現行地形分析 結合國土資訊系統之探討

作者簡介

蕭英煜中校,陸院正規班95年班、戰研班99年班;曾任排、連、營長、教官,研究領域為防衛作戰、災害防救、現地戰術,現任職於國防大學陸軍學院防衛作戰組。

提要》》

- 一、地形分析對作戰具有深切的影響,國軍現行之地形分析作業,標準雖已數據化,但未結合資訊系統,仍處於人工判讀,曠時費工。
- 二、國土資訊系統(National Geographic Information System, NGIS)係全國性的地理資訊系統,該系統係將土地資料以簡單有效的方式,擷取、儲存、處理、分析及顯示的資訊系統,以分工合作方式達到資料共享。
- 三、陸軍各級部隊現行地形分析作法仍採人工化作業,為使地面部隊地形分析 更有效率,企藉探討國土資訊系統(NGIS)功能,將「人工」及「資訊系統 」兩者之利互相結合,利用地形分析成果,以為未來開發軍事地理資訊系 統參考,強化軍事科學之運用。

關鍵詞:地形分析、國土資訊系統(NGIS)、地理資訊系統

現行地形分析

前 言

孫子曾曰:「夫地形者,兵之助也」 。故一切作戰行動,悉賴善用地形之利, 方期發揮戰力,贏得勝利,以國軍現行之 作業模式觀之,猶未全面結合「國土資 訊系統」(NGIS),以致作戰演訓難期快捷 、精確之要求。有鑑於「國土資訊系統 」(NGIS)之地形分析資料庫與空間模擬功 能若能有效結合,誠可提供戰場指揮官 所需之戰術地形分析成果,有利於機動 力、觀測及隱蔽、地形障礙分析之作業 ,相對提升戰場誘明的力度與效果,更 容易下達決心與行動。本文擬以「戰場 情報準備」(Intelligence Preparation of the Battlefield, IPB)有關地形分析之相關步驟 為基礎,針對現行作業程序步驟之利弊提 出個人見解,復又結合運用「地理資訊系 統科技所」建置之「國土資訊資料庫」為 輔助,探討國土資訊系統(NGIS)功能之操 作模式,進而提供及產製有利於我軍地形 分析及圖資之獲得,以增進地形分析作業 實效與實用性,有利本軍之建軍備戰與戰 場地形分析。

現行地形分析步驟與利弊之探討

一、地形分析意義

地形分析係對預期作戰地區的山系、水系、城鎮、交通、坡度、障礙、土質、植被分布及灘岸狀況等地形因素進行分析,予以繪製成透明圖的作業,以利進一步分析部隊越野通行性、接近路線、機動走廊與地形要點,於地圖無法分析清楚瞭解之區域,且為指揮官遂行任務地區,即為實地偵察分析派遣的重點。1

二、地形與軍事行動之關係

各種地形現況對作戰影響程度的大小 ,取決於它的性質和特點,不同型式的地 形(地物),對軍事行動即產生一定影響, 如坡度、水系分布、植被、地質(土壤)等 就必定會對部隊機動力產生一定之限制(如表一)。

(一)地形對機動力之影響

1.坡度

坡度為兩點垂直距離與水平距離之 差距,即高程與水平距離之比,分別對人

表一 地形影響軍事行動分析表

地	形	現	況	分	析	項	目	對	軍	事	行	動	影	響
道路狀、植被	況、地貌特點 性質	、水系障礙	和土壤	土壤水植被	及坡度			觀	動力 則 夜/	掩蔽	į			
	伏、住民地和 況、隱蔽條件			坡民 植被	地			觀	動力則	掩蔽	į			
坡度特	點和植被性質			坡度 植被					動力 移防		ħ			

資料來源:張聖杰、呂崑海,〈數值圖像整合運用於戰場地形分析模式之研究〉(桃園:國防科 技學術研究,民國93年),頁822。

¹ 國防部,《國軍軍語辭典(九十二年修訂)》(臺北:國防部,民國93年),頁5、6。

ARMY BIMONTHLY

員運動與車輛機動具有顯著之影響。2

(1)對人員徒步運動之影響

地形對人員徒步行軍之影響,包 含土質、坡度、溪流水深、流速等,各有 不同,其中最直接的影響就是「坡度」, 質地、成分類別不同,土壤的硬度 也必然有別,其含水量之多寡也會影響土 壤的硬度,故其土壤間之孔隙、可塑性、 渗透性和毛細作用,均會導致不同的反應 ,相對影響部隊輸具機動力之發揮⁵,其

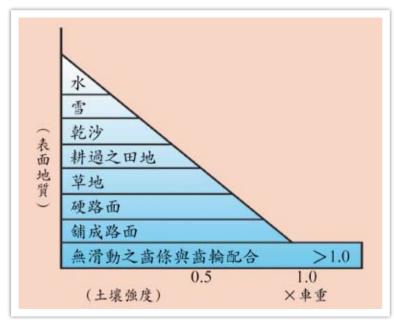
	《 一 夕兴在小内被及工的有 医迹及状								
ĺ	斜坡坡度	行軍速度	平均行軍速度	度(公里/小時)	每天8小時平均標準(公里)				
I	(度)	(步/分)	上坡	下坡	一一一一一一一一一一一一一一一一一一				
I	1~3	110	4	4	35				
ĺ	3~5	90	3.2	3.6	32				
ĺ	5~8	80	2.8	3.5	28				
Ì	8~12	70	2.4	3.0	25				
Ì	12~20	55	1.9	2.3	20				
Ì	20~25	40	1.4	1.7	18				
Ì	25~30	25	0.9	1.1	12				

表二 步兵在不同坡度上的行進速度表

資料來源:國防部情次室,《軍事地形閱讀手冊》(臺北:國防部,民國81年),頁93、94。

人員徒步行軍在坡度各異之距離 與速率(如表二)。

(2)對車輛運動之影響


車輛運動受到地形限制更 趨明顯,部分地障尚須輔以機具 ,始能克服。若以可供車輛通行 地形而言,舉凡土壤、坡度與車 輛牽引力(前進磨擦力)有著密切 的關係,其影響如圖一、表三所 示。

2.水文

水文係指自然界中水的各種形態變化、循環、分布及性質等。³其關鍵在於:河幅(水)之寬度、水深、流速等,分析如表四、五所示。⁴

3.土壤

圖一 土壤強度與牽引力關係圖

資料來源:陸戰戰術學編纂委員會,《陸戰戰術學第一冊》(臺北:國防部,民國90年),頁2-63。

2~5 於下頁。

科技新知

現行地形分析

表三 戰鬥車輛在不同坡度上的運動速度表

批准力较	不	太阳协弈				
裝備名稱	3~6度	6~10度	10~15度	15~20度	極限坡度	
越野汽車	20~15	15~12	12~8	8~5	20~30	
履帶車	12~10	10~7	7~5	5~3	17~25	
裝甲自走砲	15~12	12~10	10~6	6~4	30~35	
附註		1.坦克可以通過4度的短坡(5~10公尺) 2.地面濕軟時,運動速度降低1/3~1/2				

資料來源:李根生、馮曉明、劉福余,《軍事地形學》(北京:黃和出版社,2002年),頁193。

表四 水文資料表

區 分	定義	特性
河幅(水)寬	通常指江河、運河、水渠 的横向寬度	1. 窄的河流,一般水淺,便於徒涉、泅渡及架橋。 2. 較寬河流,一般水深,不利徒涉、泅渡及架橋。
水深	水面與水底垂直距離	水之深淺影響徒涉、泅渡和渡河器材選用。
流速	單位時間內水的流動距離	1.流速<1m/s對渡口類型選擇無影響。 2.流速1~2m/s對步兵戰鬥車下水、上岸河水中操作困難。 3.流速>2m/s除上述,並對履帶車輛運動均具影響。

資料來源:李根生、馮曉明、劉福余,《軍事地形學》(北京:黃和出版社,2002年),頁206、207。

表五 流速對徒步步兵、車輛允許涉水、泅渡深度表

水深/流速		實施徒涉之最大水深(公尺)						
戦鬥車輛	1m/s以下	1~2m/s	2∼3m/s					
徒步步兵	1.00~1.50	0.80	0.60					
3.0~3.5頓載重車	0.80	0.70	0.60					
牽引火砲	0.70	0.60	0.50					
自走砲車	1.50	1.40	1.30					
中型戰車	2.5~5.0	2.4	2.30					

資料來源:李根生、馮曉明、劉福余,《軍事地形學》(北京:黃和出版社,2002年),頁206、207。

對機動力之影響程度,如表六所示。

(二)環境對觀測、隱蔽之影響

1.住民地

住民地乃民眾蝟集居住地之總稱, 蓋其地形、地物與城鄉建設、街廊、城池 有別於曠野之地,故其軍事價值尤勝於一

² 陸戰戰術學編纂委員會,《陸戰戰術學第一冊》(臺北:國防部,民90年),頁2-62。

³ 教育部,教育部國語辭典, 〈http://dict.revised.moe.edu.tw/cgi-bin/newDict/dict.sh?〉

李根生、馮曉明、劉福余,《軍事地形學》(北京:黃和出版社,2002年),頁206、207。

李根生、馮曉明、劉福余,《軍事地形學》(北京:黃和出版社,2002年),頁196。

ARMY BIMONTHLY

般,其分析如表七所示。

2.氣象

氣象係指一切大氣變化的現象,如 風、雨、雷、電等。⁶自古以來的戰爭中 ,其扮演了極為重要的角色,往往可以左 右一場戰役的勝負,然迄今科技日新月異 ,其影響已大幅衰減不若以往。「觀測」 這項作戰時最基本的技能仍受其干擾, 雖現今科技發展快速,觀測能力已有長 足之進步;惟地形分析仍須對「觀測能 力」予以評估,以採取適當之因應,快 速掌握戰機,諸如雲、能見度、降雨、 氣溫等,透過個別要素分析,可歸納如表 八。⁷

3.山坡起伏形式

山地因形成之原因各有不同,故起 伏與走向各自有異,致其觀測,射擊、隱 (掩)蔽各有其長,以圖二而言,設若右側 山地的制高點設置觀測站或雷達陣地,或 構築射擊陣地,即可對遮蔽點右側凹地進 行瞰制與火力控制,遮蔽點的左側就受其 高度的遮蔽產生了隱蔽效果,同時對雷達 的搜索也形成遮蔽區。

三、戰場情報準備(IPB)地形分析作業

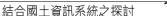
表六	土壤影	響機動	h	分析表	:
1 1	一	百似机	/1	カルヤ	•

土壤類別	影響	程	度
砂質土壤	1.步兵徒步行進最大時速1.5~2Km/h。 2.輪型車輛基本不能通行,耗油量為碼 3.履帶車輛雖可機動,但附著力低,時	色土質2~3倍。	
砂礫土壌	1.輪型車輛機動可達時速10~15 Km/h 2.履帶車輛機動可達時速25 Km/h,機	。 件易磨損。	

資料來源:李根生、馮曉明、劉福余,《軍事地形學》(北京:黃和出版社,2002年),頁206、207。

表七 建築類型對觀測、隱蔽之影響表

區 分	影響	程 度
建築類型	運動通道。 2.磚石建築物: 具一定防護能力,	且多為較高或高層建築物,觀測、射擊條件較
分布形式	主之作戰地區。 2.密集而排列規則:視界與直射距 、排及連相互支援作戰地區。	十擊均受限,視線與直射距離有限,可以步兵為 至離較佳,對觀測與射擊較不受限制,可組織班 战相互支援火力;高大建築物可建立觀測所,砲 到隱蔽之效果。


資料來源:李根生、馮曉明、劉福余,《軍事地形學》(北京:黃和出版社,2002年),頁198、199。

⁶ 教育部國語字典,http://dict.revised.moe.edu.tw/cgi-bin/newDict/dict.sh?cond=%AE%F0%B6H&pieceLen=50 &fld=1&cat=&ukey=34439363&serial=1&recNo=1&op=f&imgFont=1。

⁷ 唐萬年,《高技術局部戰爭氣象保障概論》(北京:氣象出版社,1999年),頁63、64。

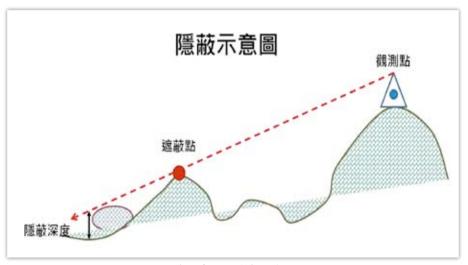
科技新知

現行地形分析

表八 氣象對觀測之影響分析表

要	素	臨	界值	影					響
女	糸	比而	界值	有	利	的	不	利	的
	雲		<300m	隱蔽和伯	為裝以躲避	偵察	對目標偵	蒐或使用熱視裝備均不	易觀測
能	見度		<1600m	隱蔽和伯	為裝		目標偵蒐		
氣	溫		>50 °C				影響紅外線	線瞄準器	
降	雨	>	>50mm/12h				能見度受	限	

資料來源: 唐萬年, 《高技術局部戰爭氣象保障概論》(北京: 氣象出版社, 1999年), 頁63、64。


(一)作業步驟

依據《陸軍部隊指揮參謀作業教範》中律定,「戰場情報準備」(IPB)之地形分析係針對與部隊觀測、隱蔽、通行性等有關項目予以分析,其目的說明如下:

1.觀測分析

觀測乃運用目視或器材,觀察作戰 地區之地形、地物、敵軍動態及氣象等

圖二 隱蔽示意分析圖

資料來源:作者自繪。

狀況,藉以獲致有價值之情報資料,俾利分析其對戰術行動(運動、射擊與防護等)之影響,通常包括目視及光電器材之通視範圍,並深入分析槍砲瞄準鏡、雷射測距儀、雷達、無線電及通信干擾器等。9

2.隱蔽分析

隱蔽之目的,在避免敵之觀測,藉 森林、樹叢、深草、雪堆、農作物等隱蔽 與掩蔽對敵我雙方甚為重要,如部隊能利

⁸ 國防部陸軍司令部,《陸軍戰場情報準備作業教範(第二版)》(桃園:陸軍司令部,民國98年),頁3-7。

⁹ 同前註,頁3-8。

用樹林、霧、夜暗運動,達成奇襲之公算較大,隱蔽與掩蔽之分析有助於研判防禦地形、接近路線、集結區、疏散區等,本項研判須從敵我雙方空中與地面觀測的角度去衡量,以決定可供隱蔽與掩蔽的地形。10

3. 通行性分析

地形通行性可分繪成各種不同的透明圖,詳盡地說明不同性質的地形特性,亦可將各種障礙因素整合並繪在一張透明圖上,成為「混合障礙透明圖」。通常將地形區分為「可行區」、「緩行區」、「難行區」等(如表九),"以顯示作戰地區地形狀況。其內容應涵蓋植物(疏

密、間隔)、水系(溪流寬度、深度、流速、邊坡坡度及高度)、土質通行性(土壤的形式及狀態)、地貌(影響通行之斜坡)、障礙(包括人為與天然障礙,考量地面及空中機動)、交通系統(橋樑載重限制、道路性質、曲半徑、坡度、高度、周邊狀況等)天然或人造天氣之影響(暴雨或覆雪等)。12

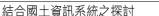
(二)戰場情報準備(IPB)地形分析之利 弊

依據戰場情報準備(IPB)之地形分析作業步驟,將各種地形影響軍事行動, 以透明圖套疊方式,呈現地形對地面作戰 之影響,以目前作業方式具有利弊分析如

		河		流	植		物	標準速度
區 分	坡度(%)	深度(呎)	流速(呎/秒)	寬度(%)	間隙(呎)	幹徑(吋)	路/徑 公里/時	(無阻礙)
可行區	< 30	<2		<5	>20	<2	2/4	24公里/時
緩行區	30~45	2~4	<5	<舟橋長度	<202	₹2~6	1/2	畫間 16公里/時 夜間 8公里/時
難行區	>45	>4	>5	>舟橋長度	<20.	及>6	0/<2	畫間 1公里/時 夜間 0.4公里/時

表九 地形通行性種類區分表

資料來源:國防部陸軍司令部,《陸軍戰場情報準備作業教範(第二版)》(桃園:陸軍司令部,民國98年),頁3-13。


¹⁰ 同前註,頁3-10。

¹¹ 國防部陸軍司令部,《陸軍戰場情報準備作業教範(第二版)》,頁3-13。「可行區」:係指地區內有良好的道路網,地形平坦、緩坡,機甲部隊通行無阻。「緩行區」:係指區內有中度斜坡或中度至高密度之樹林、岩石、建物等障礙,對機甲部隊構成某種程度之妨礙,部隊運動稍有困難,或須以戰鬥隊形通過,或以工兵機械或其他方式能在短時間克服者。「難行區」:區內全為陡坡及大型、高密度之障礙,僅有少數或全無道路可供通行,致嚴重阻礙或遲滯部隊運動,而須以工兵協助開闢通路始可通行。另如雷區、無法徒涉之河流(超過履帶機動橋之長度)、高速公路或鐵路路基等地形亦均為難行區。

¹² 同註8,頁3-13。

科技新知

現行地形分析

表十 地形分析利弊分析表

區分	分析	說	明
利	明圖標繪,呈現出地形變化。 2.根據坡度、土質分析透明圖套疊,可瞭 3.依據隱蔽與掩蔽之各種條件繪製之地形 4.透過地形障礙圖層套疊分析,能研判出 5.各業參依據其兵科特性、能力與限制等	上之山系、水系、坡度、土質、城鎮及鐵公路等以 解地形之變化,如何影響戰鬥車輛行駛速度和路線 透明圖套疊之後,產生提供良好觀測與射擊位置。 部隊機動空間,進而推斷接敵地區與敵接近路線。 說地形可能造成之影響予以標繪。 部門所產製之作戰地區分析,更具科學精神。	
弊	1.地圖出版年份不同或人員接合不當,造 2.地圖無法詳盡顯示地形對人員與裝備之 或可供利用之地形。 3.障礙界定均由作業人員判定,無法精確 4.地形均以透明圖套疊方式呈現,其作業 小結: 1.人員素質造成研判的標準不一。 2.缺乏作業系統造成人員作業不便且喪失	影響,常因人員素質不同,無法正確研判呈現出障 指出影響軍事行動實際範圍。 時間過於冗長,缺乏即時性。	礙

資料來源:作者分析整理。

表十。

國土資訊系統發展架構 與功能說明

一、國土資訊系統(NGIS)發展架構

國土資訊系統(National Geographic Information System, NGIS)係指我國政 府部門發展之全國性的地理資訊系統, 該系統係將土地的地上及地下之圖形(地籍、地形、都市計畫圖)及屬性(文字 、符號)資料儲存在電腦資料庫中,當 某一單位(政府或民間機構)因業務需要 ,可將需求之資料輸出(稱之為主題資 料,例如門牌位置、交通路網、地質、 公共管線、地價、水資源等)加以套疊 , 並以簡單有效的方式, 擷取、儲存、

處理、分析及顯示的資訊系統,以分工 合作方式達到資料共享與多目標應用之 整合性分散式地理資訊系統13,其架構 如圖三所示。

二、應用現況及範圍

民國79年政府成立國土資訊系統推動 小組以進行各項推動工作,達到建立全 國性大型地理資訊系統「國土資訊系統 (NGIS)」。國土資訊系統(NGIS)涵蓋了 人口、土地、產業、經濟、交通、管線、 自然資源、環保、國防等各個層面的資訊 。14區分九大資料庫,項目如下:

(一)自然環境基本資料庫;(二)自然 資源與生態資料庫;(三)環境品質資料庫 ;(四)社會經濟資料庫;(五)土地基本資 料庫;(六)區域及都市計畫資料庫;(七)

¹³ 國土資訊系統, http://ngis.moea.gov.tw/moeaweb/Main.aspx?intoID=2

¹⁴ 周天穎,《地理資訊系統理論與實務》(臺北:儒林,2005年),頁7-2。

上地的地上及 地下之圖形 地籍、地形、 都市計畫圖 類取、儲存、處理、分析及顯示

圖三 國土資訊系統(NGIS)架構示意圖

資料來源:國土資訊系統網站, http://ngis.moea.gov.tw/moeaweb/Main.aspx?intoID=2

交通網路資料庫;(八)公共設施管線資料庫;(九)基本地形圖資料庫。

三、國土資訊系統(NGIS)對地形分析成果

國土資訊系統(NGIS)已將所有影響地 形分析之機動力、觀測、隱蔽及障礙等地 形資料,建置進入資料庫並分析,現就土 壤¹⁵、坡度、水文、氣象、住民地及植被 等予以列述說明。

(一)土壤及坡度

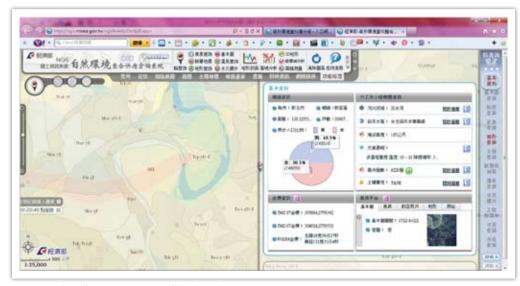
自然環境基本資料庫土壤圖層以 土壤剖面形態、土壤化學及物理性質為主 ,化學性質包括如pH質、有機質、可萃 取養分等;物理性質包含如質地、構造、 坡度、孔隙率、壓密度、滲透係數等;另

¹⁵ 土壤分類由最低分類至最高分類為:「土型」(最低分類單位)、若干土型合成「土系」(soil series)、土系之上為「土族」(或稱土科、土屬),此三者合稱低級分類子目,以土系為實際應用上的詮釋單位;土族以上設有「大土類」、再上為「亞綱」、最大分類則為「土綱」,此三類為高級分類子目,整個體系以大土類為主幹。土系是指一組土壤,除表土質地外,其他所有特性如土壤剖面中化育層之類別及排列情形、深度或厚度、色澤、質地、構造(或稱結持度)、反應,以及母質來源,都必須相同或極為近似,而以最初發現該土系所在地地名來或顯著地形名稱來命名。土系之下,依表土質地不同分割土型,土型名稱為土系名逕接表土質地別。土系之上的土族,是集合若干大體性質相近似的土系合成土族,土族命名大多是以最初發現、或分布最廣、或最為常人熟悉的土系作土族名,歸類的依據通常為母質原源及剖面底土色澤等。另外為了實用目的,若干土壤性質相近所在地形之坡度級別、礫石含量、表土深度、有效土層厚度、季節性淹水情況及沖蝕程度等,這些因子考量進去時則可設立「土相」,土相不一定與土型在一起,也可以與土系或更上級子目並存。自然環境基本資料庫,http://ngis.moea.gov.tw/ngisfxweb/Default.aspx

結合國十資訊系統之探討

應用土壤剖面形態、土壤化學及物理性質 可以組成土壤分類等相關資料,16區分十 壤及土相、坡度說明。

1.十壤及十相(如圖四)


- (1)土壤:國土資訊系統(NGIS)以 1/25,000土壤圖繪圖時的附記記號,註記 於土系變異之後,土相之前,而僅針對土 壤而言,將土壤狀況由粗到細給予0~9的 編號,如表十一所示。
 - (2)土相:土相為1/25,000土壤圖繪

圖時的輔助記號(最小繪圖單位),為寫在 「土型」之後次級符號。主要土相包括坡 度相、含鹽相、漂石相、多濕相、沖蝕 相、石礫相及未受浸水或新水田的紅壤相 等,十相提供使用者判別坡度。

2.坡度分析

為1/25,000土壤圖繪圖時的輔助記 號(最小繪圖單位),為寫在「土壤」之後 次級符號,主要坡度分析表示,如表十二 及圖五所示。

圖 四 土壤及土相屬性圖層圖

資料來源:自然環境基本資料庫,http://ngis.moea.gov.tw/ngisfxweb/Default.aspx

土壤分類編號表 表十一

編號	說明	編號	說明
0	粗砂土、砂土	5	壤土
1	細砂土	6	砂質黏壤土
2	細砂土	7	黏質壤土
3	極細砂土	8	坋質黏土
4	坋質壤土	9	黏土

資料來源:自然環境基本資料庫,http://ngis.moea.gov.tw/ngisfxweb/Default.aspx

¹⁶ 自然環境基本資料庫,http://ngis.moea.gov.tw/ngisfxweb/Default.aspx

	V- 1	3636 N 11 30 1 - 1 -	
編號	說明	編號	說明
不標示	<5度	D	20~30度
В	5~12度	Е	30~45度
С	12~20度	F	>45度

表十二 坡度分析成果表

資料來源:自然環境基本資料庫,http://ngis.moea.gov.tw/ngisfxweb/Default.aspx

圖五 坡度編號圖例圖

資料來源:自然環境基本資料庫,http://ngis.moea.gov.tw/ngisfxweb/Default.aspx

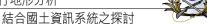
(二)水文

自然環境基本資料庫水文圖層以 地表水文、地下水文與近海水文為主,包 括河川水位、流量、含沙量、地下水位、 水質及近海水文等。其系統提供水文資訊 予以說明,如圖六所示。

(三)住民地

國土規劃資料庫整合倉儲資料系統(區域及都市計畫資料庫),系統內圖層顯示包含城鎮、工業區及未來都市計畫規畫區等範圍,說明地區土地運用狀況,如圖七所示。

(四)植被


就自然資源與生態資料庫,該系統分析圖層為了促進生態資源資料整合, 透過資料標準及開放式網路服務建置,將 生物、棲地、環境及資源管理四大領域資 料庫之建置與整合,於資料倉儲流通平臺 上相互流通,¹⁷該系統對植被分析係以色 層標註區域,如圖八所示。

國土資訊系統分析成果 之運用評估

「國土資訊系統資料庫」包含自然環境、自然資源與生態、環境品質、社會經濟、土地基本資料、區域及都市計畫

¹⁷ 內政部,《國土資訊系統通訊第81期》(臺北:內政部,2012年),頁27。

現行地形分析

編號	圖例說明	備考
1	可獲得區域內水寬距離	
2	可標示出堤岸分布位置	
3	提供該區域內即時水位高度	

資料來源:1.作者整理。

2. 自然環境基本資料庫, http://ngis.moea.gov.tw/ngisfxweb/Default.aspx

NGIS疆土實訊系統 國土規劃資料庫整合供應倉儲系統 新州村東京 **英雄市土地市関小区** SHR-RESON **阿田拉索利用规定收收证据证** □ 阿田拉索利用规定规则 -SERVICE CHEERS SHOW · BE BENEFAR **ABSCAR** E CHESTAN BANCES DESTRUCTION. · Britishen commen 用都市土电路和市 日 日 国家のお土を見たりる mate HE THERMAN 407 * E C SECUR-HE HGR S. ERICHE * IT IS MAKEN A CHRESCOPPING 特定水土条件等 RECK! DARREST WHEN · 图 E MINISTER · NEEDS ** MEGH BENKE · FINSHIPPER STEROMERS. NUMBER OF STREET BRANK BRADOWS ata Rist **羊孢内链** TREE * IT IT SHAWLER

國土規劃資料庫系統住民地分析圖

資料來源:國土資訊系統, http://ngis.tcd.gov.tw/ngiscpami/

、交通網路、公共設施管線、基本地形 圖等九大類資料庫,各資料庫針對不同的 使用族群,提供所需之資料,將地形、 地物、人造建築等結合電子地圖予以記 錄,方便用戶使用,若以國軍地形分析

資料需求而言,自現有資料庫中蒐集所需 訊息並非難事,將所獲之資料配合現行「 可行區」、「緩行區」、「難行區」之評 估標準,讓地形分析更科學化、精準化。 現就資料庫可獲之資料,對機動力、觀測

圖八 自然資源與生態系統植被分布圖

資料來源:內政部,《國土資訊系統通訊第81期》(臺北:內政部,2012年),頁27。

、隱蔽及地形障礙等進行分析,分述如 下:

一、機動力分析

國土資訊系統分析圖層資料庫之中 ,可找出地形之坡度、土壤、土相及水 文要素等影響機動力之地形資料,運用 其數據配合人員運動、車輛越野爬坡、 越障之能力等,從事機動力的分析,可 以更為精確繪製出機動空間,進而標示 出接近路線,提供部隊運動之參考,其 分析作業步驟尚待研究,本文僅提供系 統中可運用與無法運用之資料項(如表十 三)。

二、觀測、隱蔽分析

國土資訊系統分析圖層資料庫之中, 可找出坡度、住民地及植被等,足以影響 「觀測」、「隱蔽」之地形資料,運用其 數據配合武器射界、裝備掩體、隱蔽(集 結)位置、補給開設(屯儲)等,可以更為精 確的調製武器射界障礙透明圖、城鎮障礙 透明圖等,提供部隊射擊與隱(掩)蔽之參 考,然其分析作業步驟尚待後續研究,本

表十三 機動力分析表

區 分	影響項目	可	運	用	性	不	可	運	用	性
機動力	坡 度 壤 文	參謀可 動力之 2.圖層分	土相及坡度分析, 在電腦圖層中引用 影響。 析之水文資料部分 參謀從事水系障礙	月各項數據,以 分包含水深、水	便判讀對機	訊才	,能於	析系統之	中顯	示,

資料來源:作者自行分析整理。

現行地形分析

文僅提供系統中可運用與無法運用之資料 項(如表十四)。

三、涌行性分析

國土資訊系統分析圖層資料庫中,可 找出地形之坡度、土壤、土相及水文要 素等影響「通行性」之地形資料,運用 其數據比對人員運動、車輛機動、越野 限制之能力等,從事地區涌行性的分析, 可以更為精確繪製出機動空間,提供部 隊運動之參考,然其分析作業步驟尚待 後續研究,本文僅提供系統中可運用與 無法運用之資料項(如表十五)。

結 語

經由分析與歸納後,得知以目前「戰 場情報準備」(IPB)之地形分析作業步驟

- 對諸般戰場環境、人員、武器之機動力
- 、觀測、隱蔽及涌行性等之判讀,其精確

度尚嫌不足,仍有精淮空間。筆者試圖白 「國土資訊系統」(NGIS)的各式資料庫藉 由「十壤、坡度、水文、植被與住民地等 相關數據資料,提供參謀進行地形分析 之參用,尋得相關之要素,對分析作業 產生相當之助益。目前系統中各式資料 尚欠詳細度,在分析作業時,未能全般與 國軍作業需求結合,若可改善資料之精細 度與準確性並引進部隊,必能提升平時防 災制變及相關戰略戰術之用,有助於地形 分析準確度與能力;惟若移作戰時之用, 則猶待後續驗證或充分之參數後始可應用 之。

收件:101年11月28日

第1次修正:101年12月14日

第2次修正:102年2月5日

接受:102年3月2日

表十四 觀測、隱蔽分析表

區 分	影響項目	可運	用	性	不可	運	用 性
觀測與隱蔽	坡住植民被	之位置。 2.資料庫的「林班圖」提 作業時,可輕易選出便 置。 3.資料庫提供政府機關、	出便於「觀測」或「隱 供植被資料數據,進行 於「觀測」或「隱蔽」 加油站、醫院、學校、 工工,進行分析作業時,	藤 分之 公 公 共	分之住層未本高	林齊料 世提供、	市區域物 區建狀態 京 法 完 主 主 大 大 元 元 元 元 元 元 元 元 元 元 元 元 元 元 元 元

資料來源:作者自行分析整理。

表十五 通行性分析表

區 分	影響項目	可	運	用	性	不	可	運	用	性
通行性	坡 度文物	謀運用於 行性」及 2.系統圖層	對坡度分析, 判斷地形之 不可行性。 提供河流之 利於參謀對	「可行性」 分析包含水:	、「緩 深、河	分布 需之 2.水文	區域及 間距、 材 分析未動	植物分析 狀況幹直 財流 計讀 水系	地形障 尚未提 供所需	供。 即時

資料來源:作者自行分析整理。