精進座標統一計算作業之研究

作者: 陳見明 少校

提要

- 一、定位定向系統實施砲兵營、連測地作業,雖為本軍測地作業主流,然部分單位常因定位定向系統損壞,或砲兵戰術運用考量,其測地作業必須以無定位定向系統作業方式實施,俟獲得真諸元後再行座標統一,以利將各點諸元納入統一座標系統,故座標統一作業仍有其必要性,且目前基地鑑測仍列為測量班必測項目之一。
- 二、本文研究目的乃為提升學生的學習成效及簡化計算之繁瑣程序,以達快速 正確之成果計算。研究方法係採比較研究法,並藉由公式推導結合座標矩 陣轉換原理探討精進作為,期能提升測地成果整理之精度與速度。
- 三、研究發現,現行座標統一計算方式較為複雜,計算耗時且正確率不穩定, 而以新式座標統一計算程序簡單,計算時間雖僅縮短 30 秒至 1 分鐘,但正 確率卻大幅提升。座標統一計算非一蹴可及,惟有不斷勤訓精練下,才能 使自我的專業學能不斷提昇,筆者希望藉本文可提供砲兵測量同仁嶄新之 座標統一觀念與計算方式。

關鍵詞:座標統一、對數表、電算機、應急測地

壹、前言

現代科技日新月異,以定位定向系統實施砲兵營、連測地作業,雖為本軍測地作業主流,然部份單位常因定位定向系統損壞,以致於僅能用傳統作業方式實施測地;砲兵戰術運用常以一砲兵連(排)直接支援營級戰鬥部隊遂行獨立作戰,其測地作業僅由其測量班以無定位定向系統作業方式實施,在無法及時獲得精確之測地開始點之資料時,僅能以地圖與現地對照方式使用假設諸元開始作業,俟獲得真諸元後再行座標統一,以利將各點諸元納入統一座標系統,故座標統一作業仍有其必要性,且目前基地鑑測仍列為測量班必測項目之一。

本文研究目的乃為提升學生的學習成效及簡化計算之程序,以達快速正確 之成果計算。研究方法係採比較研究法,並藉由公式推導結合座標矩陣轉換原 理探討精進作為,期能提升測地成果整理之精度與速度。

貳、現階段座標統一方式

本軍砲兵無定位定向系統方式實施測地作業,通常使用統制點或測地基準點起始作業,若作業開始時未獲得與上級相同系統之統制諸元,考量作業時效,測地開始點常以地圖現地對照方式實施座標及標高之量取,方位以經磁偏校正後之方向盤量取後,立即實施測地作業並完成成果計算,俟上級賦予測地開始點統制諸元後,則須藉座標統一手段,使成果納入統一座標系統,其時機、方法及原理分述如后:

一、座標統一時機

當下級部隊假設諸元與上級賦予之統制諸元,其差值超過下列範圍時,應 行座標統一(如表一)。¹

		•
區分	軍團砲兵、砲兵營	砲兵連(排)
座標	±5 公尺	±10 公尺
標高	±1 公尺	±2 公尺
方位角	±1 分	±2 密位

表一 座標統一時機表

資料來源:《陸軍野戰砲兵測地訓練教範(下冊)(第二版)》(桃園龍潭:國防部陸軍司令部印頒 99年11月10日),頁9-26。

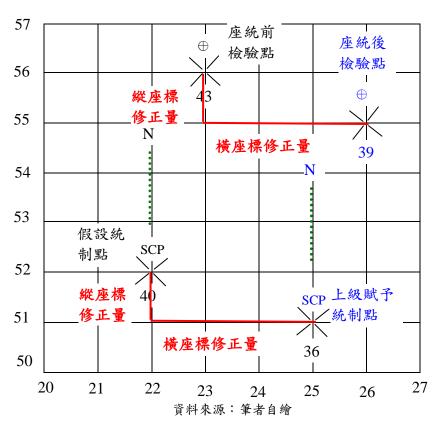
二、座標統一方式及原理

座標統一方法區分計算法(對數表、電算機)與透明紙法兩大類。前者精度良好,惟對數表計算時,耗時較久;後者作業迅速,惟精度不高。故實施座標統一時,應考量時機適時選用合宜之方法。然常以計算法(電算機)為主,並使用透明紙法檢查計算法之結果。²現僅就計算法使用對數表方式實施探討,茲就標高、座標及方位統一實施說明,分述如后:

(一)標高統一

以統制點統一標高減該統制點假設標高,求取標高修正量後,將所有以假設標高為基準之各點標高加該修正量,即為各點之統一標高。

(二)座標統一


1. 方位相同、座標不同之統一

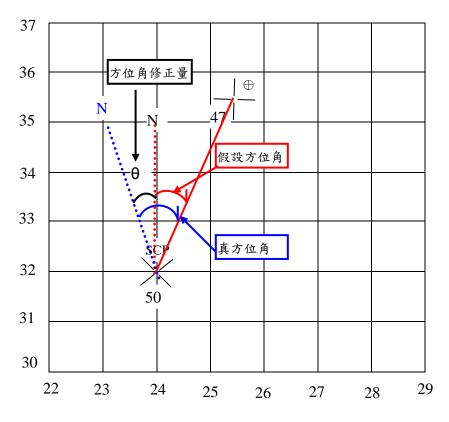
若上級賦予方位角與假設方位角相同,僅兩者座標位置不同時,可以上

[【]陸軍野戰砲兵測地訓練教範(下冊)(第二版)》(桃園龍潭:國防部陸軍司令部印領,99年11月10日), 頁 9-26。

² 同註1,頁9-26。

級賦予統制點統一座標減該點假設座標,求取橫、縱座標修正量後,將 所有以假設座標為基準而求得之各點(如:檢驗點⊕、觀測所 0、陣地 G) 座標加該修正量,即得各點之統一座標,計算原理示意(如圖一)。

圖一 方位相同、座標不同之統一示意圖


2. 方位、座標不同之統一

當假設與上級賦予之方位、座標均不同時,其各點之座標修正量並非為一常數,故不僅須將方格平移,使各點座標一致外,並須藉旋轉修正因方位不同而產生之位移。³現行座標統一原理,乃藉測地統制點(SCP)及檢驗點(⊕)之假設座標,以方位角距離計算方式,求算兩點間之假設方位角及距離,再將假設方位角再加上方位角修正量經座標計算後,此時座標系統即旋轉至統一之座標系統中,故轉換成統一後之座標(如圖二)。

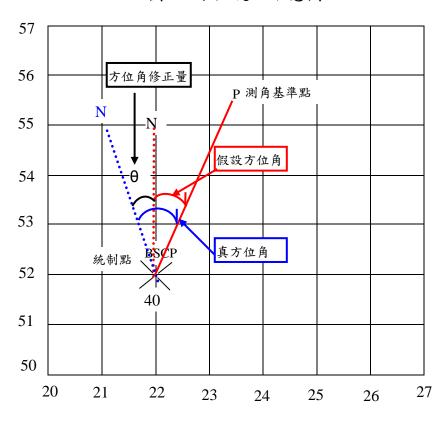
-

³同註1,頁9-29。

圖二 方位、座標不同之統一示意圖

資料來源:筆者自繪

現以範例說明,使讀者能更清楚填表方式。假設某砲兵營測地統制點之假設座標(24756.00,32452.00,50),方位統制線之假設方位角為380密位。根據統制點假設座標求得⊕座標(28316.00,34815.00,47)。上級賦予該營統制點之座標(26742.00,31851.00,45),方位統制線統制方位角為400密位,求統一之檢驗點座標及標高。座標統一計算表範例(如表二)。


表二 座標統一計算表範例

表二 座標統一計算表範例									
1. 求方位角及標高修正量									
統制點之統一方位	.角	400)_	統一標高				45	
統制點之假設方位	. 角	-380	0 假設標高				_	-50	
方位角修正量		+ 20)-	標高修	正量			-5	
2. 以假設座標求出假設方位角及距離對數									
求點(⊕)假設座標= X 28316 Y 34815									
統制點之假設座標	= -X 2475	6	Y 32	2452					
	DX ⊕ 356	0	DY ⊕ 2	2363					
LDX	3. 55145	DX	大於 DY	時	D.	X 小方	♦ DY	時	
LDY	3. 37346	LDX	<u> </u>	3. 5514	5 L	DY			
LTan α	0. 17799	Lsi	nα	9. 9207	0 L	Lcos α			
求點假設方位角	1003	距絕	維對數 3.63075			距離對數			
3. 求統一方位角及	標高		T						
假設方位角	1003	假設標高				47			
方位修正量	+20-	標高修正量				-5			
統一方位角	1023	統一標高				42			
4. 以統一方位角距	離對數求統	一座	E標差			ı			
距離對數	3. 63075		距離對	數		3.	6307	75	
LSin 統一方位角	+9. 92624	LCos 統一方位角			角	+9. 72970			
LDX	3. 55699	LDY 3.			. 36045				
5. 求統一座標									
統制點之統一座標 26742.00 31							1.00		
座標差									
求點(⊕)之統一座標 30347.70 34144.24									
求點(⊕)之座標標	高								
X=30347. 70 Y=3	34144. 24		H=42.0	00	_=				

資料來源:《陸軍野戰砲兵測地訓練教範(下冊)(第二版)》(桃園龍潭:國防部陸軍司令部印頒, 99年11月10日),頁9-34。

(三)方位統一

通常砲兵營、連實施座標統一計算時不需計算此項,惟當目標獲得連(本部連)測量排,賦予各砲兵營測地統制點諸元時,需將原假設之方位統制線方位角加上方位角修正量,以求得測地統制點統制之方位角(如圖三)。 圖三方位統一示意圖

資料來源:筆者自繪

參、精進座標統一方式

筆者於座標統一課程教授中,發現多數學生對於此課程所教授之計算模式較為生疏,且期末鑑測時發覺許多同學因測驗時間受限,經常未能及時完成此表之計算或放棄該表成績實屬可惜,故參考坊間線性代數相關書籍,研究關於歐幾里德向量空間點積的矩陣公式及正交矩陣等定理,希能提升學者學習成效,本段茲就其原理、公式推導與新式表格分述如后:

一、計算原理與公式推導

(一)計算原理與公式推導

依歐幾里德向量空間中的旋轉算子 4 來說明,即將二維空間中的每一向量旋轉一固定角 θ ,稱為在二維空間中的旋轉算子,並考慮將每一向量逆

⁴ 算子:若函數 f 的定義域為 Rn 而對應域為 Rm,則 f 稱為由 Rn 至 Rm 的變換,再 m=n 的特殊狀況下,f: Rn→Rm 的變換稱為在 Rn 上的算子。

時針旋轉一個固定角 θ 的旋轉算子,為求得B與B'=T(X)關係之方程 $組,令<math>\alpha$ 為從正X軸到B間的夾角,並令r為B與B'共同長度(如圖四), 藉由基本三角學公式得 5 :

$$DX = Xb - Xa = rCos \alpha B DY = Yb - Ya = rSin \alpha - (1)$$

DX' =Xb'-Xa=rCos(
$$\alpha+\theta$$
)及 DY' =Yb'-Ya=rSin($\alpha+\theta$)-----(2)

又使用三角函數中的合角公式,將式(1)代入式(2)中得式(3)

DX' = Xb' - Xa = rCos (
$$\alpha + \theta$$
) = r $(\cos \theta \cos \alpha - \sin \theta \sin \alpha)$

= [rCos α] Cos θ - [rSin α] Sin θ = DXCos θ -DYSin θ &

DY' = Yb' - Ya = rSin
$$(\alpha + \theta)$$
 = r $Sin \theta Cos \alpha + Cos \theta Sin \alpha$

= $\mathbb{L}\operatorname{rCos} \alpha \mathbb{L}\operatorname{Sin} \theta + \mathbb{L}\operatorname{rSin} \alpha \mathbb{L}\operatorname{Cos} \theta = \operatorname{DXSin} \theta + \operatorname{DYCos} \theta$ ------ (3) 因(3)中的方程式都是線性的關係,故 T 為線性算子;從這些方程式得知 T 的標準矩陣為:

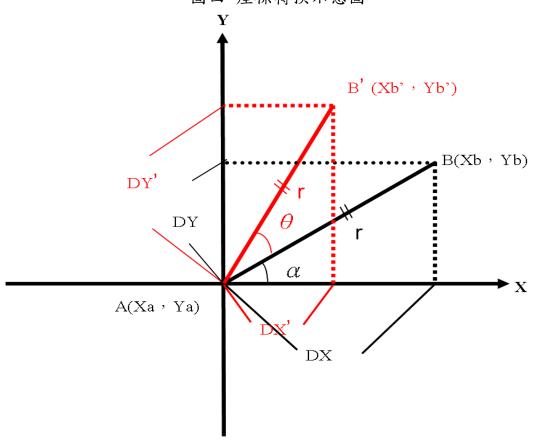
$$(T) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

運用此定理可得座標矩陣旋轉公式為:6

$$\begin{bmatrix} DX' \\ DY' \end{bmatrix} = \begin{bmatrix} COS \theta & -SIN \theta \\ SIN \theta & COS \theta \end{bmatrix} \begin{bmatrix} DX \\ DY \end{bmatrix}$$

經矩陣乘積運算後得此方程式:

 $\mathrm{DX'} = \mathrm{DXCos}\,\theta - \mathrm{DYSin}\,\theta$


 $DY' = DXSin\theta + DYCos\theta$

上述為座標旋轉,又 $Xb'=Xa\pm DX'$ 、 $Yb'=Ya\pm DY'$ 此為座標平移,以上說明為計算原理與公式推導。

⁵簡國清,《初等線性代數與應用(第九版)》(台北市:東華書局,97.02),頁226。

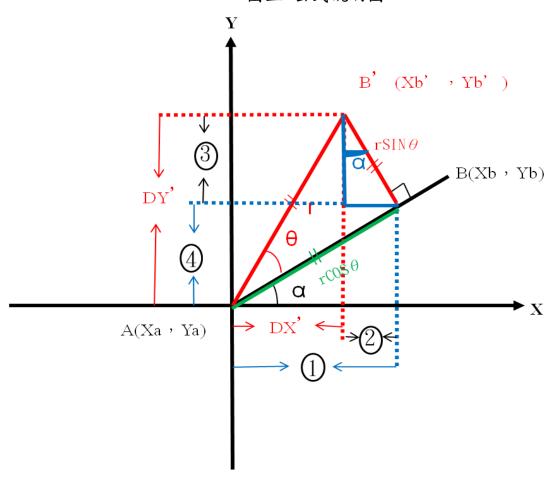
⁶翁慶昌譯,《線性代數(第六版)》(台北縣:高立圖書有限公司,2009.07),頁 62。

圖四 座標轉換示意圖

資料來源:筆者自繪

(二)座標修正量公式說明

座標統一表格中因 θ、DX 及 DY 皆有正與負關係,故經分析後將其歸納為 八種狀況之座標修正量公式說明(如圖五),接續圖一之假設條件產生下 述結果:


$$2 = r \sin \theta \sin \alpha = [r \sin \alpha] \sin \theta = DY \sin \theta - \dots$$
 (5)

DX' = Xb' - Xa =
$$\mathbb{O}$$
 - \mathbb{O} = DXCos θ -DYS in θ

DY' = Yb' - Ya =
$$3+4$$
 = DXS in θ + DYCos θ

現僅對上述公式取其一種狀況解釋,當 (θ, DX, DY) 符號為(+, -, -)時,則 DX' 公式為 $-(\mathbb{D}+\mathbb{Z})$ 且 DY' 公式為 $(\mathbb{B}-\mathbb{Z})$ 一 $(\mathbb{B}+\mathbb{Z})$ — $(\mathbb{B}+\mathbb{$

圖五 公式說明圖

資料來源:筆者自繪

當 θ 為+時,則座標旋轉至IV象限,此時Sin 值為負,Cos 值為正。當 θ 為-時,則座標旋轉至I象限,此時Sin 及Cos 值為正。故推導過程如下:

- ① = $\mathbb{C} \operatorname{rCos} \theta$ $\mathbb{C} \operatorname{cos} \alpha$ = $\mathbb{D} \operatorname{XCos} \theta$,因 θ 為正值則 $\mathbb{C} \operatorname{cos} \theta$ 值為正,且 $\mathbb{D} \operatorname{X}$ 為 負值,整理後其值為負。
- ②=【 $rSin\theta$ 】 $Sin\alpha$ =-DYSin θ ,因 θ 為正值則 $Sin\theta$ 值為負,且DY 為負值,又其式中有一負號,整理後其值為負。
- 由(4)(5)式可得 DX' = DXCos θ DYS in θ , 故其修正量公式為 $-(\mathbb{O}+\mathbb{O})$ 。
- ③=【 $rSin\theta$ 】 $Cos\alpha=DXSin\theta$,因 θ 為正值則 $Sin\theta$ 值為負,且DX為 負值,整理後其值為正。
- $\Phi = \mathbf{r} \cos \theta \mathbf{r} \sin \alpha = \mathbf{D} \mathbf{r} \cos \theta$,因 θ 為正值則 $\cos \theta$ 值為正,且 DY 為 負值,整理後其值為負。
- 由(6)(7)式可得 DY' = DXS in θ + DYC os θ , 故其修正量公式為3 4 。

二、新式表格與設計說明

因統制點統一方位角減該點假設方位角所產生的方位角修正量(θ)可能產生正或負值,且求點與統制點間假設座標之橫、縱座標差(DX、DY)可能分佈於第一、二、三、四象限,綜合上述可產生八種座標修正量公式。但每次計算前僅需判明使用其中一種公式,再藉由座標計算概念即可迅速求得座標統一後之諸元,較現行座標統一方式簡單且不易誤算,故藉由前述公式推導結果,可將座標統一表格精簡設計(如表三)。

表三 新式座標統一計算表

新		:	式座	標	統	一 計	算 表					
_	、求	方化	立角及標高修	正量								
統台	制黑	占統	一方位角		統一	·標高						
統分	制黑	占假	設方位角-		假 設	:標高-						
方位	位角	修	正量(θ)±		標高	修正量±						
二	二、求座標修正量											
	求點()假設座標= X Y											
	統	制黑	點之假設座標			Y						
) JT 16 - E	DX±		DY±						
θ	DX	DY	座標修正量 公式	LDX	LDY	LDX	LDY					
+	+	+	$\begin{array}{ccc} DX' & \textcircled{1} + \textcircled{2} \\ DY' & \textcircled{4} - \textcircled{3} \end{array}$	I±LCOS <i>↔</i> T	+LSIN θ	+LSIN θ	+LCOS θ					
+	+	_	$DX' \bigcirc - \bigcirc \\ DY' - (\bigcirc + \bigcirc \\$		L②	L3	L4					
+	_	+	DX' 2 - 1 DY' 3 + 4		2	3	4					
+	_	-	$\begin{array}{c} DX' - (\textcircled{1} + \textcircled{2}) \\ DY' & \textcircled{3} - \textcircled{4} \end{array}$)) -			(4)					
_	+	+	$\begin{array}{ccc} DX' & \textcircled{1} - \textcircled{2} \\ DY' & \textcircled{3} + \textcircled{4} \end{array}$				1.2					
-	+	_	$\begin{array}{ccc} DX' & \textcircled{1} + \textcircled{2} \\ DY' & \textcircled{3} - \textcircled{4} \end{array}$		±①	± 4	±3)					
_	_	+	$\begin{array}{c} DX' - (\textcircled{1} + \textcircled{2}) \\ DY' & \textcircled{4} - \textcircled{3} \end{array}$		DX' ±	DY' ±	DY' ±					
_	_	-	DX' 2 - 1 DY' - (3 + 4)	νν τ	DI ±	DI I					

三、求統一座標及標高										
統制點之統一座標			假 設 標 高							
座標修正量	±	±	標高修正量±							
求點()之統一座標			求點統一標高							
求點()之座標與標高	, X=	Y=	H= <u>/</u> =							

資料來源:筆者設計

二、計算說明

此表區分三大部分,第一部分求取方位角及標高修正量,第二部分求取座標修正量,第三部分求取統一座標及標高,分述如后:

(一) 計算步驟

- 1. 求方位角及標高修正量
- (1) 上級賦予統制點之方位角減下級所假設之方位角,求得方位角修正量
- (2) 上級賦予統制點之標高減下級所假設之標高,即得標高修正量。
- 2. 求座標修正量
- (1) 以統一之求點座標減統制點之假設座標,求得縱、橫座標差。
- (2) 藉座標修正量公式判識決定使用公式,並計算橫、縱座標差修正量。
- 3. 求統一座標及標高
 - (1)以上級賦予之統制點座標加橫、縱座標差修正量,即得求點之統一座標。
 - (2) 以求點未修正標高加(減)標高修正量,即得求點之統一標高。
- 4. 求方位統制線之統一方位角

以方位統制線之假設方位角加方位修正量,即得方位統制線統制方位 角。通常砲兵營、連實施座標統一計算時不需計算此項,惟當目標獲得連 (本部連)測量排,賦予各砲兵營測地統制點諸元時,方須計算。

(二) 填表說明

現以範例說明,使讀者能更清楚填表方式。假設某砲兵營測地統制點之假設座標(24756.00,32452.00),標高為50公尺,方位統制線之假設方位角為380密位。根據統制點假設座標求得⊕座標(28316.00,34815.00),標高為47公尺。上級賦予該營統制點之座標(26742.00,31851.00),標高45公尺,方位統制線統制方位角為400密位,求統一之檢驗點座標及標高。

1. 求方位角及標高修正量

- (1) 將上級賦予之統一方位角 400 密位,統一標高 45 公尺,分別填入「統制點之統一方位角」及「統一標高」欄內。
- (2) 將該營之假設方位角 380 密位,標高 50 公尺,分別填入「統制點之假設方位角」及「假設標高」欄內。
- (3)將兩項分別相減,得方位角修正量為+20密位,填入「方位修正量」 欄內,標高修正量-5公尺,填入「標高修正量」欄內。

2. 求座標修正量

- (1) 將所求之「檢驗點」填入求點括號內,然後將由假設統制點求得之該 點座標 X:28316.00Y:34815.00,分別填入「X」及「Y」位置。
- (2) 將該營統制點之假設座標 X:24756.00 Y:32452.00,分別填入上項座標下,如有小數應將小數點對正,以免計算錯誤。
- (3)由上欄座標值減去下欄座標值,得橫座標差為+3560,縱座標差為+2363,分別填入橫線之下「DX」及「DY」欄內,並加註正負符號。
- (4) 籍 θ 、DX 及 DY 之正負符號,實施座標修正量公式判識,決定使用公式。
- (5) 查對數表第一表(真數查對數),分別查出 DX 之對數 3.55145 填入「LDX」欄內, DY 之對數為 3.37346,填入「LDY」欄內。
- (6) 將方位角修正量 20 密位,查出其餘弦 (COS) 及正弦(SIN)之對數為 9.99992 及 8.29300,填入「LCOS θ 」及「LSIN θ 」欄內。
- (7)以LDX之對數 3.55145 加上 LCOS θ 之對數 9.99992, 得 3.55137 即為 ①所求之距離對數,填入「L①」欄內。
- (8)以LDY之對數 3.37346 加上LSIN θ 之對數 8.29300, 得 1.66646 即為 ②所求之距離對數,填入「L②」欄內。
- (9)以LDX之對數 3.55145 加上LSIN θ 之對數 8.29300, 得 1.84445 即為 ③所求之距離對數,填入「L③」欄內。
- (10)以LDY之對數 3.37346 加上LCOS θ 之對數 9.99992, 得 3.37338 即為 ④所求之距離對數,填入「L④」欄內。
- (11) 查對數表第一表(對數查真數)得①、②、③及④之真數值分別為 3559.34、46.39、69.90及2362.52。
- (12) 藉座標修正量公式判識決定使用公式為 DX' ①+②及 DY' ④-③,計算横、縱座標差修正量 DX'+3605.73、DY'+2292.62。

3. 求統一座標及標高

- (1) 將上級賦予該營統制點之統一座標 X:26742.00Y:31851.00 及檢驗 點假設標高 47 公尺,分別填入「求統一座標及標高」欄內。
- (2) 將求得之橫、縱座標差修正量 DX'+3605.73、DY'+2292.62 及標高修正量-5公尺,分別填入「座標修正量」及「標高修正量」欄內。
- (3)經計算後得檢驗點之座標 X:30347.73、Y:34143.62 及標高 H=42.00

4. 求點(⊕)之座標標高:

- (1) 將求點「檢驗點」之符號填入「統一座標」欄內。
- (2) 將上項所得之諸元,分別填入下欄得 X=30347.73、Y=34143.62 及 H=42.00。

(三)填表範例

將上述說明依序填入新式座標統一計算表中,即可獲得座標統一後之成果(如表四)。

表四 新式座標統一計算表

新		;	式			標		統	一訂昇	<i>V</i> -	計	算	表
_	、求	方	立角	及標高修	正量	ł							
統一	制黑	占統	一方	「位角	4	00		統	一 標	高	45		
統一	制黑	占假	設方	「位角-	3	80		假	設 標	高-	50		
方	位角	修	正量	<u>ξ(θ)</u>		20		標	高修工	E 量 t	5		
=	二、求座標修正量												
	求點 (⊕) 假設座標= X 28316.00 Y 34815.00												
	統	制黑	<u>點之</u>	假設座標	<u> </u>	$\frac{=-X}{DX \underline{\bullet}}$			DY	Y 3245	<u>52. 00 </u>		
θ	DX	DY	座	標修正量 公式	1		3. 55145	LDY	3. 37346		3. 55145	LDY	3. 37346
+	+	+	DX' DY'	①+2 ④-3	+L	.COS θ	9. 99992	+LSIN 6	8. 29300	+LSIN θ	8. 29300	+LCOS θ	9. 99992
+	+	_	DX'	$ \frac{1 - 2}{-(3 + 4)} $) [1	3. 55137	L2	1. 66646	L3	1.84445	L4	3. 37338
+	_	+	DX' DY'	2-1 3+4)	`	3559. 34	<i>?</i> \	46. 39	(3)	69. 90	(4)	2362. 52
+	_	ı	DX'- DY'	-(1+2) $3-4$)) -)	0000.04	<u> </u>	40.00		03. 30	4	2002. 32
_	+	+	DX' DY'	①-2 ③+④			40.90	ı.Φ					CO 00
_	+	-	DX' DY'	①+2 3-4		2	46. 39	±(1)		±4		±3	69. 90
_	_	+	DX'- DY'	-(1)+2 $4-3$				DW:		DIV.			
_	_	_	DX' DY'	2-(3+4)) D2	Χ' ⊕	3605. 73	υx ±		DY'±		DY'⊕	2292. 62
三	、求	統-		標及標高					1	1	1	1	
統領	制點	之糸	统一	座標	26	6742.	00	318	351.00	假 設	大 標 高	当 47.	00
座村	票修	正	量		⊕ 3	3605.	73	⊉ 22	292. 62	標高	修正量	量 查 5.	00
				一座標		0347.			43.62		统一標高		2.00
求	點(\oplus) 之)	座標與標	高 X	(=303)	47. 73	Y=	34143. 6	52 H	=42.00	Z	=

資料來源:筆者整理

肆、分析比較

經上述研究成果,以本組練習題卡為基礎,設計配合8種座標統一題型, 以電算機成果為基準,區分本組教官及教三連助教各一員實施驗證,計算模式 分別以新、舊座標統一表格實施,獲得下述數據(時間、精度)成果,提供後續 分析比較參考(如表五)。

表五 座標統一計算成果比較表

农业 座标规 可开放不比较衣									
⊕計算成果	電 算 機 計 算	新座標統一舊座標統一筆 算筆 算							
題目									
題目一: 假設 SCP (42345.60,19012.34,110.00) 方位統制線假設方位角 960 密位	X: 44451.70 Y: 20627.88	X: 44451.73 X: 44451.60 Y: 20627.91 Y: 20628.30 H: 50.70 H: 50.70 DX:0.03 DX:-0.1 DY:0.03 DY:0.42 時間:4分35秒 時間:4分55秒							
⊕ (44789.58,21235.68,80.35) 上級賦予 SCP (41964.54,18452.95,80.35) 方位統制線方位角 980 密位	H: 50. 70	X: 44451. 73 X: 44451. 60 Y: 20627. 91 Y: 20628. 30 H: 50. 70 H: 50. 70 DX: 0. 03 DX: -0. 1 DY: 0. 03 DY: 0. 42 時間: 5分 55 秒							
題目二: 假設 SCP (44546.31,25341.35,118.32) 方位統制線假設方位角 3542 密位	X: 47369.54 Y: 17731.41	X: 47369. 56 X: 47368. 49 Y: 17731. 41 Y: 17731. 50 H: 52. 65 H: 52. 65 DX: 0. 02 DX: -1. 05 DY: 0 DY: 0. 09 時間: 4 分 32 秒 時間: 4 分 53 秒							
⊕ (47554.31,20105.58,51.43) 上級賦予 SCP (44954.25,23265.64,119.54) 方位統制線方位角 3654 密位	H: 52. 65	X: 47369. 61 X: 47368. 47 Y: 17731. 44 Y: 17731. 51 助 H: 52. 65 DX: 0. 07 DX: -1. 07 DY: 0. 03 DY: 0. 1 時間: 4 分 55 秒 時間: 5 分 58 秒							
題目三: 假設 SCP (44356.80,18287.50,100.00) 方位統制線之假設方位角 991 密位 ⊕(43687.58,20107.58,95.48) 上級賦予 SCP	X: 40214. 22 Y: 19647. 51 H: 94. 48	X: 40214. 22 X: 40214. 08 Y: 19647. 51 Y: 19647. 33 H: 94. 48 H: 94. 48 DX: 0 DX: -0. 14 DY: 0 DY: -0. 18 時間: 4分25秒 時間: 4分51秒							

(40865.54, 17820.95, 99.24)			X:40214.23	X: 40214.01
方位統制線方位角 1001 密位			Y: 19647.53	Y: 19647.49
			H: 94.48	H: 94.48
			DX:0.01	DX:-0.21
			DY:0.02	DY:-0.02
			時間:4分45秒	時間:5分41秒
			X: 44713.88	X: 44713.79
			Y: 23551.49	Y: 23551.35
題目四:		教	Н: 107.05	H: 107.05
假設 SCP		官	DX:0.01	DX:-0.08
(45468.80, 26543.50, 100.00)	X: 44713.87		DY:0.03	DY:-0.11
方位統制線假設方位角 1850 密位			時間:4分20秒	時間:4分55秒
\oplus (44357. 21, 24532. 58, 95. 84)	Y: 23551.46		X: 44713.88	X: 44713.82
上級賦予 SCP	H: 107.05		Y: 23551.49	Y: 23551.40
(45987. 32, 25463. 95, 111. 21)	101.00	助	H: 107.05	H: 107.05
方位統制線方位角 1934 密位			DX:0.01	DX:-0.05
			DY:0.03	DY:-0.06
			時間:4分48秒	時間:5分42秒
			X: 43178.34	X: 43178.33
		3~	Y: 19663.82	Y: 19662.70
題目五:			H: 94.48	H: 94.48
假設 SCP(41356.80,18287.50,			DX:0	DX:-0.01
100.00)	X: 43178.34		DY:0	DY:-1.12
方位統制線假設方位角 1001 密位	N · 40110.04		時間:4分22秒	時間:4分52秒
\oplus (43687. 58, 20107. 58, 95. 24)	Y: 19663.82	助教	X: 43178.34	X: 43178.33
上級賦予 SCP	H: 94, 48		Y: 19663.82	Y: 19662.70
(40865.54, 17820.95, 99.24)	11 • 34. 40		H: 94.48	H: 94.48
方位統制線方位角 991 密位				DX:-0.01
			DY:0	DY:-1.12
			時間:4分55秒	時間:5分53秒
			X: 49303.53	X: 49302.55
			Y: 19077.03	Y: 19076.64
題目六:		教	H: 52.65	H: 52.65
假設 SCP		官	DX:-0.02	DX:-1.00
(44546. 31, 25341. 35, 118. 32)	X: 49303.55		DY:0	DY:-0.39
方位統制線假設方位角 3542 密位	A - 40000, 00		時間:4分23秒	時間:4分53秒
\oplus (47554.31, 20105.58, 51.43)	Y: 19077.03		X: 49303. 51	X: 49302. 55
上級賦予 SCP	H: 52, 65		Y: 19077. 02	Y: 19076.64
(44954. 25, 23265. 64, 119. 54)	11 • 52.05	24	H: 52.65	H: 52.65
方位統制線方位角 3254 密位				DX:-1. 00
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			DY:-0.01	DY:-0.39
			時間:4分53秒	時間:5分55秒
			「「同・4分」307グ	「「「「「」」 つか つい オグ

題目七: 假設 SCP (44356.80,18287.50,100.00) 方位統制線假設方位角 1001 密位 ⊕ (43687.58,20107.58,95.24)	X: 40017. 52 Y: 19565. 01	教官	X: 40017. 72 Y: 19565. 01 H: 94. 48 DX: 0. 2 DY: 0 時間:4分31秒 X: 40017. 79	X: 40017. 59 Y: 19564. 80 H: 94. 48 DX: 0. 07 DY: -0. 21 時間: 4 分 45 秒 X: 40017. 57
上級賦予 SCP (40865.54,17820.95,99.24) 方位統制線方位角 899 密位		助教		Y: 19564.95 H: 94.48 DX:0.05 DY:-0.06 時間:5分48秒
題目八: 假設 SCP (45468.80,26543.50,100.00) 方位統制線假設方位角 1943 密位	X: 43884. 74	教官	DX:0.03 DY:-0.3	X: 43884.75 Y: 24433.92 H: 107.05 DX: 0.01 DY: -0.49 時間:4分51秒
⊕ (43357.21,25532.58,95.84) 上級賦予 SCP (45987.32,25463.95,111.21) 方位統制線方位角 1934 密位	Y: 24434.41 H: 107.05	助教		X: 43884.77 Y: 24434.02 H: 107.05 DX: 0.03 DY: -0.39 時間:5分55秒

資料來源:筆者自製

一、速度探討

就速度而言,此8種題目以現行座標統一計算模式,教官平均時間約5分鐘,助教完成時間約6分鐘,而以新式座標統一計算模式,教官平均時間約4分半鐘,助教平均時間約5分鐘(如表六),由此可知新式座標統一計算模式,對於初學座標統一計算之人員而言,其所縮短之時間越多,完成計算之速度較之前模式快,分析其原因乃現行座標統一計算觀念較複雜,而新式座標統一計算觀念較簡單所致。

二、精度分析

就精度而言,此 8 份題卡均以電算機成果為基準,比較現行座標統一計算模式成果精度,教官平均誤差 DX=0.31 公尺、DY=0.38 公尺,助教平均誤差 DX=0.32 公尺、DY=0.32 公尺;而以新式之座標統一計算模式計算,教官平均誤差 DX=0.04 公尺、DY=0.05 公尺,助教平均誤差 DX=0.06 公尺、DY=0.04 公尺(如表六),由此可知新式座標統一計算模式,較接近電算機之成果,即精度較佳。分析其原因乃現行座標統一計算,須先藉由方位角距離計算求得其假

設方位角及距離對數,因對數表之設計不夠精確造成方位角及距離對數產生誤差,而導致座標值誤差較大之故。

區分 時間及誤差 新座標統一筆算|舊座標統一筆 項目 4分27秒 教 4分52秒 官 平均速度 4分56秒 5分51秒 助 教 官 DX:0.04 DY:0.05 教 DX:0.31 DY: 0.38 平均精度 DX: 0.32 DY: 0.32 教 DX:0.06 DY: 0.04 助 DX: 與電算機成果比較之橫座標差 附記 DY:與電算機成果比較之縱座標差

表六 座標統一計算精度、速度比較表

資料來源:筆者自製

三、難易度比較

就難易度言,現行座標統一計算表包含了五個步驟:(一)求方位角、標高修正量。(二)假設座標求方位角與距離對數。(三)求統一方位角及標高。(四)以統一方位角及距離對數求統一座標差。(五)求統一座標等,其中之計算方式涵蓋方位角距離計算及座標計算兩種觀念,但常因學生在方位角距離計算學習過程不夠紮實,導致座標統一計算表無法如期完成或經常算錯,而打擊對座標統一計算學習興趣。然新式座標統一計算模式僅包含三個步驟:(一)求方位角及標高修正量。(二)求座標修正量。(三)求統一座標及標高,其計算方式簡單明瞭,僅運用座標計算之概念即可獲得成果,相較之下較易計算。

四、正確率比較

將表五中之成果實施整理,並記錄其正確與錯誤題數(如表七),數據顯示教官以現行座標統一模式計算,錯誤2題正確率達75%,助教錯誤4題,正確率達50%;而以新式座標統一模式計算教官及助教均僅算錯1題,正確率達87.5%,由此可知新式座標統一模式計算較不易算錯,分析成因乃現行座標統一計算,須先藉由方位角距離計算,求得其假設方位角及距離對數,此部分計算通常於時間急迫狀況下容易誤判方位角,而導致最後成果錯誤之主因。

表七 座標統一計算錯誤率比較表

					1 /1	•					
題目 正確或錯誤 區分		1	11	Ш	四	五	六	セ	八	正確率	
新座標統	教官	V	V	V	V	V	V	V	X	87.5%	
一筆算	助教	V	V	V	V	V	V	V	X	87.5%	
舊座標統	教官	X	V	V	V	X	V	V	V	75%	
一筆算	助教	X	V	X	V	X	V	V	X	50%	
附記	打「Ⅴ	S Feet at a label at a feet at a label at a feet									

資料來源:筆者自製

伍、結論與建議

本軍砲兵測地作業雖以定位定向系統為主流,但礙於定位定向系統損壞及砲兵戰術運用考量,常須以無定位定向系統方式實施作業,待獲得假設座標系統之成果後,再藉由座標統一計算,始可將所有測地成果置於統一之座標系統中,以求得精確之射擊諸元實施精準射擊,然經此研究驗證發現,現行座標統一計算方式較為複雜,計算耗時且正確率不穩定,而以新式座標統一計算程序簡單,計算時間雖僅縮短 30 秒至 1 分鐘,但正確率卻大幅提升。

座標統一計算非一蹴可及,惟有不斷勤訓精練下,才能使自我的專業學能不斷提昇,筆者希藉本文可提供砲兵測量同仁嶄新之座標統一觀念與計算方式,並建議此計算模式於未來發展更成熟後,可納入教學課程及基地測考使用,以提升砲兵測地作業後,實施成果整理的精度與速度。

参考文獻

- 一、《陸軍野戰砲兵測地訓練教範(上冊)(第二版)》(桃園龍潭:國防部陸軍司令部印頒,民國99年11月10日)。
- 二、《陸軍野戰砲兵測地訓練教範(下冊)(第二版)》(桃園龍潭:國防部陸軍司令部印頒,民國99年11月10日)。
- 三、簡國清譯,《初等線性代數與應用(第九版)》(台北市:東華書局,97.02)。
- 四、翁慶昌譯,《線性代數(第六版)》(台北縣:高立圖書有限公司,2009.07)。
- 五、黄新峰、陳子建編,《Linear Algebra》(台北縣:全華科技圖書股份有限公司, 2008.02)。
- 六、陳治中編,《線性代數(第二版)》(台北縣:新文京開發出版有限公司,2009.06)。 七、呂金河譯,《線性代數導論(第八版)》(台北市:華泰文化,2005.05)。
- 八、陸軍「國防新知運用」專區,網址:mdb. army. mil. tw。