0787, .1026, .0816, .0806, .0787, .0815, .0815)

(三)武器系統評選

步驟一: 依原始資料建構原始評估矩陣 D,如(26)式。

步驟二:由原始評估矩陣建立標準化之 評估矩陣*R*。

步驟三:考量評估準則之重要程度,建 立加權評估矩陣V。

依本章第二節之(二)評選準則客觀權重計算之步驟四,計算所得 w_i 值,運用(4)至(5)式建立加權評估矩陣V:

$$V = \begin{bmatrix} v_{ij} \end{bmatrix}_{3 \times 12} = \begin{bmatrix} w_j r_{ij} \end{bmatrix}_{3 \times 12}$$

$$= \begin{bmatrix} .0555 & .0454 & .0390 & .0454 & .0540 & .0454 \\ .0555 & .0454 & .0488 & .0454 & .0432 & .0454 & (28) \\ .0444 & .0454 & .0585 & .0454 & .0432 & .0454 \end{bmatrix}$$

$$.0684 & .0432 & .0435 & .0454 & .0502 & .0502 \\ .0684 & .0540 & .0521 & .0454 & .0502 & .0502 \\ .0342 & .0432 & .0435 & .0454 & .0401 & .0401 \end{bmatrix}_{3 \times 12}$$

步驟四:選定正理想解 A^* 與負理想解 A^- 。

本研究係評估武器系統各績效指標之績效值,均屬「效益準則」,其正理想解即最大化效益準則之最大值,負理想解為最大化效益準則之最小值,分別為:

 A^* =(.0555, .0454, .0585, .0454, .0540, .0454, .0684, .0540, .0521, .0454, .0502, .0502)

A=(.0444, .0454, .0390, .0454, .0432, .0454, .0342, .0454, .0342, .0435, .0454, .0401, .0401)

步驟五:計算計畫分離度 (separation) S^* 與 S^- 。

A、B、C等三型主力戰車武器系統之計畫 分離度,依(10)與(11)式計算如表六。

表六 三型主力戰車武器系統計畫分離度

區分	A型	B型	C型
S*	.0239	.0146	.0425
S⁻	.0401	.0422	.0195
本研究整理			

步驟六:計算相對近似度(relative closeness)。

依(12)與(14)式,納入各型武器系統計畫 分離度,分別計算其相對近似度如表七。

表七 三型主力戰車武器系統相對近似度

區分	A型	B型	C型		
RC*	.3736	.2565	.6852		
RC⁻	.6264	.7435	.3148		
本研究整理					

步驟七:依相對近似度,列序各備選方案 之優劣順序。

若以(16)式為列序原則,按各備選方案與 正理想解之計畫分離度與相對近似度觀之, RC*值愈小,則表示其愈近似於正理想解, 該方案愈優於其他備選方案。評選結果如表 八。

表八 三型主力戰車武器系統優劣偏好順序

區分	A型	B型	C型
RC*	.3736	.2565	.6852
偏好順序	2	1	3

若以 (17)式為列序原則,按各備選方案 與負理想解之計畫分離度與相對近似度觀 之,RC⁻值愈大者,則表示其愈遠離負理想 解,該方案愈優於其他備選方案。評選結果如 表九。

表九 三型主力戰車武器系統優劣偏好順序

區分	A型	B型	C型
RC⁻	.6264	.7435	.3148
偏好順序	2	1	3

綜合上述表八與表九之優劣偏好列序, 均顯示B型主力戰車為本研究評選最理想 之主力戰車武器系統,該結果與Yin & Wang (2009)應用灰色系統,納入前揭20項績效 指標,進行評選之結果一致,均以B型武器 系統為最優方案,顯見本研究提出此植基於 TOPSIS與Entropy method客觀權重衡量之評 估方法,藉由專家群體達成共識性之觀點, 獲得關鍵性之評估指標,結合熵值法之權重 計算,係合理可行且應用程度相當高之整合 性評估流程。

伍、管理意涵

本研究就管理之角度而論,可歸納出如下之管理意涵,區分三種觀點,分別對於軍備 武獲單位、作戰需求單位及後勤支援單位等 三種觀點進行探討,分述如後:

一、軍備武獲單位

現代戰爭型態均講求聯合作戰,然聯合

作戰之成功因素,有賴各作戰單位尖端武器 效能之充分發揮。軍備單位承接作戰單位武 獲需求,籌補武器系統,需考量諸多因素,包 含戰術與戰略層面之實際作戰需求,將有限 之國防預算挹注於最適切與合宜之武器系 統。

本研究提出整合性武器系統評估流程,即將諸多決策層面所涵蓋之應考量因素,賦予量化之參數,納入整合評估,除整合各專家意見外,更客觀衡量評選指標之重要性,協助完成精確之武器系統決策,不僅在國防預算方面提升了有限預算之最大效用,更在戰略與戰術方面,達成強化國防武裝力量與軍事威懾力。

二、作戰需求單位

作戰單位肩負戰備整備任務,實為國防 戰略與戰術之執行者。本研究應用專家群體 決策流程,在其作戰需求確認時,可協助選定 符合實需之武器系統效能指標,將戰術需求 規格化,不僅強化其軍事武裝威懾力,更大 幅提升聯合作戰之整體效能。

三、後勤支援單位

「兵馬未動,糧草先行」,為維持任一武器系統之正常操作與應有效能,端賴後勤支援單位之維保與修護,提升系統可靠度,然對於新式武器系統而言,修護能量之籌建,乃確保其可靠操作與有效支援之第一步。

本研究應用之評估流程,經整合各層面 考量因素,決策最理想之武器系統,進一步

確認後勤支援單位建立與提升修護能量之方 向,並確切且精準投注人力、財力與物力於國 防軍事主力裝備,強化作戰效能。

武器系統之評估係一項繁複且重要之國 防議題,建立具體有效且適切之整合性評估 流程,實屬達成國防戰略與戰術決策之第一 步。未來,愈臻周詳之系統評估流程,必將更 進一步強化評選作業之精確性與應用領域。

陸、結論與建議

武器系統之評選與決策乃是一項重要之 國防戰略議題,其作戰效能之良窳,將直接 影響國防軍事武力之展現。在系統評選過程 中,各備選方案必須在各項評選指標與準則 下,考量諸多潛存彼此衝突影響之層面,權 衡評選並審慎決策之。

為有效避免單一決策者可能造成之偏 誤,或囿於其個人特殊偏好,導致影響決策 結果之精確性與客觀性,經常藉由專家群體 共同執行評估與決策作業²⁰,在決策過程中, 諸多質性之評估指標亦須同時納入考量,以 周延決策品質。為賦予這些質性指標可計算 之參數,則使決策者須仰賴科學方法以建構 可評估之流程,是故,適切之科學方法,將可 為國防軍事議題建構一套有效之群體決策 系統,整合各專業領域之決策者與其專業觀 點。

本研究提出整合性武器系統評估流程, 建構於TOPSIS理想解類似度偏好順序評估 法之基礎,透過專家群體共識性之專業觀 點,交集獲得關鍵性之評估指標,並結合 Entropy客觀權重衡量,評選出最理想之武器 系統,此一整合專業、客觀,與遍採正、負向 觀點同時納入評估之具體構念,不僅經實例 驗證為精確可行,且僅須依個別特性稍加修 訂,即可應用於解決其他國防專業議題。未 來,結合其他系統評選方法,必更提升本研究 評估流程之廣泛應用性與決策精準度。

謝辭

本文由衷感謝國防大學管理學院運籌管理學 系王中允教授悉心指導,陸軍後勤學校總教 官劉培文上校、保修教官組組長江宗昇中校 及彈藥教官組組長葉健忠中校提供建議,期 能為國軍科學管理與決策分析略獻參考。

作者簡介

朱凱麟上尉,中正理工學院正65期兵器系,國管院運籌管理碩士班,現任職陸軍後勤指揮部保修處兵工官。

20 R. U. Bilsel, G. Büyüközkan & D. Ruan (2006). A fuzzy preference-ranking model for a quality evaluation of hospital web sites. International Journal of Intelligent Systems, 21.p. 1181–1197.

參考文獻

- 1. 管倖生等18人,《設計研究方法》(全華科技圖書股份有限公司,西元2006年)。
- 2. 余序江、許志義、陳澤義,《科技管理導論:科技預測與規劃》(五南圖書出版股份有限公司,西元2004年)。
- 3. 廖慶榮,《作業研究(第二版)》(華泰文化事業股份有限公司,西元2009年)。
- 4. 鄧振源,《計畫評估:方法與應用(第二版)》(華梵大學運籌規劃與管理研究中心,西元2005年)。
- 5. 《孫子兵法》〈形〉篇。
- 6. 袁建中、王建彬、陳梧桐、〈臺灣半導體工業未來發展預測〉《東海管理評論》,第7卷第1期,西元2005年,頁1-38。
- 7. 宋文娟,〈一種質量並重的研究法-德菲法在醫務管理學研究領域之應用〉《醫務管理期刊》,第2卷第2期,西元2001年,頁11-20。
- 8. 蘇欣儀,〈電視媒體品牌權益衡量指標之建構〉(銘傳大學,2002)。
- 9. 陳定銘,〈建構德菲法〉,國立政治大學第三部門研究中心2005年質性方法研習營課程內容。
- 10. B. Jiang, L. Luo, Y. Xuan (2003). Combat Effectiveness Analysis of Main Battle Tank and Fuzzy Integrate Evaluation. Fire Control & Command Control. p.39-41.
- 11. C. E. Shanon and W. Weaver (1949). The mechanical theory of communication. University of Illions Press, Urbana.
- 12. C. L. Hwang & K. Yoon (1981). Multiple attribute decision making: Methods and applications, A State of the Art Survey. Springer-Verlag.
- 13. J. Pill (1971). The Delphi Method: Substance, context, a critique and an annotated bibligraphy. Socio-Econ. Planning Science. p.57-71.
- 14. J. Yin, Z. Wang, J. Xue (2008). The Gray Method of Integrated Performance Evaluation of The Weapon System of One Kind of Modern Main Battle Tank. Ordnance Industry Automation. 15-17,20.
- 15. L. Chang & Y. P. Xinmou Ma (2007). Based on AHP Methodology and Expert Mark Main Battle Tank Performance Synthesis Evaluation. Mechanical Management and Development. 4-6.
- 16. L. Luo, X. Zhu, B. Jiang (2003). Combat Capability Evaluation Model of Tank Weapon System. Fire Control & Command Control. p.68-70.
- 17. L. Zhang, Y. Dong, M. Lin, G. Fan (2011). Integrated Evaluation on Weapon System of Main Battle Tank Based on Topsis Method. International Conference on Computational and Information Sciences. p.1037-1039.
- 18. R. U. Bilsel, G. Büyüközkan & D. Ruan (2006). A fuzzy preference-ranking model for a quality evaluation of hospital web sites. International Journal of Intelligent Systems, 21. p.1181–1197.
- 19. Y. P. Xinmou Ma & J. Ma (2008). Performances Evaluation Study of Main Battle Tank Based on Fuzzy Delphi Method. Gun Launch & Control Journal. 86-89.
- 20. Z. Ayag & R. G. Özdemir (2006). A fuzzy AHP approach to evaluating machine tool alternatives. Journal of Intelligent Manufacturing, 17, p.179–190.