防衛作戰之利器 無人飛行載具(UAV)

作者 國防大學戰爭學院主任教官 謝游麟上校

提 要 >>>

- 一、UAV主要組成包含載具、酬載、資料鏈、地面管制站、起飛與回收裝備、 地面輔助裝備等6大部分。
- 二、UAV之特性:生命威脅低、可專注執行任務;重量輕、體積小、機動性強 ;隱蔽性佳、存活率高;滯空時間長、作業效果佳;造價相對低廉、成本 效益高;政治敏感較低;無核生化感染顧慮。
- 三、防衛作戰各階段UAV之運用:(一)聯合制空階段:置重點於敵情偵蒐、重 點反制、欺敵誘惑、制壓敵防空火網;(二)聯合制海階段:毀敵耳目、擴 大情監偵範圍、協力艦隊防空;(三)聯合國土防衛階段:判明敵主力登陸 方向、火力引導與射彈修正、側翼警戒。
- 四、國軍在未來臺澎防衛作戰中,應判斷敵作戰能力、戰術戰法及可能行動, 積極發展與部署符合各作戰階段、各軍種作戰需求之UAV,加快UAV戰術 單位之編制。

關鍵詞:無人飛行載具、敵情偵蒐、射彈修正、防衛作戰

前言

Vehicles, UAV)素有「廉價的人造衛星」 、「廉價的巡弋飛彈」之稱。¹UAV造價 無人飛行載具(Unmanned Aerial 成本不但低於載人飛機,且機型輕巧、靈

於下頁。

防衛作戰之利器

— 無人飛行載具(**UAV**)

活性高,大幅提升戰場存活率,已為各國 軍隊發展之重要目標。目前國軍正以創新 (Innovation)的思維積極發展不對稱戰力, 主要發展重點在於將傳統陸、海、空軍基 本戰力之外的其他作戰能力,進行靈活的 組合運用,²期能建構「損小、效高、價 廉、易行」之不對稱戰力。3為滿足此一 需求,積極發展「無人飛行載具」應是最 佳選項之一,尤其現階段我衛星照情能力 極為有限、戰場及時情資獲得困難,同時 須面臨中共日益強大的防空火網威脅, UAV便成為我遂行防衛作戰之利器。基 於此,本文首先對UAV系統組成與種類 、特性與限制、在軍事領域之運用與發 展趨勢提出說明; 進而探討中共與我國 UAV之發展概況;最後置重點於UAV在 臺澎防衛作戰各階段之運用,並提出各軍 種UAV作戰需求建議,期能發揮UAV之 優勢作為, 剋敵制勝。

無人飛行載具(UAV)簡介

無人飛行載具(UAV)或稱無人機、無人飛機、無人飛機系統(Unmanned Aircraft System, UAS)是近年來航太產業的熱門項

目之一。UAV的發展是從1914年英國研製開始,至1917年美國人斯佩里(Sperry)在軍方支持下,將1架有人駕駛飛機成功改裝為無人駕駛靶機開始,其間經歷了靶機、偵察機、誘餌機、戰鬥機等階段,再到今日UAV類型繁多、功能全面之高發展時期。⁴尤其許多單調(Dull)、骯髒(Dirty)及危險(Danger)的3D任務將會越來越倚重UAV來執行。⁵

一、UAV之組成系統與種類

(一)組成系統

根據美國國防部對於UAV的定義:「一種沒有搭載操作人員的動力飛行載具,使用空氣動力來提升動力,以自主或遙控駕駛方式飛行,可以是消耗品,也可以重複使用,並且能攜帶殺傷性或非殺傷性武器。不過能以彈道軌跡飛行的飛行載具,以及巡弋飛彈都不算是無人飛行載具。」。UAV是一個複雜的系統,其最主要組成包含載具、酬載、資料鏈、地面管制站、起飛與回收裝備、地面輔助裝備6個次系統,分述如后:7

1.載具(Aircraft Vehicle)

「載具」為系統內可升空部分,包

¹ 胡堯儲,〈無人飛行載具發展及陸軍可能運用之研討〉《陸軍學術月刊》(桃園),第41卷第476期,2005 年2月,頁75。

² 國防部「四年期國防總檢討」編纂委員會,《中華民國九十八年四年期國防總檢討》(臺北:國防部, 2009年3月),頁47。

³ 國防部「國防報告書」編纂委員會編,《中華民國100年國防報告書》(臺北:國防部,2011年7月),頁90。

⁴ 時先文,〈有時無人(UAV)勝有人 — 未來戰爭趨勢〉《空軍學術雙月刊》(臺北),第622期,2011年6月,頁84。

⁵ 陳克仁,〈無人飛行載具/無人戰鬥飛行載具〉《國防譯粹》(臺北),第33卷5期,2006年5月,頁13。

⁶ 同註5,頁5。

⁷ 洪兆宇,〈無人飛行載具UAV過去、現在及未來〉《陸軍學術月刊》(桃園),第39卷第456期,2003年8月,頁91。

含機架、動力單元、飛行控制、電力系統 及資料傳輸單元等。載具可為定翼機、旋 翼機等形式。

2.酬載(Payloads)

「酬載」乃UAV存在的價值,同時也是系統中最昂貴的部分,通常會視任務性質搭配不同酬載,如偵察時攜帶攝影機、移動目標顯示器及合成孔徑雷達(Synthetic Aperture Radar, SAR),標示目標時攜帶雷射定位儀,甚至攻擊性武器等。8

3.地面管制站(Ground Control Station, GCS)

「地面管制站」為任務指揮官之指揮所,亦為整個UAV系統的神經中樞,與載具間的所有影像、指令及數據均在此處處理並顯示,數據係透過資料鏈系統的地面天線中繼而來(如圖一)。

4.資料鏈(Datalink)

「資料鏈」為UAV中一重要次系統,作為載具與地面管制站雙向構聯的介面。傳輸時,以數kHz速率將飛行路徑管制與酬載控制資訊上傳,下載時可傳送攝影機及雷達等感測器所獲得之資訊。⁹

5.起飛與回收裝備(Launch/Recovery System)

UAV起飛與回收方式不一,傳統 為跑道起降,亦可使用旋翼垂直起降。如 以彈射方式起飛則可借助火箭或是液壓與 氣動複合裝置,回收時,除傳統跑道外, 亦可使用降落傘、攔截網與緩衝設施等。

6.地面輔助裝備(Ground Support Equipment, GSE)

「地面輔助裝備」包含安裝、測試 、維護、檢修工具、能源補給及吊放載具 用之吊重裝備等。

(二)UAV之類型

UAV類型繁多,可依用途(軍用或民用)、構造(大型、中型、小型、微型)、控制方式(遙控或自動控制)、功能等進行分類。¹⁰在功能方面區分:¹¹

1.戰術型UAV

屬一般近、中距離低空之無人飛行載具,可遂行戰場監偵、射彈觀測、任通信中繼與即時影像提供等任務。代表作有以色列的先鋒號(Pioneer)、美國的獵戶(Hunter)及影子200(Shadow 200)等,其中先鋒號UAV(如圖二)。

2.中高度長航程UAV(Medial Altitude Long Endurance, MALE)

屬長距離、中/高空、長滯空之無人飛行載具,可遂行大範圍進行監測、偵察任務。代表作首推美國的掠奪者(Predator)等。掠奪者之載具可攜帶光電(EO)、紅外線(IR)及合成孔徑雷達(SAR),並可掛載地獄火飛彈對目標進行攻擊(如圖三)。

3.高高度長航程UAV(High Altitude Long Endurance, HALE)

主要是用於高高度、遠程和長續航

⁸ 無人飛機的酬載通常分為四類:感測器(電子光學、雷達、信號、氣象、生物化學等)、傳輸(通信、導航信號)、武器、貨物(傳單、補給品),或是以上幾種之組合。

^{9 「}資料鏈」主要功能為操控導航規劃、載具動作、資料交換、情報處理及酬載運作等。

¹⁰ UAV詳細之分類可參考「國際無人載具系統協會」之網站:http://www.auvsi.org/Home/

¹¹ 劉汝鈴,《國防尖端科技 — 下冊》(龍潭:中山科學研究院,2007年6月),頁524。

無人飛行載具(UAV)

圖一 UAV之地面管制站(GCS)

資料來源:http://www.defenseindustrydaily.com/uav-ground-control-solutions-06175/

圖二 先鋒號UAV

資料來源: http://www.fas.org/irp/program/collect/avinfl1. jpg

時間的連續偵察、監視任務,如美國的全球之鷹(Global Hawk)等。全球之鷹可在距基地5,500公里遠的目標區持續偵察、監視24小時,並可在夜間或降雨天氣執行任務(如圖四)。

4.垂直起降UAV(Vertical take off UAV)

此種UAV較不受地形環境影響, 惟滯空時間短,大約8小時以下,如美國 海軍的火力偵察兵(Fire Scout),可從海軍 船艦上自主起飛,續航時間6小時,活動 範圍110浬(如圖五)。

5.無人戰機(Unmanned Combat Aerial Vehicle, UCAV)

無人戰機可以攜帶武器與電子干擾裝置,破壞敵人的雷達,且操作人力比無人飛機來得少,同時具敏捷性、隱蔽性,並能與一般軍用有人飛機一起執行任務。1990年代中期,美國國防部即開始研發一種新型的X-45A無人戰機,用以壓制敵人防空火力(Suppression of Enemy Air Defense, SEAD),執行空對地攻擊(如圖六)。12

6.微型飛行器(Micro Aerial Vehicle, MAV)

MAV是種長、寬和高都小於15厘米、重量不到100克、飛行速度10~20公尺/秒、續航時間1小時、航程1~10公里的無人飛行載具。¹³因其形小質輕,便於攜帶,可單人操作,為戰場上單兵之偵蒐利器,主要用途包括提供複雜地形或城市建築物群之間的敵情偵察,亦稱之為

¹² 黄俊彦,〈無人戰機 —— 研發壓制敵防空火力功能〉《青年日報》(臺北),2004年4月18日,版3。

圖三 掠奪者UAV

資料來源: http://science.howstuffworks.com/predator.htm

圖四 全球之鷹UAV

資料來源: http://thefillmoregazette.com/military/globalhawk-uav

間諜飛機(Spy Plane),如美國航空環境公司發展出的微型飛行器 — 黑寡婦(Black Widow)(如圖七)。

二、UAV之特性與限制

(一)UAV之特性

與有人駕駛飛機相較,UAV展現

以下之特性:

1.生命威脅低、可專注執行任務

「無人駕駛」是UAV最大特色, 其操作員可位於遠在後方的GCS車廂裡, 而不用暴露於敵方防空武力威脅下的戰機 上,故能在深入敵區的高度威脅環境下, 執行任務,而無需顧慮人員生命損失;既 沒有人員被擊落的危險,又不需操縱飛機 等額外的顧慮,進而可全心全意專注於任 務目標的執行上。

2.重量輕、體積小、機動性強

當今世界上的UAV種類已超過300多種,有70%重量不超過200公斤,80%重量不超過500公斤,重量超過2,000公斤只占10%以下。以體積來看,一般UAV長度不超過5公尺,且作戰時無需複雜的輔助起降及控制設施,起降方式多且易行。14並可放置於船艦上或由車輛運送至適當地點部署,短時間內便可完成備戰,可於戰場上輕易執行各類型情、監、值(ISR)或打擊任務,具戰術彈性。

3.隱蔽性佳、存活率高

UAV的造型設計大部分均為體積小、動作靈活,可承受持續大G力(G-Force) 飛行,加以隱匿技術(如雷達波吸收塗料或材料等)的運用,使其雷達反射截面積 (RCS)變得較小。同時在設計上亦考量靜音和紅外線的效果,使其在作戰區域內不易被敵偵測發現,存活率較載人飛機高。15

4.滯空時間長、作業效果佳

¹³ 同註11,頁527。

¹⁴ 何小林,〈無人飛行載具 — 主宰戰場上的利器〉《海軍學術月刊》(臺北),第34卷第10期,2000年10月,頁23。

¹⁵ 王國華,〈無人載具之運用〉《國防雜誌》(桃園),第15卷第4期,2000年4月,頁63。

防衛作戰之利器

- 無人飛行載具(UAV)

情、監、偵任務需長時間且持 續執行,方能獲得較佳效果,若以目 前有人駕駛的飛機執行此一任務,不 但造成人員生理及心理上的負荷,機 員們容易疲勞,同時亦增高執行任務 的風險。而UAV的一般滯空時間都可 超過4小時以上,比一般有人駕駛的 飛機要長的多,尤其UAV的地面控制 站設立在地面上,操控人員可以多人 輪班方式來實施,作業的效果更佳。

5. 造價相對低廉、成本效益高

現今世界各國空防系統的發展 迅速, 使得空中偵察、攻擊仟務日益 困難,也造成戰機的損失率日趨攀升 ,如1架高性能戰機的造價多在3~5 仟萬美元之間,預警機的造價甚至高 達數億美元,相對於UAV其浩價節圍 多在100萬美元之內。另外, UAV可 藉由模擬器執行操作訓練,所使用軟 體、飛行控制平臺、訓練過程經驗獲 得均與實際狀況所差無幾,無需真正 出動飛行器,故人員訓練、零件的更 換及定期大修等作業費用均較節省。 且平時停駐在飛機庫房中待命,戰時 移動出來便可使用,故在維修費用消 耗上僅及有人作戰飛機的20%。16

6.政治敏感較低

全球戰略環境改變,國際上發生大 規模戰爭之機率不大,但局部戰爭和小型 武裝衝突卻反而越來越多,如美國之強國 亦因受到政治、國際法羈絆,而無法為所 欲為去執行干預等行動。因此,選擇運用 UAV遂行特殊任務,可降低政治敏感問

圖五 火力偵察兵UAV

資料來源: http://www.gizmag.com/go/4329/picture/13191/

圖六 X-45A UCAV

資料來源: http://www.theuav.com/x45-a photo.html

題,較易達成所望目標。

7.無核生化感染顧慮

核生化作戰所帶來的災害屬於長期 性及毀滅性。一般來說,世界各國均儘可 能避免此類型戰爭的發生;惟國際間之獨 裁者、弱小國家或恐怖分子,為保障其政 權或生存發展,仍有可能孤注一擲。在此 類型戰爭中,運用UAV擔任各種任務,

¹⁶ 王亞民、謝三良,〈無人飛行載具之發展及在本軍的應用〉《海軍軍官》(臺北),第22卷第3期,2004年 6月, 頁20。

ARMY BIMONTHLY

圖七 黑寡婦MAV

資料來源: http://www.avinc.com/uas/adc/black widow/

乃為最適當之武器系統。¹⁷

(二)UAV之限制

1.易受天候之影響

天候因素不僅影響UAV飛行性能,也影響情報偵蒐成效。尤其霧和低雲會降低偵蒐成效,雖然紅外線照相機可以穿透薄霧,但卻無法穿過濃霧及雲層。戰場的雲層過低將使UAV的偵蒐作業困難,為了滿足影像情資蒐集的需求,UAV必須保持低飛,相對的也增加了暴露於敵防空火網的危險。此外,霧、風速、風向也會影響UAV之落地及回收作業。

2.處置突發狀況能力有限

UAV在技術上因無飛行員且機載 系統複雜,也給其飛行帶來不便。當機件 出現故障時,無法自我排除,通常要返回 基地處理,易發生摔機事故;又UAV因 採無線電遙控,無法與有人操縱之飛機具 相等且獨立思考應變之能力,較無法應付突發之狀況。另外,對於「戰況體認」 (Situational Awareness,SA)亦受到某種程度的限制。¹⁸

3.易受空中及地面攔截

現有之UAV尚無加裝敵我識別及 自衛能力,敵可依據UAV性能、基地位 置及任務,研判出其活動區域。更由於其 速度及飛行高度受限,易受地面及空中伏 擊攔截。另外,發射基地遭攻擊後,亦容 易喪失作業能力。¹⁹

4.易受電子干擾

由於UAV功能的發揮,端賴電子 酬載設備,實施資料上下情傳鏈路及做長 遠距離之導控,如遇敵實施空中及地面電 子干擾,易影響UAV功能及導引控制站 之指揮管制。²⁰

5.掛載受限

由於UAV體積小,載重之重量受限,無法同時執行不同任務酬載。

從以上UAV的限制證明,單機使用有其潛在的缺失,必須依據任務、可用機種妥善編組及規劃各種機型的搭配運用,以長短相輔達成所望目標。²¹

UAV在軍事領域之運用與 發展趨勢

UAV的運用可區分軍事與非軍事兩方 面,非軍事方面計有反偷渡、緝私、環境

¹⁷ 陳仁義,〈遙控無人飛行載具運用之研究〉《空軍學術月刊》(臺北),第492期,1997年10月,頁4、5。

¹⁸ 同註5,頁8。

¹⁹ 胡堯儲,〈無人飛行載具發展及陸軍可能運用之研討〉《陸軍學術月刊》(桃園),第41卷第476期,2005 年2月,頁75。

²⁰ 同註7,頁91。

²¹ 同註19,頁76。

防衛作戰之利器

— 無人飛行載具(**UAV**)

監測、大氣天候研究、地質探勘研究等。 軍事用涂與其發展趨勢分述如后:

一、UAV軍事用涂

(一)戰場目標之情、監、偵(ISR)及戰 果評估

運用UAV酬載之光學紅外線照相 機、雷射測距儀,合成光學孔徑雷達、雷 **混攝影機及電子偵察等設備,可將戰場的** 即時情報與影像傳回GCS進行分析研判, 提供指揮官精確之目標情報或戰果鑑定、 評估,以利後續任務之遂行。22如第一次 波灣戰爭中,法軍運用UAV偵察敵情並 傳送到地面指揮部,該軍師長根據UAV 提供之情報,在行軍時躲過了伊軍戰車和 **砲兵陣地**,不費一槍一彈即占領了納齊茲 高地。使該師居高臨下對整個戰區進行周 密之 監視及控制,不僅減低了對法軍的威 脅,亦使法軍順利完成既定的作戰任務。

(二)涌信中繼

當面臨特殊作戰環境,如陸地複 雜地形、海上超視線外(受地球曲度或距 離影響)等,無法用一般光學或電磁偵測 涵蓋的地方,可運用UAV擔任無線電通 信中繼站,即「空中通信節點」(Airborne Communication Node, ACN),延伸通信距 離(如圖八)。24

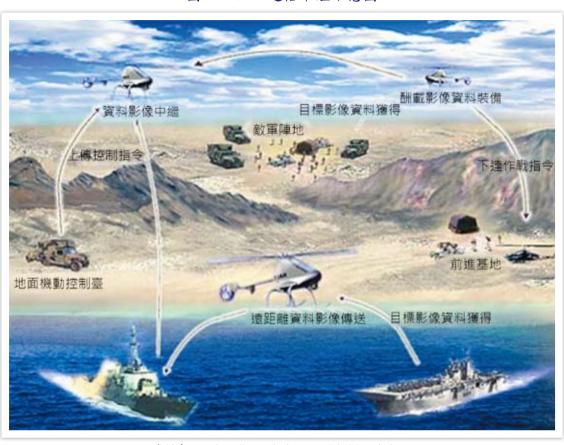
(三)欺敵及電子作戰

UAV攜帶雷達反射器,擔任假目 標吸引敵開啟防空雷達及飛彈攻擊,此時

位於後方或高空之雷戰機,即可分析敵方 雷達、涌信設施、指揮管制系統各種電子 參數, 並據以實施攻擊或干擾仟務。 另外 ,以廉價消耗性或戰術性之UAV裝掛涌 信及電子干擾器材,實施戰術欺敵及雜 波干擾,以協助攻擊機執行任務;或於高 危險及嚴密防禦之目標區,投擲各型干擾 器,以削弱敵方預警、搜索雷達及防砲、 飛彈之射控雷達的功能,進而確保軍隊安 全。25

以1982年6月以色列與敘利亞空軍在 貝卡山谷(Begaa Valley)進行空戰為例。 此次戰役以色列用「伺候兵」(Scout)及「 猛犬」(Mastiff)兩種UAV,裝載模擬全形 F-4戰機的雷達反射器當作誘餌,引誘部 署在貝卡山谷的敘利亞薩姆6型(SA-6)飛 彈及火砲向其攻擊。此時,另有2架UAV 對敘軍導引系統的雷達頻率及導引信號內 容進行截收,並精確標定飛彈基地位置, 以軍隨即將這些信息傳送給E-2C預警機 , E-2C則依據所獲得的資料,向裝有電 子干擾設備的F-15、F-16、F-4戰鬥機發 出實施電子干擾指令,導致敘利亞飛彈陣 地的雷達受到干擾,薩姆6型飛彈完全失 去作戰效能。此外,另有一些戰機攜掛反 輻射飛彈,擊毀該飛彈基地雷達,該次戰 役以色列沒有任何人員損失,而在短短6 分鐘攻擊中,敘軍19個薩姆飛彈基地化為 島有,以軍戰果輝煌。²⁶

(四)充當訓練靶機


²² 同註16,頁21。

馮垂中,〈無人載具軍事上之運用〉《海軍學術雙月刊》(臺北),第30卷第11期,1996年11月,頁56。 23

²⁴ 司南,〈RPV遙控無人載具〉《軍事家》(臺北),第93期,1992年9月,頁82。

同註16,頁22。 25

²⁶ 呂炯昌,〈中共亟欲研製無人機,科技劣勢難突破〉《青年日報》(臺北),2011年9月30日,版7。

圖八 UAV通信中繼示意圖

資料來源: http://www.lasi.com.tw/pbt04-main.htm

以UAV模擬飛機、飛彈的飛行狀態,鑑定各類研發新型裝備的性能及參數 ,提供操作手訓練機會,藉以驗證火砲、 飛彈等新武器系統的能力等工作。

(五)空中突擊

於UAV上安裝目標搜索雷達和攜 掛武器系統,可用於執行對地攻擊任務。 例如:2002年11月1架美國空軍的掠奪者 (RQ-1,Predator)無人偵察機,攜帶4枚地 獄火(AGM-144,Hellfire)空對地導向飛彈 ,在阿富汗邊界外成功狙殺6名乘坐賓士 轎車的恐怖分子首領。這次攻擊使用無人 飛機加上導向飛彈的戰術,已經為人類戰 爭史劃下嶄新的一頁。²⁷

除上述UAV在軍事領域的運用外 ,在歷次戰爭中亦充分發揮其功能,表現 優異(如表一)。

二、UAV未來發展趨勢

UAV未來在性能上的發展趨勢如下:²⁸

(一)機身組件:模組化、通用化、小型化、智能化與隱形化。

²⁷ 陳宗逸,〈全新戰爭概念在阿富汗上演〉《新臺灣新聞週刊》(臺北),第349期,2002年2月,頁34。

²⁸ 劉克儉等,《美國未來作戰系統-2009年增訂版》(北京:解放軍出版社,2009年3月),頁237。

防衛作戰之利器

— 無人飛行載具(**UAV**)

表一 UAV戰場運用記錄

戰			場	使月	用 國	機	種	用	途	成		果
越	南	戦	場	美	國		中程		偵搜		減少人員傷	亡
黎	南見	十山	谷	以色	色列		中程	誘	敵、佯攻	偵測敵雷	達電子參數	
笙	一次	波灣戰	: 爭	美國	、聯軍	中	、長程		、戰果評估	偵察敵防	空系統、軍	隊部署、戰
71		(人) 下	(1	八四	101 —	'	八任	[[[]]	- 1 2,70 10	果評估		
科	索	沃 戰	場	美	國	中	、長程		ISTAR	低空偵察	、戰場監控	、反電子戰
阿	富	汗 戰	場	美	國	中	、長程	ISTAR	、空襲、狙擊	開啟無人	機攻擊先河	
第	二次	波灣單	爭	美	國	中	、長程	戰鬥	機數據鏈結	C ⁴ ISR整台	全運用	
/+			考	ISTAR代表情報(Intelligence)、偵察(Surveillance)、目標獲得(Target Acquisition)								
備				、監視	見(Reco	onnai	ssance) •					

資料來源:胡堯儲,〈無人飛行載具發展及陸軍可能運用之研討〉《陸軍學術月刊》(桃園),第41卷第476期,2005年2月,頁69。

(二)任務規劃:全天候、長滯空、遠 距離、高辨識、可即時。

(三)地面控制:數據寬頻、安全保密 、網狀傳輸、資訊共享、人機互動、操控 簡化、重設容易。

(四)成本效益:相對低廉、維持容易 、高度戰備、反應迅速。

(五)作戰任務:高低搭配、混合編組 ,並與有人駕駛系統一同出勤,受其在空 指揮;偵察與攻擊功能合一。

從UAV發展趨勢來看,UAV將不再 只是戰爭上的一種配屬武器。隨著UAV 技術的成熟,其發展的速度及在戰爭中被 廣泛運用,在未來的戰場上,很有可能會 大幅度的代替有人飛機,成為未來戰爭的 主要作戰力量,並在偵察、監視、空中戰 鬥、制壓作戰、戰子戰等各個作戰領域大 顯身手。

中共與我國UAV之發展

一、中共

(一)UAV發展概況

在過去30~40年的時間裏,中 共除在1994年從以色列購買哈比(Harpy) 無人機外,已經自行研製了多種型式的 UAV,其中大多數以西方國家(主要是 美國)無人機和無人戰鬥機的概念為基礎 。如近、中距離的戰術型UAV有ASN-104/105、ASN-206/207等無人機;高空長 程的戰略型UAV有長虹一型、ASN-209、 翔龍無人偵察機、WZ-2000B無人戰鬥機 、Harpy反輻射無人機、殲6改裝之無人機 等;垂直起降的UAV有海鷗、U8E無人機 等;相關機種圖片(如圖九)。29主要機型 的用途與性能(如表二)。

另外,值得一提的是,中共於2012年的珠海航展中,無人機的展出是此次航展的重點,各式各樣的無人機或以模型或實體展出。最引人注目當屬首次亮相的「彩虹-4」(CH-4)無人機。「彩虹-4」外型與美國掠奪者無人機極為相似,其飛行高度達7~8千公尺,飛行速度可達300公里/

^{29 〈}中國無人機的研發現況〉《星島環球網》,2009年10月16日,http://blog.udn.com/janlu339239/6785314

M Y B I M O N T H L Y

圖九 中共各機型之UAV

資料來源: http://www2.cna.edu.tw/961213/month/cnadata/mm/22-4/22-4-6.htm

表二 中共UAV主要機型的用途與性能

機型	用途	主			要性				能				
(元	任	務	半	徑	滯	空	時	間	飛	行	高	度
ASN-104/105	及時影像傳送		300	公里			2小	時		3	3,200	公尺	
ASN-206	偵搜、目標標定、反電戰、空照		150	公里		4	~8,	小時		5~	~6,0	00公	尺
ASN-207	誘敵、電戰、反電戰、訊號情報		200	公里		4	~6 <i>,</i>	小時		3	3,000)公尺	
長虹一型	戰術偵察	1	2,500	公里			3小	時		1	7,50	0公月	₹
ASN-209	偵搜、射彈修正、電戰、通信中繼	225公里			10小時				5,000公尺				
翔龍	戰略偵察	,	7,000	公里			10小	時		1	8,00	0公月	₹
WZ-2000B	偵察、電子情報、空照	1	2,000	公里			3小	時		1	8,00	0公月	₹
Harpy	反輻射		500	公里		4	~6	小時		3	3,000	公尺	
殲6改裝	空中攻擊、消耗敵防空武器		1,560	公里		2	~4,	小時		1	6,00	0公月	₹
U8E	偵察		150	公里			4小	時		3	3,500	公尺	

資料來源:1.胡堯儲,〈無人飛行載具發展及陸軍可能運用之研討〉《陸軍學術月刊》(桃園),第41卷第 476期,2005年2月,頁75。2.參閱 http://www.sinodefence.com/

小時,飛行時長為40多個小時,可執行遠 在前翼下方可掛載2枚空對地飛彈,意味 距離任務。在武器裝備方面,「彩虹-4」 著該機不僅可執行偵察任務,還能對地面

防衛作戰之利器

— 無人飛行載具 (**UAV**)

目標實施攻擊。30

(二)中共UAV戰時運用之研判

臺海作戰初期,研判中共將會運用UAV配合其他陸、海、空、二砲兵力奪取制空、制海、制電磁權,以開創其爾後作戰有利機勢,主要作為分析如后:

- 1.以UAV偵蒐我方電子參數,協同 哈比反輻射無人載具摧毀雷達基地(站)及 壓制並攻擊我防空飛彈、預警雷達,再以 M族飛彈或巡弋飛彈,對我重要設施進行 破壞,癱瘓我軍指揮管制能力。
- 2.由UAV攜帶電戰裝備(如電戰筴艙、彈藥、干擾絲、電子誘餌等),對我實施軟硬殺及電子戰制壓,有效干擾、破壞我雷達,形成缺口,以利其爾後作戰。
- 3.由UAV擔任「空中斥候」任務, 而攻擊機則於安全區域待命,待目標區狀 況確認肅清,無安全顧慮時,攻擊機立即 前往目標區實施攻擊。
- 4.運用哈比及殲6無人載具配合戰機 藉協同作戰,對我機場、港口、後勤、通 信及交通設施等固定目標執行襲擾、欺敵 、誘餌、攻擊任務。
- 5.以大、多批次之UAV對我重要政經軍中心、機場、雷達、觀通系統、飛彈、防砲等基陣地作飽和襲擾,造成我之誤判。同時迫我對其無人飛機實施雷達追瞄、鎖定,以利其對我雷達參數之蒐集、防空飛彈之消耗。

針對中共UAV之威脅,國內學者曾祥 穎就曾提出,國軍應有之「因應之道」: 研擬UAV之戰術戰法、精研反UAV之戰 術戰法、加速機動相列雷達研製與配備、 將UAV納入正常演訓、律定指管權責、 修訂空域指管權責等。³¹

二、我國

國內UAV研發單位首推中科院,其次 則為緯華航太公司及民間大專院校(如成功大學航太系所等)。分述如后:

(一)中科院

中科院成立於民國58年,迄今已 建立了航空、機械、電子、資訊、化學化 工、材料光電、品保等完整的技術與大型 系統研發、管理與整合的能量,為我國防 科技的重鎮。中科院歷經各式飛彈武器系 統研發,累積許多飛行導引控制、推進、 氣動力設計與實驗等技術和經驗,已擁有 自行研發UAV能力。目前研發之UAV具 有全球定位導航、自動飛行控制、電子反 干擾、即時影像傳輸等先進功能,並可日 夜執行長時間偵蒐仟務、戰場監控、目標 搜尋與定位、戰場損害評估等任務。32另 亦可配合民生需求,進行地形、地貌偵照 與監控、氣象與災情監測、海岸巡防搜索 、交通監視與管制、核生化污染與環境監 測等工作,屬多用涂、戰術型的UAV。 主要包括「天隼二型」與「中翔二號」兩 種形式,簡述如后:

1.天隼二型

「天隼二型」(如圖十)為中科院資 訊通信研究所研製,具戰場監控、目標定 位及追蹤用途;也可搭配紅外線/可見光

^{30 〈}彩虹-無人機類似美國掠奪者可攜衛星制導炸彈〉《新浪網》,2012年11月12日,http://news.sina.com

³¹ 曾祥穎,〈無人飛行之運用與展望〉《陸軍學術雙月刊》(桃園),第47卷第515期,2011年2月,頁75。

^{32 〈}航空無人飛機系統〉《國防部軍備局中山科學院網站》,2012年7月2日,http://cs.mnd.gov.tw/Publish. aspx?cnid=978&p=10896&Level=2

ARMY BIMONTHLY

雙感測器光電酬載,執行夜間偵照任務。 天隼二型採空氣彈射設計,大幅提升系統 機動能力。全套裝備包括機體、地面導控 站,以及相關彈射、支援裝備,均可裝載 於3部廂型車中,快速運送、機動部署, 其導控距離長達150公里;且擁有不易為 紅外線/雷達導向導彈鎖定的特性,戰場 存活度極高。《詹氏年鑑》提供天隼二型 的性能諸元為機長4公尺、翼展5公尺、載 荷可達30公斤、滯空時間4小時、平均巡 航速度為50節、航程150公里、飛行高度 可達2,400公尺、續航時間約5小時。³³

2.中翔二號

「中翔二號」(如圖十一)為中科院 航空研究所研製,於88年5月20日試飛成 功,可執行日、夜間長時間偵蒐任務,採 用後推式螺旋槳發動機。主要特性為可長 期滯空飛行、具備短場起降能力、高酬 載能力、具有電子反干擾能力,並可以做 即時的資訊傳輸,資料鏈可加密傳輸, UAV的飛行狀態可即時顯現在地面控制 站上。中翔二號採用複合材料、整個機體 結構設計重量輕、強度高,採組件模組化 設計、拆換維修容易。整個機身長5.7公 尺、翼展7.5公尺、高1.8公尺、載荷量可 達51公斤、續航時間約4~6小時。34

二、緯華航太公司

緯華航太公司成立於1993年,並於1998年投入無人飛機的研發製造,並與美國ATI及SAIC公司合作發展Vigilante 502型垂直起降UAV(如圖十二)。主要規格為

圖十 天隼二型UAV

資料來源: http://cs.mnd.gov.tw/Publish.aspx?cnid=978&p= 10899&Level=2

圖十一 中翔二號UAV

資料來源: http://cs.mnd.gov.tw/Publish.aspx?cnid=978&p= 10899&Level=2

主旋翼直徑7公尺,起落橇寬2.4公尺(不 含起落橇時機身寬1.2公尺),高2.4公尺, 淨重267公斤,最大起飛重量500公斤,升

^{33 〈}國造UAV列傳(含評論)〉《PChome網站》,2010年10月23日,http://mypaper.pchome.com.tw/fl4tomcat/post/1321576853

^{34 〈}航空無人飛機系統〉《國防部軍備局中山科學院網站》,2012年7月2日,http://cs.mnd.gov.tw/Publish.aspx?cnid=978&p=10896&Level=2

防衛作戰之利器

— 無人飛行載具 (**UAV**)

圖十二 Vigilante 502 型垂直起降UAV

資料來源: http://www.lasi.com.tw/pbt04-main.htm

限4,000公尺,速率164公里/小時。其特 性為可加裝多種酬載系統及信號擷取設備 、可遙控飛行或預設路徑全自動飛行、故 障時可依自動回航系統返航、可以拖車運 載至目的地,並且只需兩人即可操作。35 垂直起降無人飛機相較於定翼式無人飛機 ,具有不需跑道、定點監視、對於受限制 之操作區域具有彈性之優勢,為目前各國 積極研發的產品。其功能除了國防軍事用 涂,如軍事偵察摧毀、電子中繼通訊、船 艦任務部署、電子反制作戰、化學戰生物 戰偵測等,亦可運用於交涌、環保及農漁 商業用途,如各種觀測、監視、偵察、空 中攝影等。

臺澎防衛作戰各階段UAV 之運用

我國《100年國防報告書》中指出, 「共軍攻臺可能選項」對臺戰力整備期程 規劃,現階段已具對臺大規模聯合火力打 擊與全面具備重點海空封鎖能力,可形成

聯合軍事威懾、聯合封鎖作戰、聯合火力 打擊(奪取制電磁權、制空和制海等戰場 控制權)、聯合登島作戰(採先期作戰、制 雷磁作戰、制空作戰、制海作戰模式)、 遏制強敵介入等大規模作戰能力,對我防 衛作戰構成嚴重威脅。36針對此一形勢, 我國亦提出「防衛固守,有效嚇阻」之軍 事戰略構想加以因應,為落實此一構想, 發展並運用UAV於臺澎防衛作戰中,乃 一重要戰略思維,因為UAV可於防衛作 戰中發揮「不對稱作戰」的關鍵地位。以 下僅就臺澎防衛作戰中各階段UAV之運 用提出建言:

一、早期預警階段

目前我國空防警戒重責係由空軍E2T 警戒機擔任,但是針對幾近以垂直降落之 彈道飛彈,或低空飛行之屠蹤巡弋飛彈、 戰機,仍力有未逮。為克服此一問題,可 運用具長程光學偵測器及合成孔徑雷達裝 備於高空、大型之UAV,以其可長時間 滯空之能力,提供一個預警系統載臺,即 時提供敵飛彈發射地點及飛行彈道資料, 據以遂行飛彈防禦。另針對低空巡弋飛彈 或匿蹤戰機而言,因為飛機或飛彈採用匿 蹤外型設計,本身均不易被陸基雷達所值 測。因此,可由一般陸基雷達發射雷達波 值測,並在重點區域的空中部署UAV做 為中繼接收機,將所接收之信號以資料鏈 方式傳回地面控制站予以分析比對,進而 形成雙基雷達偵測系統。

二、聯合制空階段

(一)敵情偵蒐

現階段我衛星照情能力極為有限

³⁵ 黎匡時等,〈中共無人飛行載具發展研究〉《海軍軍官》(臺北),第126期,2004年6月,頁54。

同註3,頁67、68。 36

、戰場即時情資獲得困難、座艙比不足的情況下,可藉由UAV分擔部分任務。在敵情偵蒐方面,可將UAV向前部署於外(離)島,進入作戰地區執行相關偵蒐任務,將戰場情報資料以通信鏈路傳回分析、運用,或立即傳至在空巡弋之攻擊機,立即殲滅目標。

(二)重點反制

先期運用反輻射攻擊之UAV,奇 襲敵雷達站、指揮所等指管系統,再結合 主力戰機攻擊,將可收反制作戰之最大成 功公算,或運用UAV投擲干擾絲、火焰 彈等,以干擾、混淆敵觀通及導引雷達, 確保我主力戰機達成有效反制任務。

(三)欺敵誘惑

以UAV裝掛通信、電子干擾器材或誘餌雷達裝備,實施戰術欺敵、雜波干擾及混淆其雷達,作為騙敵誘餌之用的廉價消耗性或戰術性之UAV,將自身信號進行放大,以模擬作戰飛機造成敵地面防空系統嚴重的資訊破壞和過量負荷,混淆其觀通系統。並對飛彈、防砲等基、陣地作飽和襲擾,以削弱敵方預警雷達或誘惑敵防空火砲,為我方戰機形成可利用的火力空隙。

(四)制壓敵防空火網

我空軍遂行制空作戰時之最大 威脅源,莫過中共於大陸沿海所部署之 S-300地對空防空飛彈。基於此,由於 UAV不易遭敵辨證,因此,可利用大批 次UAV配合我任務機出擊,其方式係藉 由發射假雷達波訊號,對敵實施襲擾,飽 和及癱瘓敵防空系統,迫敵無法有效辨識 及判明我任務機之企圖,以確保我任務機 能有效遂行制壓任務。

三、聯合制海階段

(一)毀敵耳目

利用岸基或艦載之攻擊性UAV癱 瘓敵沿岸觀通系統及預警雷達,使其無法 發揮或削弱其功能,以利我海軍能有效遂 行後續任務。

(二)擴大情、監、偵範圍

海軍在作戰海域之情、監、偵方面,均可藉具超越水平面(Over The Horizon, OTH)、高度優勢、截面積小、敵我識別、電偵、視訊截收與鏈傳能力之UAV予以達成,並利用UAV掌握敵軍海上(水下)動態、提供通信中繼及目標指示、確認戰果評估,提升艦隊的視距外作戰能力。

(三)協力艦隊防空

當海軍遂行艦隊防空作戰時,除了部署防空哨戒艦、適當編隊以爭取空中預警與防禦縱深等戰術作為外,運用UAV充當另一防空軸向之哨戒、預警,擴大艦隊防空或彌補艦隊雷達涵蓋死角,進而對射程內之敵機或敵飛彈進行預警,可即時發揮艦隊防空火力予以擊落,確保艦隊安全。甚或將UAV充當空中誘標等作為,也可有效消耗敵火力及對敵產生迷惑效果。37

(四)海上攻擊

運用具有反輻射作戰能力之 UAV(如哈比UAV),在特殊戰術條件與環 境下,攻擊敵於航行中之船艦,或運用大 批次攻擊性UAV,攜帶適當的對海攻擊

³⁷ 林超倫,〈水面作戰支隊運用無人飛行載具之研究〉《海軍學術雙月刊》(臺北),第44卷第2期,2010年 4月,頁36。

防衛作戰之利器

— 無人飛行載具(**UAV**)

武器,對海面敵目標實施攻擊,削弱敵戰力。

四、聯合國土防衛階段

(一)判明敵主力登陸方向

運用航程50~100公里的中(小)型 UAV,執行對泊地攻擊前海面或灘頭之 偵察,掌握敵舟波位置、主力登陸方向、 兵力大小,提供地面火砲或陸航部隊敵軍 動態資訊,藉以「擊敵於半渡」、「毀敵 於灘頭」,不讓敵人登陸上岸。

(二)火力引導與射彈修正

當敵船團進入泊地時,可運用 UAV進入己方火力打擊目標區,執行火 力引導與射彈修正任務,並為指揮官進行 火力打擊戰果評估提供重要參據,有利於 提高我方火力打擊效果,減少彈藥消耗。

(三)側翼警戒

陸軍各作戰區廣闊,可運用UAV 部署次要地區,擔任早期警戒,以彌補兵 力不足,或部署於縱深、山隘、城鎮等地 區,提供複雜地形或城市建築物群之間的 敵情偵察,防敵滲透破壞。

綜合以上,對UAV於戰時運用之分析 ,可約略歸納出對陸、海、空三軍UAV 應有之作戰需求(如表三)。

結 語

與有人戰機相比,UAV具有價格低廉 、機體小、機動靈活、起飛較不受限制、 無人員傷亡顧慮、後勤保修簡單,必要時 可與敵同歸於盡等優點。更因為UAV在歷次局部戰爭中的出色表現,充分證明了它的軍事價值,因而受到越來越多的國家重視,許多國家的軍事部門都把UAV的發展置於優先地位。尤其對岸的中共,對於UAV的發展也不遺餘力,無論在質與量上均有一定的成果,值得吾人重視並持續加以關注。

對照近年來中共在軍力上的快速發展 , 與我國在戰略性軍備獲得上緩不濟急 的情況下,臺海均勢失衡將很快到來。 檢視能對敵發生嚇阻、癱瘓敵預警能力 、節約我兵力、廉價又易於獲得及發揮不 對稱作戰優勢等條件,非UAV莫屬。尤 其國軍已於101年成立無人載具「戰術偵 搜大隊」,以支援各作戰區情監偵運用 ,除在任務訓練、作戰測評、系統功能 、後勤整備及準則發展等方面持續精進 外,亦應依敵作戰能力、戰術戰法及可 能行動,積極發展與部署符合臺澎防衛 各作戰階段、各軍種作戰需求之UAV。 採「統一管理、集中運用」模式,將臺、 澎、金、馬防空識別區(ADIZ)規劃成若 干責任區,部署UAV部隊,並視需要將 UAV編配於陸軍旅(營)級、海軍艦隊、空 軍聯隊等單位,執行偵照、監視、誘敵 、制壓、攻擊等任務。最重要的是,要 強化無人飛行載具部隊與三軍部隊遂行「 聯合作戰」能力,以發揮優勢作為,剋 敵制勝。

表三 戰時各軍種UAV作戰需求

軍	種	機	種	需	求	ҟ 用 途
空	軍	大型、遠	遠程、長	滞空		預警、偵察、監視、攻擊、誘敵等。
海	軍	中程、中	型、反	輻射、船	监載	預警、偵察、監視、攻擊、誘敵、掃雷、反潛等。
陸	軍	中(近)程	· 小型	、迷你型		預警、偵察、監視、攻擊、誘敵、警戒等。

資料來源:修正自胡堯儲,〈無人飛行載具發展及陸軍可能運用之研討〉《陸軍學術月刊》(桃園),第41卷第476期,2005年2月,頁76。