海軍「海圖空間情報整合資料庫」之研究

著者/毛正氣海軍官校77年班曾任大氣海洋局局長備役上校

海軍艦艇現代化與武器精準打擊能力之提升,使海軍各項戰演訓任務,對各類型海圖需求日益殷切與重視,復以海洋事務日益頻繁,海圖角色愈趨重要,亦極需思索新一代製圖概念,來滿足多元之各方需求。

隨電子航行圖快速發展,海圖內容極需常保更新,海軍大氣海洋局現已建置各類現代化 海圖生產線,惟僅能單幅製作儲存,如欲運用於製作海軍作戰所需主題圖非常耗時,且無 法主動滿足資料快速更新與海圖立即更新之需求。故須建置整合性海圖空間資料庫,精確 儲存海圖內各項海洋環境情資,提昇海圖資料管理能力,有效產製海軍作戰所需之主題圖 與海戰場環境資訊。

本研究參考美國國家海洋暨大氣總署(NOAA)所屬海岸測量局(OCS)歷經4年嚴格評估之專案,並兼顧我國三軍聯戰、海軍任務與國內船舶航安需求之各類海圖,研究採用集中式海圖資訊系統,同時產製紙張海圖、數值導航圖、國際標準電子海圖及與影像導航圖之可行方案。

大氣海洋局將開始研建「海圖空間情報整合資料庫」,以管理海圖中各項海戰場環境情資,擴展整體海圖製作與服務效益,使海圖不再只是海圖,而是具有高度運用價值之地理空間情報資訊,並能配合海軍作戰演訓任務所需,快速產製艦艇所需各類型圖資,使海戰場空間資料能與海軍作戰緊密結合,以保障海軍艦艇安全抵達作戰海域,遂行整體海洋作戰。

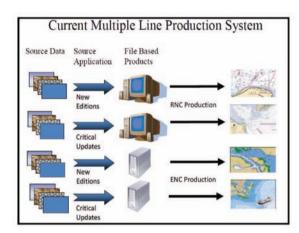
壹、研究背景及目的

海圖是一個具有多重面向的產品,一張海圖係融合了海洋測量、地球科學、製圖學

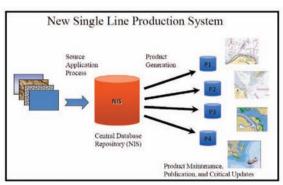
與美術等多項基礎及應用科學所產製的產品。海圖因圖資內容具多樣性,使其實用上 具有許多的意涵,例如海圖具有宣示國家主 權的意義(官方海圖為公文文書的一部分)。 民國初年海道測量局的設立,第一張海圖的 出版,下象徵著國家從外國人手中收回了海 岸測量的自主權;民國88及98年,內政部分 別公布領海基點基線及其修正公告,勾勒出 國家主權的範圍,並藉由海圖來對外宣示; 此外,海圖也象徵著一個國家對於履行維護 國際海洋航運安全的能力,海圖不僅用以規 劃航路,其衍生相關之航行應用刊物如潮汐 表、水道燈表、航行指南也可用於保障船舶 航行安全。對海軍而言,艦艇之航安係發揚 戰力之基礎,而海圖正是維繫航安之所賴, 因此,海圖也就象徵主宰海戰場的能力,在 陌生海域作戰時,海圖上記載許多重要的作 戰參數,如海岸線、水深、底質與潮流,以 及後勤設施,如港埠、電力、淡水補給等, 均能提供用兵決心下達之依據,因此,海圖 的整備能量,對國家主權與國際航運安全, 以及海軍作戰而言,均具有極重要的意義。

民國11年,大氣海洋局於上海成立以來,即負責全國軍、民用海圖刊行之任務¹,以滿足海軍戰演訓、運補等任務及民用航運船隻需求。隨著海軍作戰艦艇現代化與精準武器打擊能力之提升,海軍各項戰演訓任務,如敦睦遠航、漢光等各重大演訓,對各類型海圖與圖資需求日益殷切與重視,復以國際

海洋事務日益頻繁重要,如兩岸三通航道、 領海基點基線劃設、大陸礁層探測等,其成 效皆須藉由海圖來具體呈現。而大氣海洋局 現有數值化海圖生產線以圖幅為指標的管理 方式在海圖刊行作業流程上,已無法滿足資 料快速更新與海圖立即更新的需求。


大氣海洋局數值化海圖生產線,於近20 年來歷經兩次革新²,可產製符合國際海 道測量組織(International Hydrographic Organization, IHO)規範之國際標準電子海 圖與紙張海圖,滿足艦艇航舶安全需求。然 而,現有數值化海圖系統皆以單幅圖檔製 作,各幅海圖受限於比例尺不同,圖資顯示 之航行資料不同,故資料整合不易,如欲製 作海軍作戰所需之客製化主題圖資達常常耗 時,目有其困難處;另由於海洋探測能力提 昇,測量資料量大增,連帶海圖更新作業加 竦時,徒增紙張圖資庫儲量及海圖小改正 之工作量;此外,大氣海洋局長期蒐集有台 灣周邊海域水文資料,包括海流、潮流、潮 汐、鹽度、温度、底質、各類型區界與軍事 圖層等,建置海軍戰場環境資料庫,並可運 用此一資料庫進行大氣與海洋數值模式模 擬與預估,惟受限於「海圖空間情報整合資 料庫」尚未具體建置,實用上仍無法與戰場 環境資料庫結合,以即時滿足海軍戰演訓等 各項圖資與海洋環境參數結合顯示之需求。 因此,須建置整合性之臺灣周邊海域四維 (X,Y,Z,時間)資料庫,精確儲存海圖內各項 圖徵與海洋環境資料,並將過去以圖幅為指 標的管理方式,改建置「海圖空間情報整合 資料庫」,則未來可依所望海域整備資料, 不受限圖幅,以提昇海圖資料管理能力,並 結合戰場環境資料庫,有效產製海軍各類型 作戰所需之客製化主題圖資。

貳、研究與探討


本研究整體目標為整合製圖格式與流程, 建置臺灣周邊海域四維資料庫,規劃「海 圖生產線變革」、「圖幅接合方案」及運 用「網路發佈」、「隨選即印」與「遠地出 圖」等技術,以擴展整體海圖製作與服務效 益,使海圖不再只是海圖,而是具有高度運 用價值之地理空間情報資訊。以下就研究重 點進行探討:

(一)國外經驗與概況:

大氣海洋局目前所使用的CARIS⁴數值海 圖製圖系統,與世界各國許多海圖製作 機構相同,以美國國家海洋暨大氣總署 (National Oceanographic and Atmospheric Administration, NOAA)所屬海岸測量局 (Office of Coast Survey, OCS) ⁵原先所 使用之CARIS數值海圖製圖系統為例,該局採用四種獨立的生產線,其中兩條以網格格式產製紙張海圖及影像式導航圖(Raster Nautical Charts, RNC)、另外兩條生產線則以數值格式產製國際標準電子海圖(Electronic Navigational Charts, ENC)(如圖一(a))。,已無法滿足其作業需求。因此美國海岸測量局之海圖部門經過4年的委商評估研究,其新一代製圖系統(Nautical

(a) 美國海岸測量局原有製圖系統

(b) NOAA新一代海圖糸統NCS II

圖1 美國大氣暨海洋總署(NOAA)製圖系統架構圖 (資料來源:美國大氣暨海洋總署)

Charting System II, NCS II)乃採用ESR⁷之 海圖解決方案(Nautical Solution),作為 其未來海圖生產線軟體工具,該方案採用集 中式海圖資訊系統(Nautical Information System, NIS),維護及產製未來的紙張海 圖、影像式導航圖、國際標準電子海圖及 進行必要之圖資更新⁸。新一代製圖系統NCS II系統架構圖如圖一(b)所示。

本研究為更明確了解美國海岸測量局海圖 作業生產線轉換現況,大氣海洋局利用各種 管道了解該局任務、組織架構、海洋測量、 海圖產製與NCS 11作業實況與目前圖資產製 進度。美國海岸測量局甫於2007年慶祝建局 200年局慶,為一具有悠久歷史之海洋測量 機構,目前該局作業方式是採雙軌並行的 方式,由一組人員負責研發作業流程,編寫 作業手冊,並且由專人負責海圖資料庫的建 立與驗證;另一組人則維持原有生產架構, 俾在此過渡時期相互支援,滿足單位原有 任務。目前,美國海岸測量局的NCS II作業 進度截至2010年8月止,資料庫內已經完成 18幅海圖,然因其圖幅總數非常多,預計至 2011年9月底,先行將所有的CARIS海圖,轉 換為ESRI海圖解決方案檔案格式,再逐步轉 入以建構海圖資料庫。

此外,美國國家地理空間情報局

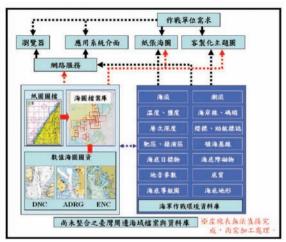
(National Geospatial Intelligent Agency, NGA) ¹⁰亦使用ESRI的海圖解決方案產製數值 導航圖(Digital Nautical Chart, DNC)¹¹,時間遠較美國海岸測量局更早;目前世界上已有瑞典、希臘、韓國、以色列等國開始使用相同軟體產製ENC海圖。除了海圖系統更新外,美國海岸測量局亦開始研究海圖相關刊物的數值化更新,並配合海圖資料庫的建立,以資料庫方式更新其航行指南,同步以HTML/XML/PDF三種數值格式提供使用者及研究單位使用。

(二)可行方案:

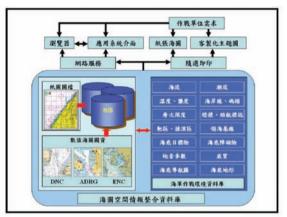
美國海岸測量局提供其經過4年系統評估的內部文件,供本案研究參考¹²。該案主要需求為建置可由中央管理之系統,並且能在與產品獨立的環境下進行資料編輯;因此,其優點是不會被任何一種海圖規格(如S-57¹³與DIGEST¹⁴等規範)所限定,任何的海道測量空間資訊,都可以用標準的地理資訊系統(Geographic Information System,GIS)功能,以圖徵的方式儲存在空間資料庫中¹¹。該案之商用軟體選擇評估標準過程經過一般(General)、功能(Functional)、介面(Interface)、操作性(Operational)、效能(Performance)、品質(Quality)等6大類443小項系統評估標準,作為全案評估基準。而

經過實地評估與市場調查,並沒有一項商用 軟體完全符合這項標準,只有ESRI的海圖解 決方案具備最大的可擴充性,較能符合美國 海岸測量局的系統需求,此與大氣海洋局海 圖空間情報資料庫發展需求相同。

(三)評估研析:


大氣海洋局數值海圖系統牛產線,係以產 製NGA所制訂符合聯戰標準之海軍軍規數值 導航圖DNC為主。由於ENC與DNC資料架構迥 異,因此,本案規劃以一套更完備嚴謹的海 圖資訊系統(NIS),透過海圖圖資伺服器管 理,建置與集中管理海圖中的各項海洋環境 圖資(包含DNC及ENC)。而黃前局長在拜訪美 國海岸測量局前,曾與ESRI公司海圖解決方 案專案經理Tim Kearns先生討論此一課題, 據Kearns先生表示,大氣海洋局不是第一個 試圖將ENC與DNC資料模型整合的單位,但是 目前仍然沒有成功的案例。他建議選擇以 ENC或者DNC其中一項資料模型為主,建置完 成NIS後,再以轉換軟體,將NIS內空間資料 轉換成另外一種格式的產品,應為最可行方 案。

因此,未來將依據海軍作戰需求,選擇以 DNC或ENC作為規劃海圖資訊系統(NIS)資料 庫架構之依據,並藉由ESRI海圖解決方案軟 體,發展海圖空間資料庫管理及編修標準作 業流程,包含籌建各類圖層資料建置作業流程及施作方法、圖例庫建置、圖資管理、產品檢驗、出圖版面設計及輸出流程設定等項目,確認可從單一NIS內的空間資料庫,產製紙張海圖、ENC與DNC等多元產品,並在海圖製作上達到集中管理,同步更新的目的,在海軍作戰環境資料庫的部分,亦可達到一元化管理多元化運用的目的。


(四)一元化管理

ESRI海圖解決方案的另外一項優點是可以 使用GIS系統,將海洋探測所獲得之海洋水 文資料、航海資訊、情報資訊、公眾資訊以 及其他軍事資訊,乃至於海圖生產線的產 品,全部整合在單一的海洋資料與海洋資 訊系統架構下,亦即整合在ArcGIS (ESRI的 GIS產品)作業環境中。

以往,大氣海洋局的海洋作戰環境資料 庫與海圖產品檔案庫分別儲存於GIS系統與 CARIS製圖系統中,當艦隊需要某項作戰任 務所需的客製化海圖時,製圖人員必須先 將海圖資料轉換至GIS圖資格式後,再使用 GIS系統將海圖資料與海洋環境資料整合, 頗為費時費力,無法達到快速支援海軍需求 之目的(如圖2a)。為確立本案研究成果對海 軍作戰需求之價值,本案分析海圖空間料庫 完成後與海洋環境資料庫之關係架構圖(如

a、圖幅式海圖檔案庫與海軍作戰環境資料庫關係圖

b、「海圖空間情報整合資料庫」與海軍作戰環境資料庫關係圖

圖2 海圖空間資料庫與海軍作戰環境資料庫架構圖 (資料來源:海軍大氣海洋局)

圖2b)。從架構圖可以看出建立NIS後,對製作海軍作戰所需客製化海圖,具有重要的意涵。此外,海軍作戰環境資料庫與海圖資料庫整合之後,亦可透過網路地圖服務(Web Map Service, WMS),將海圖圖資透過瀏覽器,配合現有的軍網智慧卡權限建立管理機制,直接在國軍網路上,提供海軍作戰單位

圖3 以應用程式介面所開發,在瀏覽器上顯示不同年份颶風路徑圖(資料來源: ESRI ArcGIS軟體資源中心)

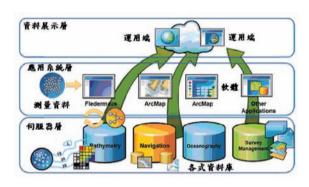
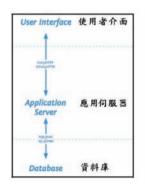


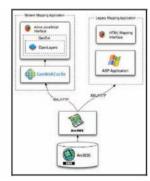
圖4 三層式管理技術用以儲存、管理、存取、分享海洋探測 資料(資料來源:美國2011年海道測量年會, By Timothy Kearns)

所需的海圖。

(五)多元化運用:

本案目標除須能維持原有產品製作及產出 能量外,亦須能多元化運用海圖空間情報整 合資料庫,發揮更大之整體效益,而其基本 概念即以資料庫中之點、線、面、影像及其 屬性等空間資料為基本,透過使用者介面之撰寫,達到對空間資料進行分析、查詢、演算、模擬及評估等作為,並反饋至使用者介面,供使用者作為相關判斷之依據。最簡單的例子為網路地圖服務,如以大氣海洋局現有之ESRI ArcGIS伺服器連結空間資料庫為例,則可透過ESRI海圖解決方案所提供之海圖圖式知識庫,以WMS方式提供網路地圖服務。並配合ESRI提供之ArcGIS應用程式開發介面,發展符合海軍作戰所需求之應用系統15;而圖三為透過此工具所開發之應用程式


圖5 將Fledermaus軟體與海圖空間情報整合資料庫整合(資料來源:美國2011年海道測量年會,By Timothy Kearns)


圖6 海圖空間情報整合資料庫與多波束測深資料整合(資料來源:美國2011年海道測量年會, By Timothy Kearns)

範例,其可在瀏覽器上顯示不同年份颶風路徑圖,與大氣海洋局目前在軍網內部網路上的颱風顯示系統功能十分類似。未來,可以依據此功能,搭配海圖空間資料庫開發與時序相關的應用系統,例如海軍作戰單位可以利用此介面,分析演習期間各個時間動次的參演艦艇軌跡,即可以WMS服務所提供的數值海圖作為背景底圖。

此外,以開放標準之地理資訊系統架構(如圖4)來看,建立網際網路圖資供應架構包括使用者介面(User Interface)、應用程式伺服器(Application Server)與資料庫(Database)¹⁶。此三層式(Three tiers)資料管理技術(如圖4)¹⁷,應用上可將達觀艦現有所探測之多波束水深資料處理與品管工作,在應用系統層內,直接以資料處理品管及展示軟體Fledermaus¹⁸與海圖空間情報整合資

a、網際網路圖資供應架構圖

b、實際應用系統架構圖

圖7「海圖空間情報整合資料庫」應用系統架構圖(資料來源:OpenGeo Suit公司網路資料)

料庫整合(如圖5、圖6)。

依據這個標準架構所發展之方案很多,例如,圖7為依據此架構發展的應用系統架構圖,該系統底層海圖資料是透過ESRI的空間資料庫引擎,將海圖解決方案的海圖圖資,透過ArcGIS伺服器,提供給一般的瀏覽器或者其他使用者應用介面。亦即上述以ArcGIS應用程式介面開發軟體,可開發網際網路版的海圖圖資供應系統,為未來隨選即印提供類似美國海岸測量局所提供的e-化海圖供應服務¹⁶。除此以外,著名Google Map/Earth或微軟的Bing Map或者NASA的World Wind等軟體,由大氣海洋局可藉由網路取得其傳輸效能高的影像金字塔,在三維圖台上顯示海圖資料。前述皆為本案建置後透過使用者介面程式開發之多元性運用實例。

參、研究成果

本研究工作置重點於空間資料庫規劃、設計與建構,並思考以一元化管理多元化運用為目標。先期以單機模式規劃先導作業, 蒐整現有各式圖資格式,進行綜合分析, 包括各項潮流、水深、助礙航標、紙張海圖掃描影像、CARIS圖檔、國際標準電子海圖(ENC)、數值導航圖(DNC)、影像式導航圖(ADRG)等,依其個別地理資料之特性加以分

類,建構海圖空間資料庫之空間與屬性資料表,包含制定資料結構及限制條件,研究以單一比例尺(五萬分一)資料密度建置空間資料庫之可行性及儲存方式。由於海圖製作所需資料來源相當多元化,且隨量測及資料取得時間與方式不同,相同區域範圍亦可能有多種不同資料型態與測量成果,故亦應考量時序性資料之儲存機制。

經整理及研究,已完成現有圖資分類 及其格式訂定,將圖資及資料分成向 量(Vector)、影像(Raster)及測量資料 (Processed Data)等三大類,並再細分為八 項,並測試此類圖資匯入空間資料庫後,資 料庫之效能及實用性(圖8)。

接著,參考美國海岸測量局研究評估結果 及內部文件,檢視本研究採用以ArcGIS為基 礎之海圖解決方案(Nautical Solution),作 為未來「海圖空間情報整合資料庫」生產線 軟體工具的適用性。依黃前局長與ESRI原廠 Nautical Solution專案經理討論結論,其 軟體工具現有資料模型架構僅能完成ENC與 紙張海圖或DNC與紙張海圖。故考量為能符 合未來我國三軍聯戰需求與海軍作戰需求, 以DNC資料庫架構為基礎,已先行以五萬分 一海圖04505、04506、04507等三幅海圖進 行測試,將CARIS海圖格式轉換至DNC資料模

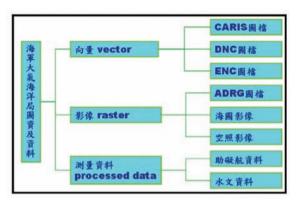


圖8 空間資料庫架構(資料來源:海軍大氣海洋局)

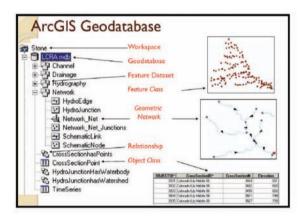


圖9 海圖資訊系統所使用之空間資料庫(資料來源:ESRI ArcGIS軟體資源中心)

型內,容納各項海圖元素,如泊位、燈標、水深、海岸線、海底電纜、碼頭、乾塢等空間資料(圖9),來建置整體資料庫。

在空間資料庫實作部份,目前已以ArcGIS 支援的Access空間資料庫建置個人型資料 庫,未來俟測試完成後,將以Oracle資料庫 軟體搭配空間資料庫引擎(ArcSDE),提供符 合多人編修、資料種類複雜及數量龐大之 作業環境,並進一步研究ENC、DNC及紙張海

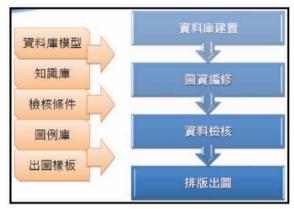


圖10 數值海圖系統產製流程(資料來源:海軍大氣海洋局)

表1 DNC與ENC比較分析表(標杆) (資料來源:海軍大氣海洋局)

類別:標杆		
DNC		
FACC Code	FACC說明	資料庫圖層
EC010	Beacon	BUOYCNP
ENC		
ENC資料庫圖層: AidsToNavigationP		
S57 Object	S57 Object說明	
BCNCAR	Beacon, cardinal	
BCNISD	Beacon, isolated danger	
BCNLAT	Beacon, lateral	
BCNSAW	Beacon, safe water	
BCNSPP	Beacon, special purpose/ general	

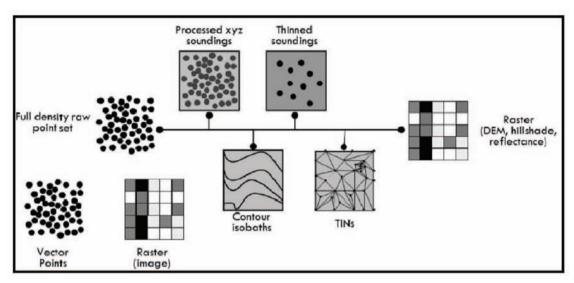
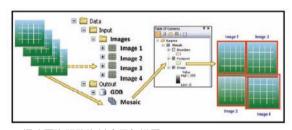
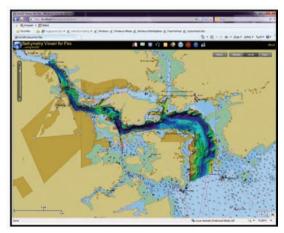




圖11 多波束資料處理流程架構圖(資料來源:美國2011年海道測量年會, By Timothy Kearns等)

a、網路圖資服務資料底層架構圖

b、由瀏覽器檢視海圖與多波束水深資料網格結合情形

圖12 WMS網路圖資服務(資料來源:美國2011年海道測量年會,By Timothy Kearns等)

圖等各產品資料庫產製海圖之作業流程(圖 10),做為海圖資料存儲與產製測試應用。 最後並分析DNC與ENC之差異,作為未來轉換 產製ENC電子海圖之參考依據如表1¹⁹。

此外,為與測量業務結合,本研究亦將多 音束水深資料進行分析處理,分析其資料處 理流程架構圖(圖11a)²⁰,作為未來海圖資料 庫與海洋作戰環境資料庫整合之參考依據。

最後,在WMS網路圖資服務功能評估部分,經分析ESRI的網格式海底地形影像接圖,其作法為保留原始單一影像,在空間資料庫內則儲存經過拼接的輸出網格式海底地形影像,並透過網路圖資服務(WMS)功能或HTTP查詢,從快取伺服器取得影像金字塔,可在瀏覽器上同時顯示海圖資料與多波束水

深資料網格(如圖11 b) ²⁰,未來則將以此一 門別類全面性更新與維護。 技術建置網路圖資服務介面。

肆、結論

「海圖空間情報整合資料庫」建置完成 後,對海軍而言,在實質上具有兩項重要的 意涵,一為海圖基礎空間資料庫與海軍戰場 環境資料庫的無縫接軌;二為各幅海圖因產 製流程精進後之無縫拼接,所產生之應用效 益。基此,海圖基礎空間資料庫建立後,海 軍各項作戰演訓任務所需的資訊,可以直接 套疊在海軍艦艇航行所使用的海圖系統上, 消除海圖與海洋作戰環境資料庫的空隙。未 來將以本研究基礎朝建立「海圖空間情報整 合資料庫」發展,藉以管理海圖中的各項海 洋環境圖資,包括水深、底質、沉船、礙航 物、燈標、導航標、海岸線、海底電纜等。 有助於保障海軍艦艇安全抵達作戰海域, 提供海軍精準武器打擊能力與執行海軍各 項戰演訓任務,如敦睦遠航、漢光等重大演 訓,滿足快速產製所需各類型圖資與戰場環 境圖資需求。

此外,「海圖空間情報整合資料庫」配合 即需即印與遠地出圖等技術後,可改善海圖 產製流程,其優點如下:

(一) 跨越圖幅限制,平時將海圖資料分

- (二) 大幅縮短圖資編繪時間且海圖內資 料管理集中並具一致性。
- (三) 航船布告資訊可於海圖資料庫即時 自動更新,使海圖資料具一致性。
- (四) 可搭配建置高速油墨印刷設備,短 時間內解決圖資低於庫儲安全存量問題,即 需即印,提升圖資供應效率。
- (五) 避免大量委印,減輕圖庫庫儲壓力 及小改正負荷。
- (六) 簡約之人力可有效提升圖庫管理、 海圖小改正及客服品質。
- (十)建立軍事及民用網路訂圖及售圖管 道,可便捷海圖供應與販售方式。

由上述優點得知,本研究為現行作業問 題及瓶頸提供一精進方向,可有效提升產 能與效益,節省製圖人力,無論紙張海圖、 ENC、DNC、ADRG抑或GIS主題圖資,均可快 速產製,並藉由生產線變革、無縫管理、網 路運用、即時發佈與遠地出圖等技術,擴展 整體海圖製作與服務效益,使海圖不再只是 海圖,而是具有高度運用價值之地理空間情 報資訊,並能精確而快速滿足海軍作戰所需 之空間資訊需求。

- 1 海軍部成立海道測量局:為了保護我國領海安全,民國10 年6月30日,海軍部呈大總統請設海界委員會,經奉批准由 總統府、國務院、外交部、海軍部與稅務處派員會議,議 決設立海道測量局;10月,海軍部提國務院議決,海軍部 派軍務司司長陳恩燾兼任本局局長,在部內附設辦公,並 派諮議許繼祥赴上海與海關稅務司、海政司及巡工司洽 商訓練海道測量人員及籌措經費等事宜。民國11年2月, 釐定本局編制,另派許繼祥任局長,移上海借用吳淞海軍 學校舊址辦公;4月21日,許繼祥奉大總統命令兼任本局局 長。
- 2 第一次革新:1990年由手工製圖進入電腦輔助製圖;第二次革新:2001年由電腦輔助製圖進入全電腦製圖,並生產電子海圖。
- 3 客製化主題圖:因應海軍艦艇任務需求,將數幅同比例尺 海圖,調繪成單幅海圖,供海軍艦艇專案或特定任務使 用,此類圖資需求常具緊急性,常用於一般航行以外之目 的。
- 4 CARIS:全名為Computer Aided Resource Information System為加拿大Universal System Ltd.公司所開發之海 道測量與海圖製作程式介面。
- 5 美國海岸測量局隸屬於美國商業部所轄國家海洋暨大氣總署,專門從事美國所屬經濟海域(200浬以內)水道及海岸線測量、潮汐及洋流觀測與推算及海圖製作等業務。 美國經濟海域以外,美方係透過國家地理空間情報局 與各國交換所獲得。另軍事需求之海圖由美海軍自行製作。
- 6 國際標準電子海圖(ENC):為依據國際海道測量組織第57 號(S-57)標準所製作之電子海圖,供國際間大型商船及 貨輪航行時使用,作為導航系統之基本底圖。
- 7 ESRI:全名為Environmental Systems Research Instutitute為美國環境資源研究機構,以其所生產之地 理空間資訊系統軟體ArcGIS系列產品聞名。
- 8 Julia Powell, Jorge Arias, Paul Michael Lewis,
 Travis Newman, Rafael Ponce, 2008. "Beata Van
 Esch Future of Nautical Charting at NOAA (Nautical
 Chart System II)". Proceedings of the Canadian
 Hydrographic Conference and National Surveyors
 Conference 2008.

- 9 Office of Coastal Survey, NOAA, 2005. "Nautical Chart System II Request for Quotation"
- 10 美國國家地理空間情報局為美國國防部所轄之機構,主要係整合該國與國際間所有圖資,包含各式海圖,為其美國軍方製作國際海域圖資及發佈相關航船布告。
- 11 數值導航圖(DNC)為美軍依據其軍規向量產品格式 (Vector Production Format,VPF;MIL-STD-2407)所制訂之 MIL-PRF-89023標準所產製,供軍事導航使用為主。
- 12 Office of Coastal Survey, NOAA, 2005. "Nautical Chart System II Request for Quotation".
- 13 S-57為國際海道測量組織(International Hydrographic Organization, IHO)的第57號標準,此標準規範了國際海道測量組織之數值水道資料轉換標準(IHO TRANSFER STANDARD For DIGITAL HYDROGRAPHIC DATA)。
- **14** DIGEST為北約之數值地理交換標準(Digital Geographic Exchange Standard; STANAG 7074),;美國即依此發展軍規向量產品格式。
- 15 ESRI ArcGIS Resource Center 2011. "ArcGIS API for Silverlight" http://help.arcgis.com/en/webapi/ silverlight/
- 16 OpenGeo Suit 2011. "White Paper: The OpenGeo Architecture" http://opengeo.org/publications/ opengeo-architecture/
- 17 Timothy Kearns, 2011. "Managing 3D Gridded Data in an Enterprise GIS". US Hydro 2011 Conference, Tampa, Florida.
- 18 Fledermaus為三維地理資訊處理品管及展示軟體,由 Interactive Visualization System, IVS 3D公司所開發。
- 19 表1以標杆(Beacon)為範例,説明在DNC海圖中的FACC代碼 為ECO10,其所存放的圖層為BUOYCNP,相對應的ENC資料庫 圖層為AidsToNavigationP,然而ENC電子海圖S-57規格中, 其S57物件則再細分為五種標杆,由此可見為何這兩種資 料模型很難同時並存於同一資料庫結構的原因。
- 20 Tim Kearns, Lee Brinton, Jamie Crandall, Lindsay Gee, 2011. "Managing and Serving BAGs and BAGs of Data" US Hydro 2011 Conference, Tampa, Florida.