多管火箭彈道氣象運用之研究

作者:李尚儒 上尉

提要

- 一、管式火砲在今日戰場上常感火力投射命中率太低,難以有效剋制各類面積 目標,且其射程有限,無法射擊戰場敵區深遠目標,而多管火箭系統由於 射速快、火力旺盛、彈著涵蓋廣大,射程深遠,適用於面積目標射擊。
- 二、「雷霆 2000 多管火箭」具有高機動力、高射速、電子控制、自動定位定向 等作戰能力,可用以增強管式砲兵火力,攻擊敵深遠目標或其他有利之面 積目標。
- 三、雷霆 2000 多管火箭「射擊指揮系統」整體規劃,乃為提供多管火箭射擊指揮,結合戰術射擊指揮系統與火箭砲車射控系統、目標獲得系統等,並以電腦計算取代人工分配作業流程,利用彈道計算機對戰術射擊指揮系統所分配目標進行運算,實施火力評估,決定最佳火力單元及所需彈藥箱數,以數位化通資傳輸取代語音,減少作業時間、提升火力運用效能,我國自力研發之「雷霆 2000 多管火箭系統」雖配賦射擊指揮儀執行射擊諸元運算以增進射擊精度,但若射擊指揮儀失能時則人工作業求得射擊諸元顯得更為重要。
- 四、彈道氣象直接影響管式砲兵及火箭砲兵膛外彈道,尤對射擊精度及火力發 揚更為顯著,新一代砲兵其射程與殺傷力皆已提升,並講求「迅速、精確 之火力」,故彈道氣象獲得,益形重要。¹

關鍵詞:雷霆 2000 多管火箭、氣象修正量對火箭彈之影響、多管火箭系統彈道 特性。

壹、前言

野戰砲兵是野戰部隊火力之骨幹,為剋敵制勝深具影響的戰力之一。1940年代以前,各國野戰砲兵的主要武器為管式火砲;由於科技與武器的進步、戰術的改變、部隊的機動性提高,1940年以後各國的野戰砲兵,因應情勢改變,逐漸發展及引進多管火箭,以增加其野戰砲兵的火力與射程。²

多管火箭是現代地面戰場上犀利之武器,一具多管火箭發射架瞬間滿架的

¹ 張文雄,〈砲兵氣象探測系統性能提升之研究〉《砲兵季刊》(台南),第106期,陸軍飛彈砲兵學校,89年第 1季,百44。

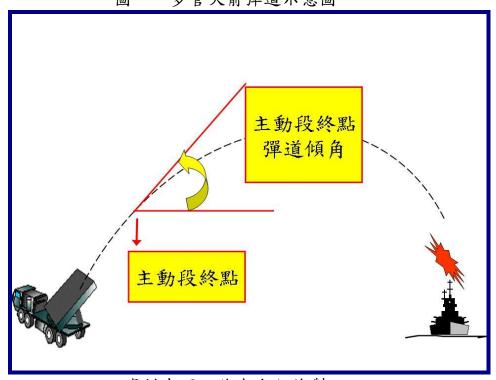
 $^{^2}$ 宋雲智,〈多管火箭現況與我國未來發展趨勢之研究〉《砲兵季刊》(台南),第 141 期,陸軍飛彈砲兵學校,97 年第 2 季,頁 1 。

射擊,約略在30秒鐘時間內,可將數十發火箭彈投射至目標區內,形成猛烈之 火力;且其機動性高,操作人員甚少及易於保修,由於這些優異的特性,使得 世界各國都競相發展多管火箭系統。

多管火箭係結合了自由火箭種種優點而創造之武器,具有射速快、火力旺盛、彈著涵蓋廣大,射程深遠,適用於面積目標射擊,並能於短時間連續投射大量火箭彈至敵方,散佈在目標區內爆炸,使敵人未及找到掩護前予以殺傷,以獲得最大殺傷效果。³我國自力研發之「雷霆2000多管火箭系統」雖配賦射擊指揮儀執行射擊諸元運算以增進射擊精度,但若射擊指揮儀失能時則人工作業求得射擊諸元顯得更為重要,故興起吾人針對人工作業方式進行探討及說明,進而提供我砲兵部隊實彈射擊操作之參考。

貳、多管火箭系統彈道特性

火箭彈發射後,點燃發射藥,發射藥燃燒之氣體以高速從發動機的噴管向後噴出(作用方式係由推進機噴嘴,排出推進劑燃燒後所產生之氣體,藉此氣體給予火箭彈反作用力,成為火箭彈飛行之推力),進而產生推力,推動火箭彈向前飛行,並使其速度逐漸加快,發射藥燃燒完畢瞬間,火箭彈重心的位置稱為主動段終點(如圖一)。此時火箭彈速度最大,稱為火箭彈終點速度,從起點至火箭彈終點的此一彈道稱為主動段,此後,不再有推力作用,火箭彈僅靠已獲得之動能飛行。4


從主動段終點到落點之彈道稱為被動段,主動段終點的彈道切線與水平線 的夾角,稱為主動段終點彈道傾角(如圖一)。由上述可知,火箭彈的彈道由 主動段與被動段組成,主動段之終點即為被動段之起點,被動段與砲彈彈道相 似,因此可將主動段終點與彈道傾角視為砲彈之初速與傾角。

由於火箭彈在主動段有推力作用等原因,而右旋之影響係使其偏左,且右旋對火箭彈被動段的影響與火砲相同,使其偏右,火箭彈的偏流由以上兩種因素綜合而成,近距離上前者影響較大,綜合後的偏流係偏左,遠距離則相反,中間某一距離上,兩種影響抵消,此時偏流幾乎等於零。

³ 應紹基,《砲兵火箭與砲兵飛彈》(台北: 啟新出版社,民國 75 年 6 月),頁 23。

⁴ 曹紅松,《兵器概論》(北京:國防工業出版社,民國 97 年 9 月),頁 338。

圖一 多管火箭彈道示意圖

資料來源:作者自行繪製

零、氣象資料對火箭彈射擊之影響

「多管火箭彈」其彈道屬自由飛行姿態,發射初期(即剛離開發射管時)之飛行速度低(僅數十公尺/秒),極易受風(氣象)之影響而造成「落點偏距」(含方向及距離公算偏差),故發射前,須獲得當時準確之氣象資料,以利發射架射控系統先期計算彈道,賦予射向及射角,以增加準度。但「氣象資料」可能因量測「儀器」、「時間」、「位置」等不同及「陣風」造成氣象誤差,此氣象量測資料誤差,將影響火箭彈落點位置。

在火箭彈發射前,彈道計算機運算射擊諸元所需因子計五大類(如表1):發動機性能、全彈物性、氣動力性能、大氣條件、初始發射參數, 其中前三類屬裝備特性,而大氣條件於射彈發射後佔有絕大影響因素。

若大氣溫度越高,則密度越低、動壓越小、氣動阻力越小,火箭彈之射程即越遠;若大氣壓力越大,則動壓越大、氣動阻越大,火箭彈之射程即越遠;若縱風為順風,則氣動阻力越小,火箭彈之射程即越遠;若縱風為逆風,則氣動阻力越大,火箭彈之射程即越近;若風向為橫風,則火箭彈遭受側向氣動力及力矩,將產生彈道偏距。火箭彈初步彈道模擬之氣象條件係應用「標準氣象」,因「標準氣象」可大致預估大氣壓力及溫度隨高度之變化,故可預估初步彈道諸元,但因其為無風狀態,應用於受風速、風向影響頗大之火箭彈彈道模擬,一般仍有 1%~5%之誤差,誤差因素

表一 影響火箭彈效能因素表

類別	名稱	項次	變異因素	備註
_	發動機性能	1 2 3	總衝量 推力不正 推力偏移	
_	全彈物性	1 2 3 4 5	全彈重量 重心縱移 重心偏移 轉動慣性量 (Ixx) 轉動慣性量 (Iyy)	火箭彈出廠即已 確定,均已納「發 射架射控系統」之 「射擊諸元」計
Ξ	氣動力性能	1 2 3 4	全彈阻力係數 全彈升力係數 全彈壓力中心係數 滾轉係數	第 。
四	大氣條件	1 2 3 4	縦風横風大氣温度大氣壓力	
五	初始發射參數	1 2 3 4 5	發射點高度 初始射角 初始方位角 初始滾轉角速率 初始射角速率 初始射角速率	

資料來源:作者自行繪製

肆、火箭彈之限制因素

砲兵多管火箭系統在達成相同之射擊密度時,可較傳統管式火砲需求更少的裝備數量及操作兵力,且具備重量輕、結構簡單等特點,但因射程遠,飛行時間甚長,形成射擊精度不佳、彈著散佈不理想之情況等諸多缺點,分述如下。

一、彈著散佈不理想

多管火箭系統於近距離射擊時,縱向散佈過大橫向散佈不佳,故通 常不行近距離射擊,不論其最大射程為何,一般皆以其三分之二最大射 程以上之射距射擊時效果較佳;而二分之一最大射程以下之射距通常不 予採用。⁵因此,要以多管火箭系統的火力分別涵蓋由遠而近不同距離的 目標時,須明瞭最佳彈著分佈情形以期能彌補火箭彈之性能限制。

二、遠距射擊時彈著精度欠佳

我國多管火箭彈未具有彈道導控或修正能力,彈體一經發射離架後即由發射藥燃燒產生之推力,推動彈體沿飛行彈道曲線自由向前飛行。由於火箭彈彈體體積較大,在飛行彈道中受氣象因素影響程度遠較砲彈嚴重,風向、風速、氣溫及大氣密度,皆影響射擊的精度且射擊距離愈遠、誤差愈大,精度遠不及傳統管式火砲,若未經詳細、精確的彈道修正,多管火箭的戰鬥效益將大大降低。

三、主動段常受低層風影響

氣象報告的有效性依據陸軍氣象作業教範,⁶氣象有效性區分空間、時間(時效)等二部份,然每一空層之氣象誤差對火箭彈落點「準度」之影響甚大,雷霆 2000 多管火箭最大彈道高可超過 10 至 17 公里(依彈種及射擊距離而改變),且隨飛行高度相應空層之影響亦不相同,以「低層」氣象(約 1 公里以下)風向、風速誤差影響最大;如前段內容所述,依初步彈道模擬、實彈射擊驗證並採事件機率方式運算後,「得知當風速誤差為 10 公尺/秒,於「射程」、「偏距」對火箭彈道「準度」之總影響量,分別達相應射程之 2. 1%(30 公里×2. 1%=0. 63 公里)至 5. 5%,而 1 公里以下高度即佔「準度」總影響量 54. 3%(0. 63 公里×54. 3%=0. 34 公里),並隨風速影響加大而增加,若未加以修正則影響彈著準度分佈。

伍、提升火箭彈射擊精度作法

雷霆 2000 多管火箭通常由多部火箭砲車同時遂行作戰,射擊一個廣大的面積目標中心,並依據射擊距離及散佈之影響選定不同之彈型,以滿足所望效果,但非標準狀況影響仍無法消彌,一般而言,火箭彈著誤差主要來自發射架特性、空氣密度(Density)變化、推進機燃燒階段(Boost Phase)及滑行階段(Coast Phase)之不同高度風速與風向影響,其中推進機燃燒階段橫風(Boost Crosswind)對於彈著點之偏向(Deflection)影響最大,故致力於增加射程的同時,射擊精度及彈著散佈區域的有效掌握與控制,更成為特別重要的問題,吾人提出淺見如下:

⁵ 應紹基,《多管火箭的優點與弱點》(台北:啟新出版社,民國75年10月),頁112。

⁶ 國防部陸軍司令部,《陸軍氣象教範》(桃園:國防部陸軍司令部,民國 94 年 11 月),頁 3-52。

⁷ 劉明德,《統計學》再版,(新北市:全華圖書股份有限公司,民國 101 年 6 月),頁 64。

一、妥慎運用氣象修正量

如前段內容所述得知,火箭彈射程遠、飛行時間長、受氣象因素影響甚大,因此若能於射擊前有效的運用氣象資料(氣象修正量),計算射擊諸元即能增進射擊精度,作業方式說明如后。

(一)已知條件

- 1、射向方位角 178 密位
- 2、圖上距離 27960 公尺
- 3、目標標高 0 公尺
- 4、陣地標高 105 公尺
- 5、陣地緯度 22°N
- 6、彈種 MK45 高爆彈
- 7、藥溫 27℃
- 8、氣象報告如下:

氣	象		報	告		報	頭		內	容
MF	ETB32			290870		12	21416		015997	7
氣	象		報	告		本	文		內	容
00101	15	99801	3	030909	0	73951	06250	6	06495	55
01030)7	11394	9	041308	06	37952	07300	7	06695	8
02070)9	10894	8	051607	06	34953	08330	6	06796	3

A、決定線號

以圖上距離進位至最接近 100 公尺 (28000 公尺) 以及標高差進位至最近 100 公尺 (-100 公尺) 整數,查閱射表 B表(如圖二),得知為線號 7。

圖二 MK45 高爆彈 B表

資料來源:作者自行繪製

B、決定查表距離

以 B 表查取附加距離,由圖 2 紅框處得知,其中標高差「-100 公尺及-200 公尺」間之附加距離為(42 公尺及 84 公尺),求得標高差為-105 公尺,在此等數值間使用內差法,以決定查表距離。

附加距離 42+0.05×(84-42)=44.1 公尺,查表距離 27960 +44.1=28004 公尺,使用最接近之 100 公尺(28,000 公尺)整 數,以求出後續各表中所列之修正量。

C、決定作用風向與風之分化值

由風向方位角減去進位至最近 100 密位之射向方位角(200 密位),線號7之風向方位角為 3000 密位,以風向方位角減射向方位角求得作用方向。

作用方向=3000-200=2800 密位

由 C 表 (如圖三) 中選定作用風向為 2800 密位之 1 浬風修 正量分化值,以彈道風 (7 浬) 乘以此單位橫風及縱風修正量分化 值,以求得風速分化值,並進位至最近整數位數。

横風 7 × R 0.38=R(右)3 浬/時 縦風 7 × T 0.92=T(順)6 浬/時

圖三 MK45 高爆彈 ()表

	C表	母小時	一浬烛	人修止	量分化	但
作用	横 風	縱		作用	横	縱
方向	浬 / 小	風		方向	風	風
	時	浬 / 小			浬 / 小	浬/小
		時			時	時
0	0	H1.00		3200	0	T1.00
100	R.10	H.99		3300	L.10	T.99
200	R.20	H.98		3400	L.20	T.98
300	R.29	H.96		3500	L.21	T.96
400	R.38	H.92		3600	L.38	T.92
500	R.47	H.88		3700	L.47	T.88
600	R.56	H.83		3800	L.56	T.83
700	R.63	H.77		3900	L.63	T.77
800	R.71	H.71		4000	L.71	T.71
900	R.77	H.63		4100	L.77	T.63
1000	R.83	H.56		4200	L.83	T.56
1100	R.88	H.47		4300	L.88	T.47
1200	R.92	H.38	1	4400	L.92	T.38
1300	R.96	H.29		4500	L.96	T.29
1400	R.98	H.20		4600	L.98	T.20
1500	R.99	H.10		4700	L.99	T.10
1600	R1.00	0		4800	L1.00	0
1700	R.99	T.10		4900	L.99	H.10
1800	R.98	T.20		5000	L.98	H.20
1900	R.96	T.29		5100	L.96	H.29
2000	R.92	T.38		5200	L.92	H.38
2100	R.88	T.47	1	5300	L.88	H.47
2200	R.83	T.56		5400	L.83	H.56
2300	R.77	T.63		5500	L.77	H.63
2400	R.71	T.71		5600	L.71	H.71
2500	R.63	T.77		5700	L.63	H.77
2600	R.56	T.83		5800	L.56	H.83
2700	P.47	TOO	•	5900	L.47	H.88
2800	R.38	T.92		6000	L.38	H.92
2900	R.29	T.96		6100	L.29	H.96
3000	R.20	T.98		6200	L.20	H.98
3100	R.10	T.99		6300	L.10	H.99
3200	0	T1.00		6400	0	H1.00

資料來源:作者自行繪製

D、決定彈道溫度與空氣壓力

由氣象報告報頭內所示之氣象台標高(150公尺)與進位至最接近之 10公尺之陣地標高(105公尺)兩者之差數以計算陣地高於或低於氣象台之高度。

陣地與氣象台之高度差 110-150=-40 公尺;空氣壓力:由 彈道氣溫之百分比乘以彈道密度之百分比即獲得空氣壓力百分比 數值。

空氣壓力 106.6% × 95.8%=102.1%

運用 D 表 (如圖四) 修正彈道氣溫及氣壓,以陣地與氣象台之標高差,查取彈道氣溫 (AT) 及氣壓 (AP) 之修正值。

修正之彈道氣溫 (AT) 106.6+0.1=106.7% 修正之彈道氣壓 (AP) 102.1+0.5=102.6%

圖四 MK45 高爆彈 D表

Δ	1*	0	+10-	+20-	+30-	+40-	+50-	+60-	+70-	+80-	+90-
0	ΔΤ	0.0	0.0	0.0	-0.1	-0.1+	-0.1+	-0.1+	-0.2+	-0.2+	-0.2+
_	ΔΡ	0.0	-0.1+	-0.2+	-0.4	-0.5+	-0.6+	-0.7+	-0.8+	-0.9+	-1.1+
+100-	ΔΤ	-0.2+	-0.2+	-0.2+	-0.3+	-0.3+	-0.3+	-0.3+	-0.4+	-0.4+	-0.4+
	ΔΡ	-1.2+	-1.3+	-1.4+	-1.5+	-1.6+	-1.8+	-1.9+	-2.0+	-2.1+	-2.2+
+200-	ΔΤ	-0.5+	-0.5+	-0.5+	-0.6+	-0.6+	-0.6+	-0.6+	-0.7+	-0.7+	-0.7+
	ΔΡ	-2.3+	-2.5+	-2.6+	-2.7+	-2.8+	-2.9+	-3.0+	-3.2+	-3.3+	-3.4+
+300-	ΔΤ	-0.7+	-0.7+	-0.7+	-0.8+	-0.8+	-0.8+	-0.8+	-0.9+	-0.9+	-0.9+
	ΔΡ	-3.5+	-3.6+	-3.7+	-3.8+	-4.0+	-4.1+	-4.2+	-4.3+	-4.4+	-4.5+

______ 資料來源:作者自行繪製

面,則使用在數字後之符號。

如砲陣地高於氣象基準面,使用在數字前方之符號;如低於氣象基準

E、決定氣象距離修正量

將步驟 C 及 D 之結果依據查表距離 (28000 公尺) 查閱 F 表第 9 至 16 欄 (如圖五) 查取非標準狀況之單位距離修正量,並視與標準值之差決定單位修正量,如縱風影響部分,若偏離之變化量前方英文字母為 H 時,即查閱單位逆風欄;若字母為 T 時,即查閱單位

順風欄,並依序查得單位修正量。

地球自轉修正量(距離)則查閱 H 表(如圖六),依據查表距離(28000 公尺)及射向方位角(200 密位)與陣地緯度 $22\,^\circ$ N 之條件查取地球自轉之距離修正量 $(-13)\times0.94=-12.2$ 公尺。

圖五 MK45 高爆彈 D表

	凹.		IIII .	10 1	-1 /2/-	开 」	-10	
		F-	2 表	修	正量	社 因	素	
1	9	10	11	12	13	14	15	16
距		距	商		修	正	量	
35300	藥	溫	縱	風	氣	溫	氣	壓
	1 1	度C	1浬	/時	1	%	1	%
	滅	加	逆	順	減	加	減	加
離			風	風				
R	° C	° C	W - R	W - R	Temp	Temp	Press	Press
(公尺)	(公尺)	(公尺)	(公尺)	(公尺)	(公尺)	(公尺)	(公尺)	(公尺)
27000.	8.2	-8.2	17.4	-17.4	140.8	-138,3	-190.8	189.3
27100.	8.3	-8.2	17.6	-17.6	141.8	-139.2	-192.1	190.4
27200.	8.3	-8.3	17.7	-17.7	142.8	-140.1	-193.3	191.6
27300.	8.4	-8.3	17.8	-17.9	143.8	-141.0	-194.5	192.7
27400.	8.4	-8.4	18.0	-18.0	144.7	-141.9	-195.8	193.8
27500.	8.5	-8.4	18.1	-18.1	145.7	-142.8	-197.0	195.0
27600.	8.6	-8.5	18.3	-18.3	146.7	-143.8	-198.3	196.1
27700.	8.6	-8.6	18.4	-18.4	147.7	-144.7	-199.5	197.3
27800.	8.7	-8.6	18.5	-18.6	148.6	-145.6	-200.8	198.5
27900	87	0.7	187	10.7	149.6	146	-202.0	100.6
28000.	8.8	-8.7	18.8	-18.8	150.6	-147.4	-203.3	200.8
28100.	0.0	-8.8	19.0	-19.0	151.6	-148.4	-204.5	201.9
28200.	8.9	-8.8	19.1	-19.1	152.6	-149.3	-205.8	203.1
28300.	9.0	-8.9	19.3	-19.3	153.6	-150.2	-207.1	204.3
28400.	9.0	-9.0	19.4	-19.4	154.6	-151.3	-208.4	205.5
28500.	9.1	-9.0	19.5	-19.5	155.5	-152.3	-209.7	206.7
28600.	9.1	-9.1	19.7	-19.7	156.5	-153.4	-211.0	208.0
28700.	9.2	-9.1	19.8	-19.8	157.4	-154.5	-212.3	209.2
28800.	9.3	-9.2	19.9	-19.9	158.4	-155.5	-213.6	210.4
28900.	9.3	-9.2	20.1	-20.1	159.3	-156.6	-215.0	211.7
				F2-3				

資料來源:作者自行繪製 圖六 MK45 高爆彈 H表

射距	8			目相	之方位	(密位)	(
(公尺)	0	200	400	600	800	1000	1200	1400	1600
	3200	3 00	2800	2600	2400	2200	2000	1800	1600
23000.	- 0.+	- 12.+	- 24.+	- 34.+	- 43.+	- 50.+	- 57.+	- 60.+	- 62.+
23500.	- 0.+	- 12.+	- 24.+	- 34.+	- 43.+	- 50.+	- 57.+	- 60.+	- 62.+
24000.	- 0.+	- 12.+	- 24.+	- 34.+	- 43.+	- 50.+	- 57.+	- 60.+	- 62.+
24500.	- 0.+	- 12.+	- 24.+	- 34.+	- 43.+	- 50.+	- 57.+	- 60.+	- 62.+
25000.	- 0.+	- 12.+	- 24.+	- 34.+	- 44.+	- 51.+	- 58.+	- 60.+	- 63.+
25500.	- 0.+	- 12.+	- 25.+	- 35.+	- 45.+	- 52.+	- 59.+	- 61.+	- 64.+
26000.	- 0.+	- 13.+	- 25.+	- 35.+	- 45.+	- 52.+	- 59.+	- 62.+	- 65.+
26500.	- 0.+	- 13.+	- 25.+	- 36.+	- 46.+	- 53.+	- 60.+	- 63.+	- 65.+
27000.	- 0.+	- 13.+	- 26.+	- 36.+	- 46.+	- 54.+	-61.+	- 64.+	- 66.+
27500.	- 0.+	- 3.+	- 26.+	- 37.+	- 47.+	- 54.+	- 62.+	- 64.+	- 67.+
28000.	-	- 13.+	- 26.+		- 48.+	- 55.+	- 62.+	- 65.+	- 68.+
28500.	- 0.+	- 13,+	- 27.+	- 37.+	- 48.+	- 56.+	- 63.+	- 66.+	- 68.+
29000.	- 0.+	- 14.+	- 27.+	- 38.+	- 49.+	- 56.+	- 64.+	- 67.+	- 69.+
29500.	- 0.+	- 14.+	- 27.+	- 38.+	- 49.+	- 57.+	- 65.+	- 67.+	- 70.+
30000.	- 0.+	- 14.+	- 28.+	- 39.+	- 50.+	- 58.+	- 65.+	- 68.+	- 71.+
30500.	- 0.+	- 14.+	- 28.+	- 39.+	- 50.+	- 58.+	- 66.+	- 69.+	- 71.+
31000.	- 0.+	- 14.+	- 28.+	- 40.+	- 51.+	- 59,+	- 67.+	- 70.+	- 72.+
	3200	3400	3600	3800	4000	4200	4400	4600	4800
	6400	6200	6000	5800	5600	5400	5200	5000	4800
				目根	之方位	(密位)			
數字時, *本表之	使用表修正量(內數字	後端之	符號。	方位角	前端之名 以正北爲 餘南北結	0度,順	1時鐘量	則。
子即可。		1/	2	20	20	40	60	60	70
200	渡(度) 10	J 2	20	30	40	50	60	70

資料來源:作者自行繪製

氣象距離修正量為非標準狀況下藥溫、氣溫、氣壓、地球自轉 等偏離標準之變化量乘以單位修正量後之總和。

藥溫修正量 6x(-8.7) = -52.2;

縱風修正量 6x(-18.8) = -112.8;

氣溫修正量 6.7x(-147.4) = -987.6;

氣壓修正量 2.6×200.8=522.1

,故 (-52.2) + (-112.8) + (-987.6) + 522.1 + (-12.2)

≒-643 為氣象距離修正量之和(如表二)。

氣 象 量 距 離 修 正 已知值 標準值 與標準值差 單位修正量 減 加 -8.727 21 52. 2 藥溫 增加 6 順 6 -18.8縱風 0 順風 6 112.8 氣溫 106.7 100% 增加 6.7 -147.4987. 6 氣壓 102.6 100% 522.1 增加 2.6 +200.8地球 -13×0.94 12. 2 自轉 522. 1 1164.8 522. 1 642.7

表二 氣象距離修正量計算成果

資料來源:作者自行繪製

F、氣象方向修正量

氣象方向修正量為橫風、偏流及地球自轉之代數總和,分別以F表(如圖七)第8欄、第7欄及 I表(如圖八)查得非標準狀況之單位修正量,在橫風影響部份以步驟 C 計算後之橫風乘以橫風單位修正量求得橫風修正量,偏流影響部分直接查表即可,地球自轉影響部分查閱 I 表諸元,依據查表距離(28000 公尺)及射向方位角(最接近 100 密位數)與陣地緯度 22°N(北緯 20°)之條件查取。

横風修正量 $R(右) 3\times 0.44 = R1.3$ 密位(向左為正、向右為 負);偏流修正量 向左修正 0.26 密位 (向左為正、向右為負) 地球自轉修正量 向左修正 0.7 密位(向左為正、向右為負),故 (-1.3)+0.26+0.7 = -0.3 (向右 0.3)為氣象方向修正量之和。

圖七 MK45 高爆彈 F表

		F-1	表 地	面	諸元		
1	2	3	4	5	6	7	8
距	仰	距一仰	仰一距	散	飛	方位角修	正量
	100000	離〇度	度密離		行	偏向	一横
		毎〇變	每位變	佈	時	左	浬
		變公化	變之化		間	修	1
離	度	化尺量	化 量	叉		流正	時風
		之				15 50,155	
R	EL	C	m/mil	F	TF	Dft	W-D
(公尺)	(密位)	(密位)	(公尺)	(密位)	(秒)	(密位)	(密位)
		_		_			
27000			47.	27.	50.1	.23	.42
27100			46.	27.	50.4	.23	.42
27200			46.	27.	50.7	.23	.42
27300		-	46.	27.	51.0	.24	.43
27400		71	46.	27.	51.3	.24	.43
27500		_	46.	28.	51.6	.24	.43
27600	_		46.	28.	51.9	.25	.43
27700	. 342.2		46.	28.	52.2	.25	.44
27800		4 2.2	46.	28.	52.5	.25	.44
27900		6 2.2	46.	28.	52.8	.26	.44
28000	-		46.	28.	53.1	.26	.44
28100			46.	28.	53.4	.26	.44
28200			46.	28.	53.7	.27	.45
28300			45.	29.	54.1	.27	.45
28400			45.	29.	54.4	.27	.45
28500	. 359.8	8 2.2	45.	29.	54.7	.28	.45
28600	. 362.0	0 2.2	45.	29.	55.0	.28	.45
28700	. 364.2	2.2	45.	29.	55.3	.28	.45
28800	. 366.4	4 2.2	45.	29.	55.6	.29	.46
28900	. 368.	7 2.2	45.	29.	55.9	.29	.46

資料來源:作者自行繪製 圖八 MK45 高爆彈 【表

緯度	射距				(才比系	平 <i>)</i> - 万位(cde (+)			
(度)	(公尺)	0	400	800	1200	1600	2000	2400	2800	3200
()50)		04 00	6000	5600	5200	4800	4400	4000	3600	3200
		0.00	0000	2000	2200	1000	1100	,000	2000	2200
20.	24000.	L.7R	L.7R	L.7R	L .8R	L.9R	L .9R	L1.0R	L1.0R	L1.0R
20.	24500.	L.7R	L.7R	L .7R	L .8R	L.9R	L.9R	L1.0R	L1.0R	L1.0R
20.	25000.	L.7R	L.7R	L.7R	L .8R	L .9R	L1.0R	L1.0R	L1.1R	L1.1R
20.	25500.	L.7R	L.7R	L .8R	L .8R	L.9R	L1.0R	L1.1R	L1.1R	L1.1R
20.	26000.	L.7R	L.7R	L .8R	L .8R	L .9R	L1.0R	L1.1R	L1.2R	L1.2R
20.	26500.	L.7R	L.7R	L .8R	L.9R	L1.0R	L1.1R	L1.1R	L1.2R	L1.2R
20.	27000.		L.7R		L.9R	L1.0R	L1.1R	L1.2R	L1.2R	L1.3R
20.	27500.		L .8R	L .8R	L .9R	L1.0R	L1.1R	L1.2R	L1.3R	L1.3R
20.	28000.	L.7R	L .8R	L .8R	L .9R	L1.0R	L1.2R	L1.3R	L1.3R	L1.4R
20.			L .8R							
20.	29000.	L.8R	L .8R	L .9R	L1.0R	L1.1R	L1.2R	L1.4R	L1.4R	L1.5R
20.	29500.	L .8R	L .8R	L.9R	L1.0R	L1.1R	L1.3R	L1.4R	L1.5R	L1.5R
20.	30000.	L.8R	L .8R	L .9R	L1.0R	L1.2R	L1.3R	L1.4R	L1.5R	L1.6R
20.	30500.	L .8R	L .8R	L .9R	L1.0R	L1.2R	L1.3R	L1.5R	L1.6R	L1.6R
20.	31000.	L.8R	L .8R	L .9R	L1.0R	L1.2R	L1.4R	L1.5R	L1.6R	L1.6R
20.			L .8R	L.9R	L1.1R	L1.2R	L1.4R	L1.6R	L1.7R	L1.7R
20.			L .8R		L1.1R				_	_
20.	32500.	L.8R	L .8R	L1.0R	L1.1R	L1.3R	L1.5R	L1.6R	L1.7R	L1.8R
20.			L .8R							_
20.	33500.	L.8R	L .8R	L1.0R	L1.1R	L1.4R	L1.6R	L1.8R	L1.9R	L1.9R
A fin make	+ i ne	2222	2000					000	100	
緯度(度)	射距 (公尺)	3200 3200	2800 3600	2400 4000	2000	1600 4800	1200 5200	800 5600	400 6000	6400
(反)	(270)	3200	3000	4000		方位 (3000	0000	0400
	1				(南緯		and Liter			
					(113/1949)					
*字母	R(RIGH	T)表示	向右修	正,字	母 L(LE	FT)表	「向左伯	*正; 目	標方位	爲表上
	女字時,								字時,	使用表
內數字	P後端之	符號。	万位角	以正北1	馬0度	,順時鈍	量量測。			

資料來源:作者自行繪製

G、低層風氣象修正量

低層風影響多管火箭主動段彈道並隨風速影響加大而增加,其

資料可由氣象報告本文內之「00」層查得,且低層風修正時需考慮 全彈道之總影響量,故需將先前求得之氣象方向與距離修正量進行 諸元計算說明如下。

- (A)未修正低層風之射向=射向方位角+氣象方向修正量=178+0.3≒178 密位。
- (B)未修正低層風之射角=仰度【圖上距離+氣象距離修正量】+高低=334密位【27960+(-643)】+(-3.5)密位≒331密位。
- (C) 決定低層風作用風向與風之分化值

由風向方位角減去進位至最近 100 密位之射向方位角 (200 密位) ,線號 0 之風向方位角為 1000 密位,以風向方位角減射 向方位角求得作用方向。

作用方向=1000-200=800 密位

由 C 表中選定作用風向為 800 密位之 1 浬風修正量分化值,以彈道風(15浬)乘以此單位橫風及縱風修正量分化值,以求得風速分化值,並進位至最近整數位數。

横風 15 × R(右) 0.71≒L(左) 11 浬/時【低層風之影響 向右修正係使射彈偏離射線,故須向左修正】

縱風 15 × H (逆) 0.71≒H (逆) 11 浬/時

(D) 決定低層風射向與射角修正量

由步驟(B)求得結果查取 M 表(如圖九),依據發射仰角(331密位)及橫風與縱風之風速分化值之條件查表。

横風(含方向修正量)L(左) $11\times 1=L$ (左)11(密位) 縦風(含射角修正量)H(逆) 11×0.26 ≒+3(密位)

H、決定射擊射向與射角

射擊射向=未修正低層風之射向+橫風(含方向修正量)

=178+(-11)=167 密位

射擊射角=未修正低層風之射角+縱風(含射角修正量)

=331+3=334密位

吾人就歷次火箭彈實彈射擊結果進行比較,顯示以氣象修正所作之 射擊結果,確實較以標準大氣狀況(射表資料)所作之射擊結果,誤差 值明顯較小(如圖十),顯見氣象修正量對火箭彈落點之影響甚為重要。

圖九 MK45 高爆彈 M表

發射仰角	偏向	仰角				
(密位)	横風	逆風	風鼿			
T						
250.	96	.18	21			
260.	97	.19	22			
270.	97	.20	24			
280.	98	.2	25			
290.	98	.22	26			
300.	98	.28	27			
310.	99	.24	28			
320.	V 99		29			
330.	1.00	.26	30			
340.	1.00	.27	31			
350.	1.00	.27	32			
360.	1.01	.29	33			
370.	1.01	.30	34			
380.	1.02	.31	36			
390.	1.03	.32	36			
400.	1.03	.32	37			
410.	1.04	.33	39			
420.	1.04	.34	40			
430.	1.05	.35	40			
440.	1.05	.37	42			
450.	1.06	.37	42			
420. 430. 440.	1.04 1.05 1.05	.34 .35 .37	40 40 42			

資料來源:作者自行繪製

圖十 火箭彈運用氣象修正量彈著示意圖

資料來源:作者自行繪製

二、保持彈道氣象資料之新穎

火箭彈於射擊過程中,如能降低受風(氣象)之影響,即可有效增

進火箭彈落點準度,故獲取火箭砲車發射位置鄰近之氣象資料與火箭彈彈道特性(發射初期低層風之影響)將有效提升落點準度,分述如下。

- 1、建議量測位置:氣象資料運用之「有效範圍」,依地形不同而異(最大範圍為32公里),且探空氣球易飛離有效範圍,本軍各火箭連僅配賦1套MW-12氣象自動探測系統,其氣象資料之範圍無法涵蓋1個排或1個連之火箭砲車,故量測位置應審慎選定,並於各砲到達發射位置前,先期選定適當位置(由射擊指揮所計算各發射位置相應幾何中心,提供單位內氣象作業組)實施氣象探測作業,大幅減少氣象探測位置與火箭砲車間距離之影響,確保氣象資料之正確有效。
- 2、提高量測頻率:現行作業通常每2小時施放一次探空氣球,為減少氣象資料誤差,須考量氣象資料之有效性,提高施放時機及頻率,並將軍團氣象排彈道氣象資料納入運用,使單位內之氣象作業組與氣象排之探測時間,採間隔方式持續施放探空氣球(約半小時之間隔)獲取氣象資料,如此即可達到提升量測頻率之效果。
- 3、減少量測時間:以探空氣球100公克為例,上升速率約為5.5公尺/秒,若欲量測至15公里高度,約需1小時左右(僅氣球上升時間,不含整備時間),必將影響氣象資料之時效,故若須降低量測所需時間,建議將探空氣球更換為300公克(含)以上,除氣球上升速度加快外,更可縮短量測時間及確保較高線層之彈道氣象資料完整性。

三、籌購低層風氣象探測雷達 (Doppler Sodar System)

砲兵氣象作業,在增進射擊精度、減少試射及檢驗射擊之時間、節省彈藥、擴大無觀測射擊效果,以充分發揮砲兵射擊火力,現役 MW-12 氣象自動探測系統所測得之氣象資料,無法滿足多管火箭低層風氣象需求,以 100 公克氣球為例,在能見度良好、普通風力的狀況下,穩定上升率為每分鐘 334 公尺直至氣球無法作用為止(約 14 公里),8未能持續測定即時低層氣象影響,故應籌獲低層風氣象探測雷達(Doppler Sodar System 都卜勒探測系統)該項裝備組成暨有天線、傳輸導線與資料計算機(如圖十一)9,其作用時係垂直向上發射「聲納」,偵測空氣中懸浮粒子,透過傳輸導線,將資料傳送至計算機,計算出低層風(風向、風速)影響,射擊指揮所即可運用於射擊諸元運算,有效改善彈著

⁸ 國防部陸軍司令部,《陸軍氣象教範》(桃園:國防部陸軍司令部,民國 94 年 11 月),頁 3-52。

⁹ Remtech, <PORTABLE PAO SODAR>, http://www.remtechinc.com。

散布,提升「準度」產生有效炸點分布。

資料計算機 天線與導線 數據初始資料13-086-2005 to 16-086-2005

圖十一 Doppler Sodar System 都卜勒探測系統

資料來源:remtech; http://www.remtechinc.com

陸、結論

多管火箭的射程可超越管式火砲,彈頭的殺傷面積亦遠較傳統火砲為大,台澎防衛作戰為我生死存亡之戰,砲兵火力應發揮集中、機動、奇襲諸原則,期能達成制敵於泊地、擊敵於半渡、殲敵於水際灘頭。因此,多管火箭剛好能滿足此作戰需求,並且所需出動的人員、武器、彈藥、裝備及支援車輛,皆較管式砲兵部隊所需出動者為少,高性能的多管火箭未來將成為長程野戰砲兵的骨幹。

當前多管火箭的發展趨勢以「火力強」、「機動性強」、「射程遠」、「射速快」、「精度高」等方向發展,故有效的運用火箭彈之特性並建立相關參數,才能使多管火箭成為戰鬥效益與成本效益皆高的砲兵武器系統。

參考文獻

- 一、張文雄,〈砲兵氣象探測系統性能提升之研究〉《砲兵季刊》(台南), 第106期,陸軍飛彈砲兵學校,89年第1季。
- 二、宋雲智,〈多管火箭現況與我國未來發展趨勢之研究〉《砲兵季刊》(台南),第141期,陸軍飛彈砲兵學校, 97年第2季。
- 三、應紹基,《砲兵火箭與砲兵飛彈》(台北:啟新出版社,民國75年6月)。四、曹紅松,《兵器概論》(北京:國防工業出版社,民國97年9月)。

- 五、應紹基,《多管火箭的優點與弱點》(台北:啟新出版社,民國 75 年 10 月)。
- 六、國防部陸軍司令部,《陸軍氣象教範》(桃園:國防部陸軍司令部,民國 94年11月)。
- 七、劉明德,《統計學》,再版(新北市:全華圖書股份有限公司,民國 101 年 6 月)。
- 八、國防部陸軍司令部,《陸軍氣象教範》(桃園:國防部陸軍司令部,民國 94年11月)。
- 九、Remtech,<PORTABLE PAO SODAR>,http://www.remtechinc.com。

作者簡介

李尚儒上尉,砲兵學校正規班 194 期,曾任副連長,連絡官,教官,現任職於 陸軍飛彈砲兵學校射擊組教官。