

Clinical Implications of Human Spermatogenesis Initiation in Vitro

Charles A. Easley IV¹, Bart T. Phillips^{2,3}, Gwo-Jang Wu⁴, Gerald Schatten^{2,3}, and Calvin R. Simerly^{2,3*}

¹Department of Cell Biology, Laboratory of Translational Cell Biology,

Emory University School of Medicine, Atlanta, GA, USA;

²Department of OB/GYN and Reproductive Sciences,

University of Pittsburgh School of Medicine, Pittsburgh, PA, USA;

³Magee Womens Research Institute, Pittsburgh Development Center, Pittsburgh, PA, USA;

⁴Graduate Institute of Medical Sciences, Department of Obstetrics & Gynecology,

Center for Reproductive Medicine, National Defense Medical Center, Taipei,

Taiwan, Republic of China

With the recent publication of 'Direct Differentiation of Human Pluripotent Stem Cells into Haploid Spermatogenic Cells' in CELL REPORTS, several fundamental and clinical avenues for future research are now available. In this article, we review the discoveries reported and also consider the implications for the management of male infertility as well as new contraceptive designs.

Key words: germ cell differentiation, haploid, spermatogenesis, spermatogonia, stem cells

INTRODUCTION

The sharp biological distinction between mortal somatic cells and potentially immortal germ cells has been held as a central tenet in developmental biology for well over a century dating back to August Weismann's Germ-Plasm Theory (for review¹). This theory holds that whereas the germ line lineage can both maintain itself and also differentiate into somatic progeny, it is a rectified pathway in which somatic cells cannot themselves generate gametes. Cracks in this seemingly impregnable wall separating somatic and germ cells first appeared when Dolly and other cloned animals had offspring and were therefore reproductively fertile², since the transferred somatic cell nucleus was reprogrammed within the oocyte into a germ line lineage; explanations incorporated the idea that the oocyte's germplasm or ooplasm was vital in this process as in other systems.³ Breakthroughs in induced pluripotency and the generation of fertile

Received: August 31, 2012; Revised: October 8, 2012; Accepted: October 9, 2012

*Corresponding author: Calvin Simerly, Magee Womens Research Institute, Pittsburgh Development Center, Pittsburgh, PA, 204 Craft Ave Pittsburgh, PA 15213, USA. Tel: +412-641-2400; Fax: +412-641-2410; E-mail: csimerly@pdc.magee.edu

mice using tetraploid complementation embryo transfers (for review⁴) opened the floodgate by demonstrating that exposure to a just a few transcription factors could reprogram somatic cells which were rigidly committed differentiated cells into most every other cell, including cells in the germ line. Derivations of cells in the spermatogenic lineage show the promiscuity of pluripotent stem cells, and now findings of oocyte stem cells in mice capable of generating pups⁵ and recently similar oocyte-like stem cells from women⁶, might be another example of this cellular promiscuity *in vitro*. Whether these *in vitro* generated gamete precursors have reproductive capabilities *in vivo*, helpful for infertility patients, will be important to evaluate pre-clinically, though they will be of keen biological importance regardless.

The quest to generate viable sperm and spermatids *in vitro* from pluripotent stem cells and even somatic cells in humans and other primates has many biomedical justifications even though the endeavor is fraught with experimental and bioethical challenges. Furthermore the stringencies which with these 'artificial sperm' are evaluated vary according the necessary endpoint. The greatest stringency is for the generation of fully functional sperm or spermatids useful and safe for reproduction in Assisted Reproductive Technology (ART) clinics. This objective is well justified by the Oncofertility Consortium, which seeks the benevolent objective of preserving fertility in male cancer survivors who were rendered infertile dur-

ing their therapies but were also too young or fragile to produce a sperm specimen for cryobanking. 10-16 It is also justified for the treatment of infertile men suffering from either diagnosed¹⁷ or idiopathic male infertility in cases in which neither sperm nor elongated spermatids useful for either intracytoplasmic sperm injection (ICSI) or elongated sperm injection (ELSI) can be obtained. 10-16 Discovering of the stages during spermatogenesis at which various forms of idiopathic male infertility arrest would greatly aid in the diagnoses, and perhaps eventual treatments, of these still mysterious processes. Learning of these spermatogenic arrest sites might also contribute to the design of novel contraceptives. Additionally the epigenetic modifications enabling the properly imprinted sperm chromatin and the replacement of nuclear proteins to form the sperm nucleus could be better investigated in these types of cell cultures versus in intact tissues. Anticipated improvements in the efficiency of in vitro spermatogenesis may also help understanding how mitochondria are modified to create the sperm mitochondria as well as how the somatic centrosome is reduced during male meiosis to form the sperm tail's basal body and the sperm centrosome.¹⁸

Recent studies suggest that human pluripotent stem cells (PSCs) can enter meiosis, and in some cases produce haploid products, *in vitro*. ¹⁹⁻²¹ In this review we evaluate the article just published entitled Direct Differentiation of Human Pluripotent Stem Cells into Haploid Spermatogenic Cells²², in which, we developed an in vitro method which achieves two significant endpoints. First, male human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) are directly differentiated into adult-type spermatogonia. Secondly, differentiating stem cells give rise to cells which are phenotypically consistent with post-meiotic round spermatids. These results highlight the full plasticity of human PSCs by showing the ability to undergo spermatogenesis in vitro culminating in the production of round spermatidlike, haploid cells with correct parent-of-origin genomic imprints on at least two loci. These results also contribute to the overall goal of ultimately generating gametes that may prove invaluable for understanding infertility mechanisms.

Differentiation of Human Pluripotent Stem Cells into Spermatogonia, Pre-meiotic Spermatocytes, Post-meiotic Spermatocytes and Round Spermatids

In our recently published article in Cell Reports entitled Direct Differentiation of Human Pluripotent Stem

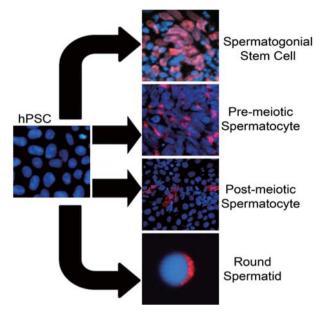


Fig. 1 Human Pluripotent Stem Cells Can Differentiate into Spermatogonial Stem Cells, Pre-meiotic Spermatocytes, Post-meiotic Spermatocytes, and Round Spermatids. Human PSCs do not express germ cell markers (left), but upon differentiation in mouse SSC conditions, advanced spermatogenic lineages appear, including PLZF-positive spermatogonial stem cells (top), HILI-positive premeiotic spermatocytes (top middle), HIWI-positive post-meiotic spermatocytes (bottom middle), and acrosin-positive round spermatids (bottom). DNA labeled with Hoechst, red staining patterns are indicative of PLZF, HILI, HIWI, and acrosin.

Cells into Haploid Spermatogenic Cells, we show that culturing both human embryonic and induced pluripotent stem cells can be differentiated in mouse spermatogonial stem cell (SSC) culture conditions into spermatogonia, germline stem cells that give rise to all spermatogenic lineages culminating in the production of motile sperm. Furthermore, differentiation in these conditions yields cell types consistent with pre-meiotic spermatocytes, post-meiotic spermatocytes, and round spermatids (Figure 1).

During *in vivo* germ cell specification, genomic imprints are removed at the primordial germ cell stage and then re-established during spermatogenesis.²³ In mice, differentiating PSCs into functional germ cells results in progeny that exhibit epigenetic disease phenotypes.^{24,25} One explanation was improper imprinting during gametogenesis.²⁶ Haploid spermatid products produced by our protocol show correct parent-of-origin, genomic imprints

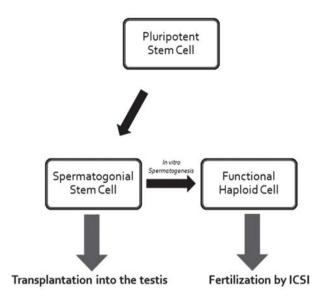


Fig. 2 Human PSCs Can Give Rise to Cell Types Useful in Clinical Restoration of Fertility. Diagram depicting how our differentiation strategy yields SSCs, which can be useful for restoring fertility by transplantation into the testis, and haploid spermatids which can potentially be used to fertilize an oocyte by IVF.

on at least two loci.²² While we have not determined whether an individual cell progresses all the way from a diploid pluripotent stem cell to a haploid spermatid, we do show that major cell types observed during spermatogenesis are obtained from our differentiation protocol. Thus this differentiation protocol could be highly useful in diagnosing and developing treatments for idiopathic infertility.

Using In Vitro Spermatogenesis to Diagnose and Treat Infertility

Infertility affects perhaps 15% of couples worldwide, with male factors responsible for 40-60% of all cases.²⁷ In men without a genetic root cause for infertility, stem cell transplantation represents a possible treatment option to restore fertility.²⁸⁻³¹ Clinical interventions such as chemotherapy and immune suppressant treatments often render male patients sterile. Protocols to preserve future fertility in boys undergoing cancer therapies who cannot yet bank their own sperm are under development. ^{11,32-37} However for adult and prepubescent patients rendered sterile prior to sperm collection, there are no current treatments to restore fertility.

Our differentiation protocol generated two endpoints

Fig. 3 Patient-specific Stem Cells Can Be Used for Diagnosing and/or Treating Infertility. Diagram showing how adult somatic cells can undergo *in vitro* spermatogenesis and be used to diagnose and treat infertility.

critical for driving in vitro spermatogenesis to the clinic to treat infertility in patients without a known genetic etiology. First, human PSCs were differentiated into SSC-like cells, cells that reside at the foundation of spermatogenesis. Several previous studies have shown the ability of human and non-human primates PSCs to differentiate into primordial germ cells (PGCs). 19,21,38-43 Although this cell lineage has the capability of restoring fertility in rodents, including PGCs derived from mouse PSCs^{44,45}, SSCs remain the gold standard for colonizing cells which recapitulate spermatogenesis following transplantation. 46,47 Thus differentiating PSCs into SSCs is an important step in the future ability for using patientspecific PSCs to restore fertility, as SSCs derived from PSCs can be transplanted into the sterilized testes to restore spermatogenesis (Figure 2). Furthermore, the sperm generated following transplant would, in theory, be the patient's own genetic material.

However, transplantation of SSCs derived from PSCs supposes that the somatic environment of the testis remains intact. Prolonged clinical interventions, injury, exposure to environmental toxins, etc. can cause sterility and render the somatic environment useless for SSC transplantation. For these patients, complete spermatogenesis *in vitro* is critical for generating haploid products useful for ART procedures to fertilize a partner's oocyte and pass along their own genetic material (Figure 2). Our differentiation protocol generates haploid products

consistent with round spermatids. While techniques for utilizing round spermatids to fertilize oocytes have not been proven in human and non-human primates, our differentiation protocol at least shows the feasibility of generating haploid products that could be useful in *in vitro* fertilization (IVF). This would suggest that functional haploid cells may be obtained from no greater starting material than a skin biopsy needed for iPSC derivations (Figure 3).

In vitro spermatogenesis also holds great promise to diagnose male infertility and provides a novel tool for exploring root causes for male infertility. By deriving hiPSCs from infertile men, such as from patients with Sertoli-cell-only (SCO) syndrome, followed by direct differentiation with our protocol, we can examine where spermatogenesis arrests, and in the case of SCO patients, identify whether hiPSCs can differentiate into SSCs and whether viability of SSCs is a major concern. A similar strategy can be implored for men with defects in Leydig Cell function, DAZ-family deletions and even Klinefelter Syndrome. In cases where spermatogenesis arrests in vitro, chemical screens can be employed with a read-out for haploid cell production to identify novel compounds that could treat known causes for male infertility. In this same light, chemical screens can be utilized to discover male forms of birth control that temporarily arrest spermatogenesis but do not endanger SSC survival. Thus the clinical uses for in vitro spermatogenesis are substantial and could lead to the first cures for male sterility.

Ethical Considerations for In Vitro Spermatogenesis

As briefly mentioned above, the ethical concerns for utilizing in vitro spermatogenesis in a clinical setting should be considered. The benevolent goal of restoring fertility in a sterile male is noteworthy, but only if the result allows the patient to pass along his own genetic material to his offspring. There are studies that suggest that hiPSCs are not identical to their parent cell lines due to the reprogramming process's strain on the epigenetic makeup of the parent line 48-50, notwithstanding the inability right now to efficiently generate clinical grade iPSCs. If these results hold true, then truly patient-specific stem cells would be unattainable with current methodologies and would render in vitro spermatogenesis useless as an infertility treatment. However, in vitro spermatogenesis would still be useful for chemical screens, identification of novel root causes for infertility, pathways critical in spermatogenesis, among others.

Related to whether iPSCs are truly patient specific is

the concept that iPSCs often carry epigenetic marks similar to the original cell type and thus somewhat impact differentiation. For example, iPSCs derived from blood cells maintain epigenetic marks similar to the original blood cell type and thus differentiate into better blood cells than iPSCs derived from skin tissue. The same problem could exist for *in vitro* spermatogenesis in that skin fibroblasts might not generate the most functional spermatids. Deriving iPSCs from multiple cell types and then differentiating in our protocol is necessary to determine which adult somatic cell type generates the most functional sperm cell lineage.

Another ethical concern would be the imprinting status of the haploid products generating by *in vitro* spermatogenesis. To date, we have shown that haploid products derived by our protocol are epigenetically similar to fertile human sperm on two loci²², but all imprinted genes would have to be examined before this technique could be utilized in a clinical setting. Human imprinting disorders exist, and recent reports suggest that IVF babies show a slight increase in incidences of rare imprinting disorders. Whether IVF with spermatids derived from adult somatic cells would show a higher incidence in imprinting disorders would need to be investigated.

CONCLUSION

While the risks and ethical considerations for moving *in vitro* spermatogenesis to the clinic are great, the potential rewards are sufficient to continue to explore this option to treat male infertility. To date, our methodology needs to be refined to use xeno-free conditions to generate haploid spermatids for use in the clinic. As advances in *in vitro* spermatogenesis are made, this technique may become fundamental in diagnosing and treating a currently incurable disorder: male infertility.

DISCLOSURE

All authors declare that this study has no conflict of interest.

REFERENCES

- 1. Stanford PK. August Weismann's theory of the germplasm and the problem of unconceived alternatives. Hist Philos Life Sci 2005;27:163-199.
- 2. Cibelli JB, Campbell KH, Seidel GE, West MD, Lanza RP. The health profile of cloned animals. Nat Biotechnol 2002;20:13-14.

- 3. Strome S, Lehmann R. Germ versus soma decisions: lessons from flies and worms. Science 2007;316:392-393.
- Zhao XY, Li W, Lv Z, Liu L, Tong M, Hai T, Hao J, Wang X, Wang L, Zeng F, Zhou Q. Viable fertile mice generated from fully pluripotent iPS cells derived from adult somatic cells. Stem Cell Rev 2010;6:390-397.
- Zou K, Yuan Z, Yang Z, Luo H, Sun K, Zhou L, Xiang J, Shi L, Yu Q, Zhang Y, Hou R, Wu J. Production of offspring from a germline stem cell line derived from neonatal ovaries. Nat Cell Biol 2009;11:631-636.
- 6. White YA, Woods DC, Takai Y, Ishihara O, Seki H, Tilly JL. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat Med 2012;18:413-421.
- 7. Daley GQ. Gametes from embryonic stem cells: a cup half empty or half full? Science 2007;316:409-410.
- 8. Ko K, Huebner K, Mueller-Keuker J, Schoeler HR. In vitro derivation of germ cells from embryonic stem cells. Front Biosci 2010;15:46-56.
- 9. Lokman, M. and H. Moore, An artificial sperm--next year or never? Hum Fertil (Camb) 2010;13:272-276.
- 10. Hwang K, Lamb DJ. New advances on the expansion and storage of human spermatogonial stem cells. Curr Opin Urol 2010;20:510-514.
- 11. Jahnukainen K, Ehmcke J, Hou M, Schlatt S. Testicular function and fertility preservation in male cancer patients. Best Pract Res Clin Endocrinol Metab 2011;25:287-302.
- 12. Levine J, Canada A, Stern CJ. Fertility preservation in adolescents and young adults with cancer. J Clin Oncol 2010;28:4831-4841.
- 13. Silber SJ. Sperm retrieval for azoospermia and intracytoplasmic sperm injection success rates--a personal overview. Hum Fertil (Camb) 2010;13:247-256.
- 14. Wallace WH. Oncofertility and preservation of reproductive capacity in children and young adults. Cancer 2011;117:2301-2310.
- 15. Woodruff TK. The Oncofertility Consortium-addressing fertility in young people with cancer. Nat Rev Clin Oncol 2010;7:466-475.
- Wyns C, Curaba M, Vanabelle B, Van Langendonckt A, Donnez J. Options for fertility preservation in prepubertal boys. Hum Reprod Update 2010;16:312-328.
- 17. Houk CP, Rogol A, Lee PA. Fertility in men with Klinefleter syndrome. Pediatr Endocrinol Rev 2011;8

- Suppl 1:182-186.
- 18. Schatten G. The centrosome and its mode of inheritance: the reduction of the centrosome during gametogenesis and its restoration during fertilization. Dev Biol 1994;165:299-335.
- 19. Kee K, Angeles VT, Flores M, Nguyen HN, Reijo Pera RA. Human DAZL, DAZ and BOULE genes modulate primordial germ-cell and haploid gamete formation. Nature 2009;462:222-225.
- Eguizabal C, Montserrat N, Vassena R, Barragan M, Garreta E, Garcia-Quevedo L, Vidal F, Giorgetti A, Veiga A, Izpisua Belmonte JC. Complete Meiosis from Human Induced Pluripotent Stem Cells. Stem Cells 2011;29:1186-1195.
- 21. Panula S, Medrano JV, Kee K, Bergström R, Nguyen HN, Byers B, Wilson KD, Wu JC, Simon C, Hovatta O, Reijo Pera RA. Human germ cell differentiation from fetal- and adult-derived induced pluripotent stem cells. Hum Mol Genet 2011;20:752-762.
- 22. Easley CA 4th, Phillips BT, McGuire MM, Barringer JM, Valli H, Hermann BP, Simerly CR, Rajkovic A, Miki T, Orwig KE, Schatten GP. Direct Differentiation of Human Pluripotent Stem Cells into Haploid Spermatogenic Cells. Cell Rep 2012;2:440-446.
- 23. Lucifero D, Mertineit C, Clarke HJ, Bestor TH, Trasler JM. Methylation dynamics of imprinted genes in mouse germ cells. Genomics 2002;79:530-538.
- 24. Nayernia K, Nolte J, Michelmann HW, Lee JH, Rathsack K, Drusenheimer N, Dev A, Wulf G, Ehrmann IE, Elliott DJ, Okpanyi V, Zechner U, Haaf T, Meinhardt A, Engel W. In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Dev Cell 2006;11:125-132.
- 25. Nolte J, Michelmann HW, Wolf M, Wulf G, Nayernia K, Meinhardt A, Zechner U, Engel W. PSCDGs of mouse multipotent adult germline stem cells can enter and progress through meiosis to form haploid male germ cells in vitro. Differentiation 2010;80:184-194.
- 26. Lucifero D, Reik W. Artificial sperm and epigenetic reprogramming. Nat Biotechnol 2006;24:1097-1098.
- 27. Schlegel PN. Evaluation of male infertility. Minerva Ginecol 2009;61:261-283.
- 28. Marques-Mari AI, Lacham-Kaplan O, Medrano JV, Pellicer A, Simón C. Differentiation of germ cells and gametes from stem cells. Hum Reprod Update 2009;15:379-390.
- 29. Orwig KE, and Schlatt S. Cryopreservation and transplantation of spermatogonia and testicular tissue for preservation of male fertility. J Natl Cancer Inst

- Monogr 2005:51-56.
- 30. Mathews DJ, Donovan PJ, Harris J, Lovell-Badge R, Savulescu J, Faden R. Pluripotent stem cell-derived gametes: truth and (potential) consequences. Cell Stem Cell 2009;5:11-14.
- 31. Yao L, Yu X, Hui N, Liu S. Application of iPS in Assisted Reproductive Technology: Sperm from Somatic Cells? Stem Cell Rev 2011:7:714-721.
- 32. Hermann BP, Sukhwani M, Lin CC, Sheng Y, Tomko J, Rodriguez M, Shuttleworth JJ, McFarland D, Hobbs RM, Pandolfi PP, Schatten GP, Orwig KE. Characterization, cryopreservation, and ablation of spermatogonial stem cells in adult rhesus macaques. Stem Cells 2007;25:2330-2338.
- 33. Sadri-Ardekani H, Akhondi MA, van der Veen F, Repping S, van Pelt AM. In vitro propagation of human prepubertal spermatogonial stem cells. JAMA 2011;305:2416-2418.
- 34. Wyns C, Curaba M, Petit S, Vanabelle B, Laurent P, Wese JF, Donnez J. Management of fertility preservation in prepubertal patients: 5 years' experience at the Catholic University of Louvain. Hum Reprod 2011;26:737-747.
- 35. Ginsberg JP, Carlson CA, Lin K, Hobbie WL, Wigo E, Wu X, Brinster RL, Kolon TF. An experimental protocol for fertility preservation in prepubertal boys recently diagnosed with cancer: a report of acceptability and safety. Hum Reprod 2009;25:37-41.
- 36. Keros V, Hultenby K, Borgström B, Fridström M, Jahnukainen K, Hovatta O. Methods of cryopreservation of testicular tissue with viable spermatogonia in pre-pubertal boys undergoing gonadotoxic cancer treatment. Hum Reprod 2007;22:1384-1395.
- 37. Schlatt S, Ehmcke J, Jahnukainen K. Testicular stem cells for fertility preservation: preclinical studies on male germ cell transplantation and testicular grafting. Pediatr Blood Cancer 2009;53:274-280.
- 38. Bucay N, Yebra M, Cirulli V, Afrikanova I, Kaido T, Hayek A, Montgomery AM. A novel approach for the derivation of putative primordial germ cells and sertoli cells from human embryonic stem cells. Stem Cells 2009;27:68-77.
- 39. Fukunaga N, Teramura T, Onodera Y, Takehara T, Fukuda K, Hosoi Y. Leukemia inhibitory factor (LIF) enhances germ cell differentiation from primate embryonic stem cells. Cell Reprogram 2010;12:369-376.
- 40. Park TS, Galic Z, Conway AE, Lindgren A, van Handel BJ, Magnusson M, Richter L, Teitell MA, Mikkola HK, Lowry WE, Plath K, Clark AT. Derivation

- of primordial germ cells from human embryonic and induced pluripotent stem cells is significantly improved by coculture with human fetal gonadal cells. Stem Cells 2009;27:783-795.
- 41. Teramura T, Takehara T, Kawata N, Fujinami N, Mitani T, Takenoshita M, Matsumoto K, Saeki K, Iritani A, Sagawa N, Hosoi Y. Primate embryonic stem cells proceed to early gametogenesis in vitro. Cloning Stem Cells 2007;9:144-156.
- 42. Tilgner K, Atkinson SP, Golebiewska A, Stojkovic M, Lako M, Armstrong L. Isolation of primordial germ cells from differentiating human embryonic stem cells. Stem Cells 2008;26:3075-3085.
- Yamauchi K, Hasegawa K, Chuma S, Nakatsuji N, Suemori H. In vitro germ cell differentiation from cynomolgus monkey embryonic stem cells. PLoS One 2009;4:e5338.
- 44. Chuma S, Kanatsu-Shinohara M, Inoue K, Ogonuki N, Miki H, Toyokuni S, Hosokawa M, Nakatsuji N, Ogura A, Shinohara T. Spermatogenesis from epiblast and primordial germ cells following transplantation into postnatal mouse testis. Development 2005;132:117-122.
- 45. Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M. Reconstitution of the Mouse Germ Cell Specification Pathway in Culture by Pluripotent Stem Cells. Cell 2011;146: 519-532.
- 46. Brinster, R.L. and M.R. Avarbock, Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci U S A 1994;91:11303-11307.
- 47. Jahnukainen K, Ehmcke J, Quader MA, Saiful Huq M, Epperly MW, Hergenrother S, Nurmio M, Schlatt S. Testicular recovery after irradiation differs in prepubertal and pubertal non-human primates, and can be enhanced by autologous germ cell transplantation. Hum Reprod 2011;26:1945-1954.
- 48. Ohi Y, Qin H, Hong C, Blouin L, Polo JM, Guo T, Qi Z, Downey SL, Manos PD, Rossi DJ, Yu J, Hebrok M, Hochedlinger K, Costello JF, Song JS, Ramalho-Santos M. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat Cell Biol 2011;13:541-549.
- 49. Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, Canto I, Giorgetti A, Israel MA, Kiskinis E, Lee JH, Loh YH, Manos PD, Montserrat N, Panopoulos AD, Ruiz S, Wilbert ML, Yu J, Kirkness EF, Izpisua Belmonte JC, Rossi DJ, Thomson JA, Eggan K, Daley GQ, Goldstein LS, Zhang K. Somatic coding mutations in human induced pluripotent

- stem cells. Nature 2011;471:63-67.
- Hu Q, Friedrich AM, Johnson LV, Clegg DO. Memory in induced pluripotent stem cells: reprogrammed human retinal-pigmented epithelial cells show tendency for spontaneous redifferentiation. Stem Cells 2010;28:1981-1991.
- 51. Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LI, Yabuuchi A, Takeuchi A, Cunniff KC, Hongguang H, McKinney-Freeman
- S, Naveiras O, Yoon TJ, Irizarry RA, Jung N, Seita J, Hanna J, Murakami P, Jaenisch R, Weissleder R, Orkin SH, Weissman IL, Feinberg AP, Daley GQ. Epigenetic memory in induced pluripotent stem cells. Nature 2010;467:285-290.
- 52. Odom LN. and Segars J. Imprinting disorders and assisted reproductive technology. Curr Opin Endocrinol Diabetes Obes 2010;17:517-522.