Copyright © 2013 JMS

Traumatic Symptomatic Vasospasm after Mild Head Injury

Kuan-Nien Chou, Shih-Wei Hsu, and Dueng-Yuan Hueng*

Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China

Post-traumatic vasospasm is a well-recognized complication of head injury. However, symptomatic vasospasm rarely occurs in patients with mild head injuries. A 58-year-old female patient presented with head injury and a traumatic subarachnoid hematoma along the left lateral fissure, which subsequently induced symptomatic vasospasm. Magnetic resonance imaging of her brain showed acute infarction of the left middle cerebral artery. Angiography demonstrated multiple segmental narrowing of the left middle cerebral artery near the hematoma spatially in accordance with PTSV. In conclusion, early recognition of PTSV is crucial to improving neurological outcomes.

Key words: post-traumatic vasospasm, subarachnoid hematoma, head injury, nimodipine, Glasgow Coma Scale

INTRODUCTION

Post-traumatic vasospasm (PTV) is a well-recognized complication of head injury. The estimated incidence of PTV is around 10% to more than 50% in patients with head injuries. In severe head injuries, PTV often occurs between 12 hours and 5 days after the injury. The reported duration of PTV is around 12 hours to 30 days.²⁻⁴ Symptomatic vasospasm was defined as the time course of neurological deterioration parallel to that of radiogenic vasospasm. Taneda et al. presented that the incidence of symptomatic vasospasm was 7.7% of head-injured patients with subarachnoid hemorrhage detected on computed tomography (CT), and it developed between Day 4 and 16 after the head injury.⁵ Since post-traumatic symptomatic vasospasm (PTSV) is an important factor contributing to severe neurological deficits and poor prognosis, 6-8 neurologists should be aware of and recognize symptomatic vasospasm early following a head injury. Angiography is the gold standard for the diagnosis of PTV. Herein, we report the case of a minor head injury which progressed to PTSV without a drop in Glasgow Coma Scale (GCS).

Received: February 7, 2012; Revised: March 29, 2012; Accepted: April 11, 2012

*Corresponding author: Dueng-Yuan Hueng, Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Cheng-gong Road, Taipei 114, Taiwan, Republic of China. Tel: +886-8792-7177; Fax: +886-8792-7178; E-mail: hondy2195@yahoo.com.tw

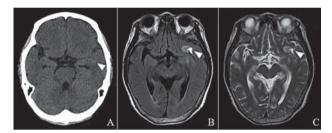


Fig. 1 (A) The white arrowhead indicates the acute subarachnoid hematoma along the left Sylvian fissure on CT of brain. (B and C) Both T1-weighted and T2-weighted MR images show high signal intensity (white arrowheads), suggestive of a subacute hematoma along the left Sylvian fissure.

CASE REPORT

A 58-year-old female suffered from headache and nausea without significant neurological deficits (GCS: E3M6V5) on arrival at our emergency room after a motorcycle accident. However, she complained of a persistent headache and dizziness on the third admission day. This prompted us to perform a CT scan of her brain, which showed a minimal subarachnoid hematoma along with a left lateral fissure (Fig. 1A). Abrupt left-side hemiplegia, dysarthria, and a central type of right-side facial palsy occurred about 10 days later. Magnetic resonance imaging of her brain (Fig. 1B and 1C) revealed a small subacute subarachnoid hematoma accumulated around the left bifurcation of the middle cerebral artery (MCA) along with the left Sylvian fissure. Moreover, there was an acute infarction involving her left centrum semiovale, corona radiata, insular ribbon and peri-fissural

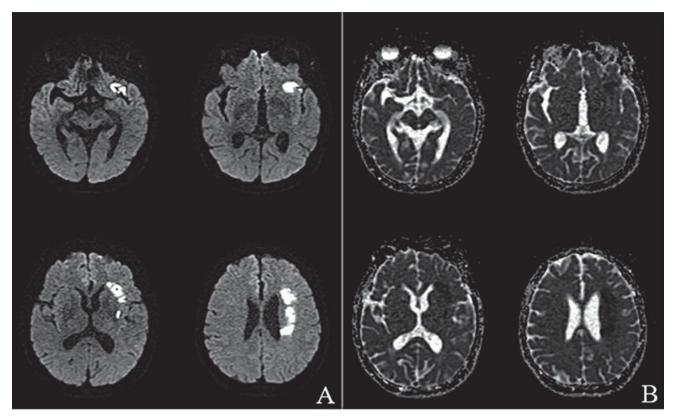


Fig. 2 Diffusion-weighted magnetic resonance images (A) show hyperintensity over the left centrum semiovale, corona radiata, insular ribbon, and peri-fissural frontal lobe, consistent with the area of hypointensity in magnetic resonance apparent diffusion coefficient maps (B). The regions mentioned above indicate acute infarction lesion.

frontal lobe (Fig. 2). Angiography of the left internal carotid artery (ICA) showed multiple segmental narrowing of the left MCA and anterior communicating artery close to the subarachnoid hematoma spatially, consistent with trauma-related vasospasm (Fig. 3A). She underwent nimodipine treatment (60 mg PO q4h) for 2 weeks, and follow-up cerebral angiography demonstrated a normal caliber without obvious stenosis of the MCA (Fig. 3B).

DISCUSSION

From a traditional viewpoint of neurocritical care, a decline in the GCS of two points or more, or a drop of one point lasting for more than 30 minutes should prompt re-evaluation of CT scan. An important finding in our case is that a minor head injury without initial neurological deficits progressed to PTSV.

Vasospasm is a potentially severe complication of head injury. The incidence of post-traumatic vasospasm reported in angiographic studies ranges from 10% to 39%. However, the diagnostic rate of vasospasm varies

according to the diagnostic method used, including ultrasonography, magnetic resonance imaging, and angiography. Moreover, a much higher incidence of vasospasm exceeding 50% has been found with transcranial Doppler (TCD) ultrasonography. TCD ultrasonography achieves a higher diagnostic rate because it allows for continuous assessment or repeated monitoring. The duration and time course of PTV vary among reports.

Zubkov *et al.* showed that GCS score on admission was inversely related to the development of PTV, but not in cases with a GCS score of more than 12.^{3,9,10} Patients with epidural hematomas, subdural hematomas, and subarachnoid hematomas have an increased incidence of post-traumatic vasospasm. An increased volume of hematomas has also been reported to be related to PTSV.¹¹⁻¹⁴ Cerebrospinal fluid in the blood, breakdown products of blood, including oxyhemoglobin, and the coagultion-fibrinolysis system increased after head injury with subarachnoid hemorrhage and would induce either calcium-dependent and independent arterial smooth muscle contraction, as well as the metabolites of arachidonic

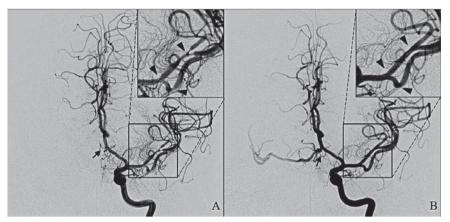


Fig. 3 (A) Anteroposterior view of left internal carotid artery angiography demonstrated multiple short-segmental narrowing from the left post-bifurcation to the insular segment of the middle cerebral artery (black arrowheads) and anterior communicating artery without the appearance of right middle cerebral artery (black arrows). (B) After two weeks of nimodipine treatment, the tapering from the left post-bifurcation to the insular segment of the middle cerebral artery was not seen (black arrowheads). Additionally, the appearance of the right middle cerebral artery was shown (black arrows).

acid, inflammatory processes and endothelium-derived substances, such as nitric oxide and endothelin. 15-19 However, the extent to which each mechanism is involved in the development of cerebral vasospasm remains unclear. Moreover, the molecular mechanism has been recognized as the alterations of calponin, a contractile protein, contributing to the migration and phosphorylation in smooth muscle membrane of vessels to enhance vasospasm. Therefore, calponin induced hypoperfusion after traumatic brain injury.²⁰ Although all their roles still remain to be established, pharmacological treatments of angiographic or clinical vasospasm using nimodipine, statins and endothelin receptor antagonists were proved with level-1 evidence available for the treatment of cerebral vasospasm.²¹ Nimodipine, a calcium channel blocker, is more lipid soluble than other calcium channel blockers in penetrating the blood-brain barrier to provide vasodilatory effect. 22,23 Statins, HMG-CoA reductase inhibitors, have been reported to increase production of endothelial nitric oxide synthase (eNOS) which generates NO in smooth muscle cells of cerebral vasculature to attenuate cerebral vasospasm.²⁴ Endothelin receptor antagonists act on endothelial and smooth muscle cells of the cerebral arterioles to induce arterial relaxtion. 25,26

Nimodipine is a dihydropyridine-derived calcium antagonist, which has been shown to be effective in preventing ischemic complications after aneurismal subarachnoid hemorrhage by dilatation of cerebral arterioles.^{22,23} However, there is still much debate whether patients with traumatic subarachnoid hemorrhage should also be treated with this drug. Vergouwen et al. reviewed the association between nimodipine and head injury and found no significant difference in occurrence of poor outcome and mortality rates between patients treated with nimodipine and those treated with placebo.²⁷ However, some evidence suggested potential benefit in nimodipine-treated patients with traumatic head injury.²⁸⁻³⁰

Reversible cerebral vasoconstriction syndrome (RCVS) is a rare entity of cerebral vasospasm, which occurs spontaneously without a definite cause.³¹ Patients with RCVS often present repeatedly with vasospasms on the arteries around the circle of Willis, followed by acute thunder-

clap headaches and transient or fluctuating neurological deficiencies.^{32,33} There are parallels between the duration of cerebral vasoconstriction and thunderclap headache. Although the primary pathology remains unknown, it is thought to be related to vasoactive substances, hypertension, endocrine abnormality, and neurosurgical trauma.³³ An angiographic study is the gold-standard diagnostic tool for RCVS to demonstrate cerebral vasoconstrictions and their reversibility. Additionally, it is also essential to differentiate diagnosis of RCVS from vasospasm with other entities. Minimal cortical subarachnoid hemorrhage occurring among 25% of these patients is suspected to be related to underlying endothelial dysfunction of cerebral vasculature, but it presents with diffuse short-segmental vasoconstriction involving large- and medium-sized cerebral arteries predominantly. However, the vasospasm in aneurismal or traumatic SAH is usually long-segmental and close to the bleeding site spatially.³⁴ Nimodipine has been employed to treat RCVS and shown to be effective in relieving headaches.³⁵

CONCLUSION

Most patients with mild head injury suffer dizziness and headache. However, CT of brain for these patients is not recommended, especially when they show no neurological abnormality. Clinicians should consider PTSV as a potential complication of head injury. Early recognition

of PTSV can significantly attenuate its severity, reduce the occurrence of neurological deficits, and improve functional neurological outcomes.

DISCLOSURE

All authors declare that this study has no conflict of interest.

REFERENCES

- Zurynski YA, Dorsch NW. A review of cerebral vasospasm. Part IV. Post-traumatic vasospasm. J Clin Neurosci 1998;5:146-154.
- 2. Compton JS, Teddy PJ. Cerebral arterial vasospasm following severe head injury: a transcranial Doppler study. Br J Neurosurg 1987;1:435-439.
- 3. Zubkov AY, Pilkington AS, Parent AD, Zhang J. Morphological presentation of posttraumatic vasospasm. Acta Neurochir Suppl 2000;76:223-226.
- Armonda RA, Bell RS, Vo AH, Ling G, DeGraba TJ, Crandall B, Ecklund J, Campbell WW. Wartime traumatic cerebral vasospasm: recent review of combat casualties. Neurosurgery 2006;59:1215-1225; discussion 1225.
- Taneda M, Kataoka K, Akai F, Asai T, Sakata I. Traumatic subarachnoid hemorrhage as a predictable indicator of delayed ischemic symptoms. J Neurosurg 1996:84:762-768.
- Martin NA, Doberstein C, Alexander M, Khanna R, Benalcazar H, Alsina G, Zane C, McBride D, Kelly D, Hovda D. Posttraumatic cerebral arterial spasm. J Neurotrauma 1995;12:897-901.
- Lee JH, Martin NA, Alsina G, McArthur DL, Zaucha K, Hovda DA, Becker DP. Hemodynamically significant cerebral vasospasm and outcome after head injury: a prospective study. J Neurosurg 1997;87:221-233.
- 8. Soustiel JF, Shik V, Feinsod M. Basilar vasospasm following spontaneous and traumatic subarachnoid haemorrhage: clinical implications. Acta Neurochir 2002;144: 137-144; discussion 144.
- 9. Zubkov AY, Pilkington AS, Bernanke DH, Parent AD, Zhang J. Posttraumatic cerebral vasospasm: clinical and morphological presentations. J Neurotrauma 1999;16: 763-770.
- Zubkov AY, Lewis AI, Raila FA, Zhang J, Parent AD. Risk factors for the development of post-traumatic cerebral vasospasm. Surg Neurol 2000;53: 126-130.
- 11. Friedman JA, Goerss SJ, Meyer FB, Piepgras DG,

- Pichelmann MA, McIver JI, Toussaint LG, 3rd, McClelland RL, Nichols DA, Atkinson JL, Wijdicks EF. Volumetric quantification of Fisher Grade 3 aneurysmal subarachnoid hemorrhage: a novel method to predict symptomatic vasospasm on admission computerized tomography scans. J Neurosurg 2002:97:401-407.
- Reilly C, Amidei C, Tolentino J, Jahromi BS, Macdonald RL. Clot volume and clearance rate as independent predictors of vasospasm after aneurysmal subarachnoid hemorrhage. J Neurosurg 2004;101:255-261.
- 13. Rosen DS, Amidei C, Tolentino J, Reilly C, Macdonald RL. Subarachnoid clot volume correlates with age, neurological grade, and blood pressure. Neurosurgery 2007; 60: 259-266; discussion 266-257.
- 14. Ko SB, Choi HA, Carpenter AM, Helbok R, Schmidt JM, Badjatia N, Claassen J, Connolly ES, Mayer SA, Lee K. Quantitative analysis of hemorrhage volume for predicting delayed cerebral ischemia after subarachnoid hemorrhage. Stroke 2011;42:669-674. doi: 10.1161/STROKEAHA.110.600775.
- 15. Pluta RM, Oldfield EH. Analysis of nitric oxide (NO) in cerebral vasospasm after aneursymal bleeding. Rev Recent Clin Trials 2007;2:59-67.
- 16. Kai Y, Maeda Y, Sasaki T, Kanaide H, Hirano K. Basic and translational research on proteinase-activated receptors: the role of thrombin receptor in cerebral vasospasm in subarachnoid hemorrhage. J Pharmacol Sci 2008;108:426-432.
- 17. Kolias AG, Sen J, Belli A. Pathogenesis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage: putative mechanisms and novel approaches. J Neurosci Res 2009;87:1-11. doi: 10.1002/jnr.21823.
- Chaichana KL, Pradilla G, Huang J, Tamargo RJ. Role of inflammation (leukocyte-endothelial cell interactions) in vasospasm after subarachnoid hemorrhage. World Neurosurg 2010;73:22-41. doi: 10.1016/ j.surneu.2009.05.027.
- 19. Kikkawa Y, Kameda K, Hirano M, Sasaki T, Hirano K. Impaired feedback regulation of the receptor activity and the myofilament Ca2+ sensitivity contributes to increased vascular reactiveness after subarachnoid hemorrhage. J Cereb Blood Flow Metab 2010;30:1637-1650. doi: 10.1038/jcbfm.2010.35.
- Kreipke CW, Morgan R, Roberts G, Bagchi M, Rafols JA. Calponin phosphorylation in cerebral cortex microvessels mediates sustained vasoconstriction after brain trauma. Neurol Res 2007;29:369-374.
- 21. Deshaies EM, Boulos AS, Drazin D, Popp AJ.

- Evidence-based pharmacotherapy for cerebral vasospasm. Neurol Res 2009;31:615-620. doi: 10.1179/174313209X382377.
- 22. Kazda S, Towart R.Nimodipine: a new calcium antagonistic drug with a preferential cerebrovascular action. Acta Neurochir (Wien) 1982;63:259-265.
- 23. Dorhout Mees SM, Rinkel GJ, Feigin VL, Algra A, van den Bergh WM, Vermeulen M, van Gijn J. Calcium antagonists for aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev 2007;18:CD000277
- 24. McGirt MJ, Pradilla G, Legnani FG, Thai QA, Recinos PF, Tamargo RJ, Clatterbuck RE. Systemic administration of simvastatin after the onset of experimental subarachnoid hemorrhage attenuates cerebral vasospasm. Neurosurgery 2006;58:945-951; discussion 945-51.
- 25. Xie A, Aihara Y, Bouryi VA, Nikitina E, Jahromi BS, Zhang ZD, Takahashi M, Macdonald RL. Novel mechanism of endothelin-1-induced vasospasm after subarachnoid hemorrhage. J Cereb Blood Flow Metab 2007;27:1692-1701.
- 26. Hoenicka M, Keyser A, Rupprecht L, Puehler T, Hirt S, Schmid C. Endothelium-dependent vasoconstriction in isolated vessel grafts: a novel mechanism of vasospasm? Ann Thorac Surg 2011;92:1299-1306. doi: 10.1016/j.athoracsur.2011.05.114.
- 27. Vergouwen MD, Vermeulen M, Roos YB. Effect of nimodipine on outcome in patients with traumatic subarachnoid haemorrhage: a systematic review. Lancet Neurol 2006;5:1029-1032.

- 28. The European Study Group on Nimodipine in Severe Head Injury. A multicenter trial of the efficacy of nimodipine on outcome after severe head injury. J Neurosurg 1994;80:797-804.
- 29. Harders A, Kakarieka A, Braakman R, the German tSAH Study Group. Traumatic subarachnoid hemorrhage and its treatment with nimodipine. J Neurosurg 1996:85:82-89.
- 30. Aslan A, Gurelik M, Cemek M, Goksel HM, Buyu-kokuroglu ME. Nimodipine can improve cerebral metabolism and outcome in patients with severe head trauma. Pharmacol Res 2009;59:120-124. doi: 10.1016/j.phrs.2008.10.003.
- 31. Call GK, Fleming MC, Sealfon S, Levine H, Kistler JP, Fisher CM. Reversible cerebral segmental vaso-constriction. Stroke 1988;19:1159-1170.
- 32. RKL Lee, DYW Siu, AT Ahuja. Imaging Characteristics of Reversible Cerebral Vasoconstriction Syndrome: an Under-recognised Cause of Severe Headache. J Hong Kong Col Radiol 2010;13:149-153
- 33. Chen SP, Fuh JL, Wang SJ. Reversible cerebral vasoconstriction syndrome: current and future perspectives. Expert Rev Neurother 2011;11:1265-1276. doi: 10.1586/ern.11.112.
- 34. Moustafa RR, Allen CM, Baron JC. Call-Fleming syndrome associated with subarachnoid haemorrhage: three new cases. J Neurol Neurosurg Psychiatry 2008;79:602-605.
- 35. Lu SR, Liao YC, Fuh JL, Lirng JF, Wang SJ. Nimodipine for treatment of primary thunderclap headache. Neurology 2004;62:1414-1416.