中共衛星犹太卻接與反衛星系統領域

陸軍上校 黄俊麟

提 要

- 一、1957年,前蘇聯發射世界第一顆人造衛星,中共於是開始積極開展航太技術研究,並於1958年提出發展人造衛星的號召。1970年4月成功發射了第一顆「東方紅」一號人造衛星,爲航太技術發展奠定了重要基礎,迄今中共已發射出高、中、低軌道不同類型與用途的近百顆衛星。整體而言,中共發展衛星與航太科技已50年,從成功發射衛星、火箭,逐步到太空船與2006年執行「嫦娥一號」衛星繞月探測計畫,其太空科技的發展可謂已擠身國際先進水準之林。
- 二、未來中共將以衛星結合地面網站、海、空機艦,形成國防軍事上完整作戰之指、管、通、資、情、監、偵能力,俾利遂行資訊及戰場管理之高度整合系統,我們對中共的衛星發展,除強化航太與衛星科技發展外,應積極針對中共衛星發展的特性,研擬剋制對策,發揮優勢作爲,以達成國軍建軍備戰使命。

壹、前 言

 3,000公里範圍內,以每秒8到10公里的高速飛行,足以對衛星和太空站等構成嚴重威

圖一 開拓者—2號(KT-2)火箭,擊落了氣 象衛星「風雲一號C」

資料來源:大紀元時報2007.3.25, http://epochtimes.com。

^{註一}聯合報編輯室,「中共發射導彈摧毀衛星」,<u>聯合報</u>,民國96年1月20日,版1。

脅。美國國防部專家表示,在衛星碎片的範圍內,有包括軍事用途及民間用途的125顆人造衛星和國際太空站,其中約53%屬於美國統一,故將導致美國除了強化現有衛星反制系統外,未來將開始發展有關對付中共衛星與導彈科技的防護網技術,因此預測將導致另一波的太空武器競賽。

太空科技愈發展,人造衛星在軍事上的應用則愈廣泛,中共從1958年開始發展人造衛星及其載具的研發工作,並於1970年成功發射第一顆人造衛星「東方紅一號」(四本於1970年成功屬工力,並成爲續解聚、美國、至2005年的過程不過數十五個衛星發射風家,至2005年的過程不過一次發射過程,中共的衛星工業歷經了近40年的發展的音響,中共的衛星工業歷經了近40年的發展的音響,中共的衛星工業歷經了近40年的發展的音響,中共的衛星工業歷經過行時發布的「2006中國航天白皮素」中,將繼續開發包括對地觀測衛星、航大發展目標與十二項主要任務並三。美

圖二 四川衛星發射基地;中共目前已發射 出近百顆不同類型與用途的衛星

資料來源:科技週刊2006-11-27, http://www.enorth.com.cn。

國近十年的戰爭,幾乎所有監視偵察、指揮控制、精準打擊乃至焦點後勤,都經由衛星 偵蔥、導引和傳輸,所以衛星是美軍戰力發 揮最重要的一條臍帶。因此,美國在太空領域中,最擔心中共反衛星武器系統的發展或中將說明中共近年來在衛星航太科技發展及建軍備戰的參考。

貳、人造衛星特性與種類

自1957年蘇聯發射了第一顆人造衛星開始,太空科技與人造衛星便一直扮演尖端科技的腳色,並領導人類其他科技領域向前邁進。而目前在地球外層不同高度軌道上,百餘顆,個成了空間偵察、監視、預警、導航的網路,形成了情報、通訊、指揮、控制的自動化體系,故在未來戰爭中,各國將極力爭取太空中的優勢。

(一)人造衛星的特性

從戰略觀點言,人造衛星可飛越他國領土,平時即具嚇阻敵襲及蒐集敵情之能力,戰時則可做爲各種戰略情資控制平臺。但不同功能的衛星,所需要的軌道不同,所需要的軌道不同,所需要的軌道不同,所需要的軌道不同,所需要的軌道不同,所需要的軌道不同,所需要的種類依其特性區分爲科學衛星、貨衛星、資源衛星、軍事衛星、氣象衛星、星際衛星、導航衛星等七種並四。

1.科學衛星:長期於太空軌道中運 行,並藉以進行大氣物理、天文物理等資料 蒐集、實驗或測試之衛星。

2. 通訊衛星:於太空軌道中,做爲電訊中繼站或做播放電訊之衛星。

3.資源衛星:長期於太空軌道中,攝

^{註二} 亓樂義,中共試射「衛星殺手」,<u>中時電子報</u>,民國96年2月11日,news/yam.com。

^{註三} 聯合報編輯室,「中共太空科技發展」,<u>聯合報</u>,民國95年10月13日,A11版。

^{註四} 張德仁,「人造衛星通訊科技與軍事應用」,聯合後勤季刊,第5期,民國95年5月1日,頁103。

取地球表面或深層組成之圖像,並分析地球 資源分布,以做爲探勘地球資源用途的衛 星。

4.軍事衛星:於太空軌道中,進行軍 事設施照相、偵察與其他相關軍事情資蒐集 衛星。

- 5. 氣象衛星:於太空軌道中,攝取雲 層圖和有關氣象資料的衛星。
- 6.星際衛星:可航行至其他行星進行 探測照相之衛星。
- 7. 導航衛星:於太空軌道為地面、海 洋、空中的各種用户提供定位及導航資訊服 務之民用與軍事用途之專業衛星。

(二)人造衛星的軍事用途

由於衛星科技的進步,目前人造衛星 已成爲發揮奇襲戰術的先期情蒐工具(如圖 三),而軍用人造衛星早已運用在偵察、監 視敵方及長程通訊之用途,並進一步作爲用 以摧毀敵方人造衛星或攔截敵方彈道飛彈的

圖三 人造衛星戰時可作爲各種戰略情資與 控制平臺

資料來源:大紀元時報2006.11.25, http://epochtimes.com。

武器載臺。波灣戰爭期間,約有數十枚不同功能的軍用人造衛星參與相關任務,依據目前人造衛星之功能及軍事任務可分類如下 註五:

- 1.影像偵察衛星:裝有高解析度與紅外 線攝影裝置,可偵察敵方目標。
- 2.飛彈預警衛星:組成預警網,俾偵察 與分析彈道飛彈之彈道等。
- 3.數據中繼衛星:負責將預警衛星所偵察之影像,傳輸至資訊處理中心。
- 4. 軍用通訊衛星:提供全球性戰略通訊 之中繼作業。
- 5. 導航衛星:進行即時精確定位,以支援武器導航裝置並進行作戰任務。
- 6.武器載臺衛星:攔擊彈道飛彈武器, 並能攻擊敵目標。
- 7.電子情報衛星: 偵蒐敵方通訊,獲取 軍事情報。
- 8. 氣象衛星:利用遙感設備蒐集參數, 提供全球性即時氣象資料。

參、中共衛星發展與未來運用

^{註五} 黃俊麟,「人造衛星與GPS的發展及運用」,<u>聯合後勤季刊</u>,第8期,民國96年2月1日,頁33。 ^{註六}「中共發展的太空技術」,大紀元網站,民國96年2月7日,http://www.guancha.org/

目前擁有傳回式遙感衛星、東方紅通信衛星、風雲氣象衛星、實踐科學實驗衛星、地球資源衛星以及北斗導航衛星等六種衛星, 現將中共軍事衛星與航太科技發展之沿革與現況敘述如下:

一、中共衛星發展沿革

(一)創建階段

50年代中,蘇聯於1957年10月發射了 世界上第一顆人造衛星,1958年5月中共於 八大會議上提出發展人造衛星的號召,並制 定了人造衛星的發展計畫,1960年首次發射 氣象火箭,1965年5月衛星研製任務被列入 中共的國家計畫,但是1966年爆發「文化大 革命 |, 使得中共航太科技發展受到阻遏, 連帶的人造衛星研製也再次陷入停頓。1968 年,中共再度正視人造衛星的功能,於是組 建了「太空技術研究院」,1970年4月24日, 成功發射第一顆人造衛星「東方紅」一號衛 星,成爲世界上第五個發射人造衛星的國 家。1973年爲了提升衛星科技,一舉將衛星 研製的工作提升至國家級的地位。在此過程 中,中共初步建立了航太科技的基礎,自 1965年、1970年及1987年分別於酒泉、 西昌及太原建立衛星發射中心,用來發 射低、高軌道地球衛星及太陽同步衛 星。

(二)發展階段

進入80年代,美國開始「戰略防禦(SDI)計畫」,太空科技逐漸成爲綜合國力競爭的焦點,並以此帶動太空戰略性技術的發展。1986年中共開始展開「863計畫」並十,並選取了包括航太技術與資訊技術等7個領域爲發展項目,這也是航太技術的起點,1992年1月,中共中央專委認爲,發展航太事業對於增強綜合國

力和國防實力、促進科技進步、提高國家威 望等具有十分重要的意義,因此啓動代號 「921工程」航太發展計畫。「921工程」的 研製歷時10年,1999年11月發射的第一艘 「神舟」試驗性飛船,驗證運載火箭的性能 和可靠性。接著又在2001年1月,2002年3月 和2002年12月分別成功發射了「神舟」二 號、三號和四號,2003年10月15日,中共第 一艘載人飛船「神舟」五號成功發射(如圖 四),成爲世界上能獨立開展載人航太的第 三個國家。從啓動到「神舟」五號載人航太 的成功,歷經了12個年頭,成爲中共航太史 上規模最大的跨世紀工程,中共於2000年11 月發表了「中國航太白皮書」,初步確立了 月球探測的目標,2003年3月1日,中國國家 航天局宣布正式啓動「嫦蛾工程」, 開展以 月球探測爲主的探測研究。

(三)中共的「新軍事革命」與衛星發展

1991年波灣戰爭,美軍運用高科技打贏一場戰爭,使得中共軍事戰略的思考邁向一個新的方向,1993年中共中央軍委正式提出「高技術條件下的局部戰爭」之概念註入,

圖四 2003年中共突破了航太技術,發射第一 艘載人飛船「神舟」五號

資料來源:多維新聞網,2007.3.14,DWNEWS.COM。

^{註七} 陳政祥,「人造衛星在軍事上之運用與發展」,<u>海軍學術月刊</u>,第33卷第10期,民國96年5月1日,33頁。 ^{註八} 劉振興,共軍「新軍事革命」的發展,國防<u>雜誌</u>,第14卷12期,民國91年6月15日,頁56~62。

並在1995年,進一步強調將整合資訊(信息)為主導的技術和其他軍事系統,以形成全新的軍事能力,並稱爲「新軍事革命」。 1997年,中共完成「2001~2010年國家高技術研究發展計畫綱要」並九,該計畫對未來5至10年的關鍵性技術,集中力量進行系統全成式的研究與開發,以期提升國家綜合武治,其重點發展包括航太技術與新概念武方技術等領域之技術突破,於2000年的國际星期技術等領域之技術突破,於2000年的國际星期、進高原來的衛星與航太發展計畫,使中共的航太工業從試驗階段進入應用階段。

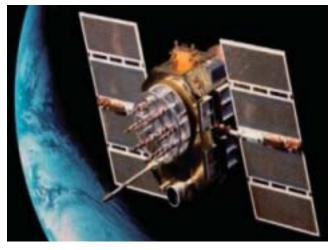
二、中共衛星發展現況與運用

軍事衛星則是利用衛星及其地面配套系統,獲取、傳輸、處理和應用資訊來實施和從事軍相關活動,是以航太技術結合聯合軍事作戰領域的重要環節。衛星軍事應用系統和民用(或軍民無限)衛星的軍事應用系統組成,中共的發展,每類衛星的發展,所發射的人造衛星包含有其不發展的人造衛星、領信衛星、導航衛星、氣象衛星、測地衛星等五大類:

(一)軍用偵察衛星(尖兵系列)

中共研製偵察衛星的工作早在1966年就已開始,於1975年11月成功地發射了第一枚返回式衛星,展開了中共返回式偵察衛星「尖兵系列」對地偵測的新頁,中共於2000年發射的「尖兵三號」屬「即時傳輸型遙感偵測衛星」,也是中共第二代偵測衛星,使得中共軍方的衛星偵察能力大躍進。中共目前計有「中巴地球資源衛星」與「資源二號」等衛星在軌道工作,使中共具備全球偵察之

能量。


(二)軍用通信衛星 (東方紅系列)

中共的「中星廿二號」爲實用型地球同步通訊衛星,主要用於地面通訊,「鑫諾二號」衛星亦於2005年發射升空,該衛星性能達到當今國際同類通信衛星的先進水準。故中共已經開始配合商業通訊衛星,並利用衛星籌建之通訊網建立數十個地面站,使共軍作戰通信指揮能力大幅提高,中共目前擁有的通訊衛星主要包括「東方紅三號」、「中衛一號」和「鑫諾一號」,均屬新一代大容量通訊衛星。

(三)軍用導航衛星 (雙星系列)

中共軍用導航衛星爲「雙星定位系統」 人造衛星,又稱「北斗導航系統」註[±],主 要用以提供地面部隊、海上船艦、航空器及 導彈之精確定位導航訊號(如圖五),北斗 衛星系統採用主動雙向測距定位,由地面控 制中心負責解算位置後再透過衛星傳回用户 端,因此,用户端不能自主解算出衛星定位 收發機所在的二維位置,故導致使用功能大

圖五 「北斗導航系統」,提供各種精確定位 導航訊號

圖片來源:東方網,2007.1.12, http://news.qq.com/。

^{註九}國防雜誌編輯室,「中共軍事衛星發展」,國防雜誌,第15卷12期,民國89年12月,頁74。

^{註+} 解放軍報,2003年11月21日,版1。

^{註土}應紹基,「中共的導航定位衛星系統」,<u>國防雜誌</u>,民國91年6月,頁89。

受限制,而在現階段軍事使用上,尚無法應用在高速運動的導引武器系統。此外,軍事的定位與導航均需融合測高儀才能整合三維位置座標,故精確度與定位速度與美國GPS相差甚多,但系統所需建構的經費少、時間短,且已經達到可應用之品質,適合目前需要,但可發展爲三維區域性導航定位衛星系統並立。

四軍用測地衛星 (烽火系列)

中共刻正發展高解析度紅外線熱像傳輸、具有光學追瞄功能的「烽火一號」軍用 戰術測地衛星,距實用階段尚有一段距離, 短期內尚不致對我構成明顯或是立即之威 脅。若其研發成功後,將可提供其導彈及砲 兵射擊之精度,屆時對我之影響甚鉅。

(五)軍用氣象衛星(風雲系列)

(六)「神舟號」太空船計畫

1992年9月,中共展開「神舟號」太空船計畫。1999年發射「神舟一號」開始,到2002年的「神舟四號」,先後成功發射四

次無人大空船。2003年酒泉衛星發射中心、「長征」二號F型火箭為推進器,成功發射,成功發射在實格,並首度搭載太空人,「神舟五號」計畫注重氣象、載重、精確包括臺海所及全海所發動,是為未來有可能包括臺海所發動,是為未來有可能包括臺海所發射,故不可發射,以突破導彈所禁系統,是發射中心中導動於計算衛星軌道和返門實力已經有相對於計算衛星軌道和返的「神舟七號」將搭載三位太空人,「神舟九號」的任務,中共並預定2008年升空的「神舟七號」將搭載三位太空人,「神舟九號」將指載三位太空人,「神舟九號」將指載三位太空人,「神舟九號」將指載三位太空人,「神舟九號」將指載三位太空人,「神舟九號」將指載三位太空人,「神舟九號」將進行器,「神舟九號」則實現載人對接實驗,「神舟十號」則實現載人對接實驗,「神舟十號」則實現載人對接

(七)「嫦娥一號」人造探月衛星計畫

中共第一顆人造探月衛星「嫦娥一號」,於2007年奔向離地球38萬公里以外的月球,實現繞月探測,「嫦娥一號」將行四項科學工作,包括:繪製完整的三維月球地圖、進行月表化學元素含量和物質類型分布探測、進行月壤探測、探測地月空間環境。2009至2015年,將進入「嫦娥二號」工程,將發射月球探測器登陸月球;並於2017年進入「嫦娥三號」工程,以實現月面巡視勘察與採樣返回,最重要的2024年「嫦娥四號」工程,太空人將執行登月任務註去。

三、中共衛星未來的發展

中共的衛星都肩負了軍事的用途,目前 加強改進現有偵察衛星的性能與製程,使用 已有衛星的共同平臺、組件與主件等,以縮 研製時程與降低成本,故加速發展合成孔徑 雷達衛星,該雷達依靠自身發射的電磁波而

^{註兰}應紹基,「中共偵察衛星發展之近況與展望」,全球防衛雜誌,第207期,民國90年11月,頁36。

^{註圭}編輯室,<u>中國航天</u>,第4期,2004年4月,頁6。

^{註击} 大紀元網<u>站</u>,民國96年2月12日,http://www.guancha.org/。

^{註畫} <u>中時電子報</u>,民國96年2月18日,news/yam.com。

不是借助地面目標反射光成像,因此可以全 天候工作,由於雷達發射的是微波,對的 被、乾沙、土壤、冰塊等地物也有一定 透能力,因而不受氣象條件的影響。 時學學學學學學學學學 中共衛星部分屬於「即時傳輸型遙感信號, 中共衛星」,但必須利用「中繼衛星」傳輸衛星」 展的重點之一雜之。中共未來軍事衛星, 發展,正加緊研製容量大、壽命長、質星 發展,正加緊研製中共, 類別地、 類別地、 類別地、 類別地、 類別域 , 以迎頭是上歐美等先 國 家 。

(一)通信衛星

未來中共通信衛星發展,將期建立涵蓋大陸全境之衛星廣播系統,增大通信容量及功能,而中共軍方一直企圖加強利用衛星蒐集情報的能力,未避免中共將其用於軍事用途,故美國政府於2006年否決了休斯公司的出售衛星計畫註,中共另加緊研製更先進的「東方紅四號」大容量、多功能通信衛星,將以大幅增強遠程作戰能力,作爲打贏未來高科技戰爭作準備。

(二)偵察遙感衛星

未來幾年內,中共將發展偵察衛星, 以構建高低軌道、全天候、全球各區之衛星 即時監偵系統,俾完備其太空軍事力量。該 偵察衛星具有全天候偵察及即時傳輸資料能 力,包括使用高分辨遙感技術、大容量數據 記錄及高碼速率數據傳輸等技術特點。

(三)導航定位衛星

中共計畫自行研製及發射「雙星系列」 導航定位系統同步軌道衛星,建立自成體系 之定位系統,以精確接收衛星信號,提供導 航定位及衛星通信,未來共軍均可透過導航 定位衛星所提供精準之遙測,增加飛彈的射 程、提高命中精度、殺傷威力,更可有效的 發動奇襲,摧毀敵方的預警及通訊系統,甚 至進一步打擊我之空防反制能力。

四小型衛星

小衛星是指重量低於一噸的衛星,並 具有如下優點^{註大}:

1. 體積小、重量輕,可以利用任何型 式火箭進行發射,節約成本。

2.採用先進技術,運用科學管理,因 此研製和系統投資少。

3.發射方式靈活,能夠機動發射,生 存能力強,適應未來作戰需要。

4.結構簡單、設計研製開發週期短, 可以採用標準化和模組化設計。

5.技術性能高,由小型衛星組成的編 隊,可具備大型衛星的功能。

小衛星不但在民用通信、遙測、氣象、地球科學、行星探測、技術驗證等領域獲得了廣泛應用,在商業和軍事方面的應用更是成爲致力發展和研究的重點。中共於2004年4月在西昌衛星發射中心用長征二號運載火箭,成功的將「試驗衛星一號」和「納星一號」實驗小衛星送入太空,並預計於2008年前發射4至8顆小衛星,在空中組成對地觀測的小衛星群立,故其軍事戰略價值頗高。

四、中共衛星與軍事之運用

共軍(包含二砲部隊) 已完成「全軍情報系統暨自動化作戰指揮網」建設,其主要之次系統包括情報偵察、通訊、遙控指揮及情報偵察等系統,近年來中共積極擴建全軍

^{註共} 居朝良,「中共軍事衛星發展運用之研析」,<u>砲兵學術季刊</u>,http://www.mnd.gov.tw/

^{註÷} 人民網,民國96年1月22日,www.people.com.cn。

^{註大} 張永維,「小衛星在軍事中的應用」,現代軍事,民國95年1月2日,頁75。

通信網路,未來將整合衛星通信,其及 一,其及 一,其。 上,其。 上,其。

肆、中共反衛星系統的發展

一、反制衛星的方式

隨著太空技術的發展,衛星也經受著遭 到攻擊的危險,反衛星系統除了早期的核爆 攔截以外,還有撞擊、雷射、微波、粒子束 等定向能量殺傷,以及噴塗化學物質與其他 干擾手段等,總體來看,對衛星的攻擊有兩

圖六 美國陸基攔截導彈發射

圖片來源:東方網,2006.10.27, http://news.qq.com/。

種方式,即硬摧毀和軟殺傷^註:○

(一)硬摧毀:是指消滅衛星的存在,永久 終止衛星使用,這主要是通過在太空部署各 種武器,如動能武器、定向能武器等,在需 要時對衛星徹底摧毀,也可以在地面或空中 發射各種常規或核武器,對敵人的衛星系統 形成終結性的殺傷(如圖六)。此外,由於 衛星依靠各種地面接收站來進行控制,故對 衛星系統的地面單元進行打擊,也可達到硬 摧毀效果。

(二)軟殺傷:是指在不完全破壞衛星系統 的前提下,減損衛星系統的功能,例如在敵 方衛星的軌道上釋放金屬碎片與顆粒、氣溶 膠等干擾物;對衛星電子系統實施干擾、破 壞衛星地面站的供電設施、破壞航電系統 等。

二、反衛星系統區分

反衛星武器按照設置場所的不同,可分

^{註章} 東方軍事網,民國96年1月9日,http://mil.eastday.com/。

^{註三}章名豈,人民網,民國95年9月30日,www.people.com.cn。

為地基、機載與天基反衛星武器三種,分別設置在地球 (陸地或艦船)、飛機、太空軌道或飛行器上。 反衛星系統可以區分爲共軌式和非 共軌式兩類。

(一)共軌式:共軌式反衛星武器屬於小型衛星,其軌道與目標衛星的軌道相同,它可以伴隨要攻擊的目標衛星飛行幾周或數月,最後調過遙控或者預定程式進入作戰狀態。它可能通過強力干擾使敵方衛星失效,也可能自行引爆或利用動能武器來摧毀目標衛星。

(二)非共軌式:非共軌式反衛星 武器指任何部署在空間、能夠利用助推火箭 將武器直接發射到目標附近,並通過引爆或 直接撞擊來摧毀目標。也就是從太空、空中 或地面發射導彈,直接擊中軌道上運行的衛 星,這對導彈的精確控制和攔截器的精確識 別要求較高,類似導彈防禦中的彈道導彈攔 截。

三、反衛星系統種類

(一)反衛星彈道導彈

前蘇聯是最早發展衛星與反衛星技術 的國家,1963年,就實施一項反彈道導彈和 太空防禦計畫,其反衛星系統包括一枚裝備 常規彈頭的導彈,在敵方衛星到達發射陣地 上空時,將反衛星導彈發射進入與目標衛星 接近的軌道,這枚攔截彈頭將在雷達引導 機動俯衝向目標衛星後引爆。1982年,美 完成反衛星武器試驗,也是利用F-15飛機從 高空發射導彈,直接射向位於軌道的目標衛 星,通過衝擊力實施殺傷目標。

目前中共已成功發射的「神舟一號」 到「神舟六號」太空火箭,其實「神舟」系

圖七 KT-2類似東風21型導彈,是中共爲用於摧毀 衛星而開發的武器

圖片來源:東方軍事網,2006.12.11, http://mil.eastday.com/。

(二)小型寄生衛星

美軍曾研發了反衛星的衛星,它是一種能在地球軌道上飛行並根據地面指令自動接近與識別敵方衛星,通過自身爆炸產生的大量碎片將其他衛星破壞的攻擊性衛星,故又稱爲「寄生衛星」並三,也就是一種由己方投放、能寄附在敵方衛星上的小型衛星。

^{註三} 東方軍事網,民國95年12月11日, http://mil.eastday.com。

它能在戰時根據指令對敵方衛星進行干擾和 摧毀,寄生衛星平時可寄附在敵方衛星上, 戰時才對其進行攻擊,這就要求寄生衛星 戰時才對其進行攻擊,這就要求寄生衛星 體積和品質應做得很小,提前激發不時期就 影響對方衛星的正常工作,提前激擊亦不可 為「軟殺」和「硬殺」兩種。「軟殺」 利用電子干擾等,讓敵衛星暫時失能 機解除後再讓其恢復正常工作,而「硬殺」 則用於對敵衛星進行徹底的消滅。

中共目前也規劃並研製「寄生衛星」,以組網和編隊方式形成多個小的衛星群,散撒在不同軌道,既可用於軍事偵察,亦可做爲另類的「反衛星的衛星」,此類小型寄生衛星群以干擾和追撞方式對付敵方衛星,使其脫離正常軌道或難以正常運轉。

(三)雷射反衛星武器

四戰鬥太空母站

「戰鬥太空母站」實際上就是將數十 枚由紅外線導引的導彈集中安裝在大型人造 衛星上(如圖九),1997年開始,美軍對這 種武器共進行多次實彈測試,這種新式戰鬥 太空站外形猶如人造衛星,但不同於美國目 前部署的戰區導彈防禦系統,其部署在太 空,且採用高速動能攔截裝置,因此可以將 戰火控制在敵人衛星的領土上,而不用像使 用「愛國者飛彈」還要顧慮導彈碎片對本國 造成的人員和財產損失。除此之外,它還可

圖八 美國利用雷達雷射發射等方式,完成 干擾或破壞敵衛星

圖片來源:東方軍事網,2006.12.11, http://mil.eastday.com/。

圖九 「戰鬥太空母站」將多枚紅外線導引 的導彈集中在大型人造衛星上

圖片來源:東方軍事網,2006.12.11, http://mil.eastday.com/。

^{註三} <u>中時電子報</u>,民國96年2月11日,news/yam.com。

以與雷射武器配合使用,能夠彌補因氣候或 敵人釋放干擾物(如煙霧)而出現的盲點, 目前中共尚未發展類似「戰鬥太空母站」之 相關計畫。

中共軍方在2001至2006年間,陸續發射30枚人造衛星,並已經成功開發出「陸基型」和「太空基地型」的雷射武器並高,以國的人造衛星。中共認為,美國民經使太空軍事化,所以共軍必須發展全方的反衛星戰力,以具備先發制人的條件。到前共軍的導彈已證實有能力可以摧毀太。目前共軍的導星,而載人太空船發射成功,以及各項「反衛星武器」的出現,代表中共的戰略性軍力,已經出現質變,並對「美日軍國」及臺海軍力動態平衡,造成明顯的衝擊。

伍、中共發展衛星科技的做法

美國在《2005年中共軍力報告》當中, 首次正式提到中共已積極進行各種軍事用途 的衛星運用。報告指出,中共「正在進行, 且計畫部署反衛星系統」並至。整體而言, 中共發展太空與衛星科技已有50年的歷史, 從成功發射衛星、火箭,逐步到太空船 之006年執行的「嫦娥一號」衛星繞月探測計 畫,其太空科技上的發展可謂已擠身國際先 進水準之林,而中共的衛星發展除了重視 家尖端科技整體發展外,並重視科技人才培 養與掌握軍事運用之重點。

一、確定研發政策

1955年9月,火箭技術專家錢學森博士 向中共國務院提交「建立國防航空工業的意 見書」,首度提出了發展中共航太科技的建 議,1958年中共八大會議決定開始發展人造 衛星。1966年3月,中共國務院與國防科委

二、培育科技人員

中共以往受限於人爲因素、政治環境及 以黨領軍之意識形態,導致其武器裝備與軍 隊整體人員素質低落,尤其高科技武器的發 展與高素質人才更是最大的瓶頸,但在1999 年中共提出科技強軍的戰略方針,具體規劃 未來十年軍事教育方針,並大幅提升軍事教 育經費與教學設備水準,以提升軍事與科技 整體人才獲得之素質註一,並提出一連串的新 措施,如選送優秀年輕幹部到國外留學、對 專業技術人才獎勵等,目前,中共從事航太 研製與衛星發展的科技人員,包括總設計師 及各分系統的設計人員等,則全部是由中共 高科技教育體系培養;又如中共發展太空船 時,由全國空軍駐地的1,000多名殲擊機飛 行員中選出80多名,再精挑選出12員受長達 兩年的培訓以符合後續任務需要,故培育任 何高科技人員都需長期的規劃與政策支持。

三、發展衛星科技

中共軍事學界認爲軍事技術革命的核心

^{註云}「美中臺軍力動態平衡的新形勢」,民國96年3月12日,http://www.cdnews.com.tw。

^{註宝} 國民黨中央政策會大陸情勢雙週報,民國95年3月10日。

^{註云} 黃俊麟,「中共軍事教育改革與發展」,聯合後勤季刊,第二期,95年5月1日,頁35。

技術應是「軍事技術訊息群」,其中以軍事 航太技術等,爲科技發展的「骨幹軍事技術」 ^{註章}。因此1997年中共完成《2001~2010年國 家高技術研究發展計畫綱要》,該計畫對未 來5至10年經濟發展和產業升級的關鍵性技 術,集中力量進行系統集成式的研究與開 發,其中中共1986年開始展開的「863計畫」 與1992年展開的「921工程」中,均網羅最 資深的科技人員,從事太空偵蒐、核能與衛 星發展等科目,以促進未來50年先進科技之 發展,而衛星科技包括運載火箭系統、發射 系統、測控通信、機電系統和著陸系統等, 並包含空間監測、材料科學、訓練模擬器等 先進科技,故綜觀中共現階段之國防科技政 策可歸納爲結合國家整體科技研究計畫,重 點發展軍用光電、通訊、航空、材料技術、 精確導引技術與新概念武器等。

陸、對中共衛星發展之應有認知

(一)確定科技發展政策

國家科技發展政策是各項科技與工業 發展之方向,目前國內產業科技重點發展項 目包括:微機電、奈米材料、數位資訊、生 醫科技等,但對於航太科技因缺乏明確之發 展政策,故國家政策的支持是所有尖端科技 發展的先決條件。

(二)發展衛星與航太科技

航太科技是所有尖端科技之指標, 其在現代科技戰爭中須能在太空中擁有獨立 之衛星系統,則方可掌握所需情資,而中共 也認爲,爭奪「制空權」將是共軍的遠程 標,目前我國衛星科技發展停滯,故是期 發展與應用上則明顯受制於人,就長期而 發展與應用上則明顯受制於人,就長期而 ,應發展自己的太空通信與衛星航太科技 並因應規劃軍事與戰略戰術之運用及軍事衛 星相關科技,以掌握臺海太空「制空權」。

(三)加強科技人才培育

目前衛星系統已涵蓋資訊與太空科學 等領域,未來任何先進的武器裝備與地面、 空中載具等,將配備專屬之衛星定位及導航 系統,但這些武器系統裝備的運用,均有賴 科技人才來研發,但專業科技人員培訓殊爲 不易,爲提升未來國軍武器裝備之整體效 能,亦應儘早完成相關人才運用規劃,並致 力於培育相關專業科技人力。

四建立防護掩蔽設施

註三蘇恆宗,共軍「新軍事革命」發展概況與能力芻議,<u>國防雜誌</u>,第16卷第3期,90年9月1日,頁45。

^{註元} <u>中時電子報</u>,民國96年2月19日,news/yam.com。

或掩蔽的作爲,以避開衛星的偵測並防制敵 之攻擊。

(五)建立衛星反制能量

衛星反制系統所需的高科技衛星武器 不是短期能研發完成,故應積極籌購或發展 長程精準打擊武器或空射反衛星飛彈,於太 空軌道上摧毀敵衛星系統,或利用長程飛彈 或資訊戰之電腦病毒攻擊衛星地面接收站、 傳輸系統等,使敵衛星系統無法正常運作。

(六)增強戰訓機動能力

目前中共衛星應已掌握國軍所有重要 固定設施,故國軍所有重要武器裝備,除完 成充分掩蔽外,均應考量以機動部署方式備 戰,平時嚴格加強裝備之機動行軍、性能測 試與保養演訓,戰時方能充分發揮戰力。

柒、結 論

1991年第一次波灣戰爭後,美國便開始 展開軍事事務革命,其主軸在於結合國防科 技,包括先進的資訊系統、通信網路、監偵 系統與軍事科技等,而美伊戰爭也證明新式 科技已經徹底改變了戰爭的方式,尤其,美 國新世紀的作戰構想係根據四年期國防總檢 的中心目標,將過去「植基於威脅」的防衛 計畫思維模式,改變成「植基於能力」與 「植基效能作戰」並元,企圖運用科技的無窮 潛力,形成全方位優勢,創造國防力量的提 升。而中共此時以展示太空科技的戰略威攝 和防禦打擊發展能力,企圖牽制美軍在太空 防衛武器上的發展, 尤其牽涉到飛彈防禦系 統的建構,中共的衛星都具有軍事用途,載 人太空船只要加裝武器,就可搖身一變成為 殺手衛星,若再安置偵察、控制、指揮系 統,就能取代空中預警機成爲太空預警指揮 所,對中共假想敵國的戰略威懾效能必定提

高,且勢必對亞太甚至全球軍事環境也將造 成衝擊,更對臺海未來情勢發展產生重大影 響。

中共的《2006年國防白皮書》透露: 2007年的國防預算高達2.838億元,比2006 年跳漲了15% 註章。但美國情報系統的資料則 顯示,中共實際軍費開銷,比它公布的數 位,還要高出幾倍。從1990到2005年,中共 軍費每年都以兩位數的幅度暴漲,年平均增 幅達15%。中共整體的國防轉型,已超脫軍 事戰略範疇,我們可以斷言,中共發展衛星 與航太科技的軍事威懾戰略,其假想敵是美 國,但另一目標無異聚焦臺灣。而我們要打 一場「未來戰爭」,就必須準確評估中共現 階段的國防戰略思維,如何前瞻太空戰力, 加速我國防轉型,以爭取「制太空權」。有 鑒於此,國軍目前正推動新一代兵力整建, 故需規劃長期目標,如發展太空與新式通訊 與資訊科技、整合C⁴ISR(指、管、通、 資、情、監、偵)能量、創新新式科技之戰 術戰法、培育高科技人力,並規劃反制作爲 等,以提升整體國防力量。

收件:96年06月04日 修正:96年07月12日 接受:96年07月28日

作。者(簡)介

黄俊麟上校,中正理工學院航空系71年班,中正理工學院兵研所75年班,美國陸軍後勤學校後管班1994年班,曾任所長、主任、處長、廠長,現任職於聯合後勤學校研發室。

^{註元}編輯室,2006年「美國國防部四年國防評估報告」,<u>聯合報</u>,2006年2月4日,第二版。

^{註章} 編輯室,自由<u>時報</u>,2007年1月29日, http://www.libertytimes.com.tw/。