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Clinical Implications of Human Spermatogenesis Initiation in Vitro
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With the recent publication of ‘Direct Differentiation of Human Pluripotent Stem Cells into Haploid Spermatogenic
Cells’ in CELL REPORTS, several fundamental and clinical avenues for future research are now available. In this article,
we review the discoveries reported and also consider the implications for the management of male infertility as well as

new contraceptive designs.
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INTRODUCTION

The sharp biological distinction between mortal so-
matic cells and potentially immortal germ cells has been
held as a central tenet in developmental biology for
well over a century dating back to August Weismann’s
Germ-Plasm Theory (for review'). This theory holds that
whereas the germ line lineage can both maintain itself
and also differentiate into somatic progeny, it is a recti-
fied pathway in which somatic cells cannot themselves
generate gametes. Cracks in this seemingly impregnable
wall separating somatic and germ cells first appeared
when Dolly and other cloned animals had offspring and
were therefore reproductively fertile®, since the trans-
ferred somatic cell nucleus was reprogrammed within the
oocyte into a germ line lineage; explanations incorporat-
ed the idea that the oocyte’s germplasm or ooplasm was
vital in this process as in other systems.® Breakthroughs
in induced pluripotency and the generation of fertile
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mice using tetraploid complementation embryo transfers
(for review") opened the floodgate by demonstrating
that exposure to a just a few transcription factors could
reprogram somatic cells which were rigidly committed
differentiated cells into most every other cell, including
cells in the germ line. Derivations of cells in the sper-
matogenic lineage show the promiscuity of pluripotent
stem cells, and now findings of oocyte stem cells in mice
capable of generating pups® and recently similar oocyte-
like stem cells from women®, might be another example
of this cellular promiscuity in vitro. Whether these in
vitro generated gamete precursors have reproductive ca-
pabilities in vivo, helpful for infertility patients, will be
important to evaluate pre-clinically, though they will be
of keen biological importance regardless.

The quest to generate viable sperm and spermatids in
vitro from pluripotent stem cells and even somatic cells
in humans and other primates has many biomedical jus-
tifications even though the endeavor is fraught with ex-
perimental and bioethical challenges.”® Furthermore the
stringencies which with these “artificial sperm’ are evalu-
ated vary according the necessary endpoint. The greatest
stringency is for the generation of fully functional sperm
or spermatids useful and safe for reproduction in Assisted
Reproductive Technology (ART) clinics. This objective
is well justified by the Oncofertility Consortium, which
seeks the benevolent objective of preserving fertility in
male cancer survivors who were rendered infertile dur-
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ing their therapies but were also too young or fragile
to produce a sperm specimen for cryobanking."”™ It is
also justified for the treatment of infertile men suffering
from either diagnosed”’ or idiopathic male infertility in
cases in which neither sperm nor elongated spermatids
useful for either intracytoplasmic sperm injection
(ICSI) or elongated sperm injection (ELSI) can be
obtained.”™® Discovering of the stages during sper-
matogenesis at which various forms of idiopathic male
infertility arrest would greatly aid in the diagnoses, and
perhaps eventual treatments, of these still mysterious
processes. Learning of these spermatogenic arrest sites
might also contribute to the design of novel contracep-
tives. Additionally the epigenetic modifications enabling
the properly imprinted sperm chromatin and the replace-
ment of nuclear proteins to form the sperm nucleus
could be better investigated in these types of cell cultures
versus in intact tissues. Anticipated improvements in
the efficiency of in vitro spermatogenesis may also help
understanding how mitochondria are modified to cre-
ate the sperm mitochondria as well as how the somatic
centrosome is reduced during male meiosis to form the
sperm tail’s basal body and the sperm centrosome.*®

Recent studies suggest that human pluripotent stem
cells (PSCs) can enter meiosis, and in some cases pro-
duce haploid products, in vitro.”* In this review we
evaluate the article just published entitled Direct Differ-
entiation of Human Pluripotent Stem Cells into Hap-
loid Spermatogenic Cells®, in which, we developed an
in vitro method which achieves two significant endpoints.
First, male human embryonic stem cells (hESCs) and
induced pluripotent stem cells (hiPSCs) are directly dif-
ferentiated into adult-type spermatogonia. Secondly, dif-
ferentiating stem cells give rise to cells which are pheno-
typically consistent with post-meiotic round spermatids.
These results highlight the full plasticity of human PSCs
by showing the ability to undergo spermatogenesis in
vitro culminating in the production of round spermatid-
like, haploid cells with correct parent-of-origin genomic
imprints on at least two loci. These results also contribute
to the overall goal of ultimately generating gametes that
may prove invaluable for understanding infertility mech-
anisms.

Differentiation of Human Pluripotent Stem Cells into
Spermatogonia, Pre-meiotic Spermatocytes, Post-meiot-
ic Spermatocytes and Round Spermatids

In our recently published article in Cell Reports en-
titled Direct Differentiation of Human Pluripotent Stem
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Fig. 1 Human Pluripotent Stem Cells Can Differenti-
ate into Spermatogonial Stem Cells, Pre-meiotic
Spermatocytes, Post-meiotic Spermatocytes, and
Round Spermatids. Human PSCs do not express
germ cell markers (left), but upon differentiation
in mouse SSC conditions, advanced spermatogenic
lineages appear, including PLZF-positive sper-
matogonial stem cells (top), HILI-positive pre-
meiotic spermatocytes (top middle), HIWI-positive
post-meiotic spermatocytes (bottom middle), and
acrosin-positive round spermatids (bottom). DNA
labeled with Hoechst, red staining patterns are in-
dicative of PLZF, HILI, HIWI, and acrosin.

Cells into Haploid Spermatogenic Cells, we show that
culturing both human embryonic and induced pluripotent
stem cells can be differentiated in mouse spermatogonial
stem cell (SSC) culture conditions into spermatogonia,
germline stem cells that give rise to all spermatogenic
lineages culminating in the production of motile sperm.”
Furthermore, differentiation in these conditions yields
cell types consistent with pre-meiotic spermatocytes,
post-meiotic spermatocytes, and round spermatids (Fig-
ure 1).

During in vivo germ cell specification, genomic im-
prints are removed at the primordial germ cell stage and
then re-established during spermatogenesis.”® In mice,
differentiating PSCs into functional germ cells results in
progeny that exhibit epigenetic disease phenotypes.”**
One explanation was improper imprinting during game-
togenesis.”® Haploid spermatid products produced by our
protocol show correct parent-of-origin, genomic imprints
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Fig. 2 Human PSCs Can Give Rise to Cell Types Useful
in Clinical Restoration of Fertility. Diagram de-
picting how our differentiation strategy yields SSCs,
which can be useful for restoring fertility by trans-
plantation into the testis, and haploid spermatids
which can potentially be used to fertilize an oocyte
by IVF.

on at least two loci.”> While we have not determined
whether an individual cell progresses all the way from a
diploid pluripotent stem cell to a haploid spermatid, we
do show that major cell types observed during spermato-
genesis are obtained from our differentiation protocol.
Thus this differentiation protocol could be highly useful
in diagnosing and developing treatments for idiopathic
infertility.

Using In Vitro Spermatogenesis to Diagnose and Treat
Infertility

Infertility affects perhaps 15% of couples worldwide,
with male factors responsible for 40-60% of all cases.”
In men without a genetic root cause for infertility, stem
cell transplantation represents a possible treatment op-
tion to restore fertility.®** Clinical interventions such as
chemotherapy and immune suppressant treatments often
render male patients sterile. Protocols to preserve future
fertility in boys undergoing cancer therapies who cannot
yet bank their own sperm are under development."**
However for adult and prepubescent patients rendered
sterile prior to sperm collection, there are no current
treatments to restore fertility.

Our differentiation protocol generated two endpoints
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Fig. 3 Patient-specific Stem Cells Can Be Used for Di-
agnosing and/or Treating Infertility. Diagram
showing how adult somatic cells can undergo in
vitro spermatogenesis and be used to diagnose and
treat infertility.

critical for driving in vitro spermatogenesis to the clinic
to treat infertility in patients without a known genetic
etiology. First, human PSCs were differentiated into
SSC-like cells, cells that reside at the foundation of
spermatogenesis. Several previous studies have shown
the ability of human and non-human primates PSCs to
differentiate into primordial germ cells (PGCs)."***
Although this cell lineage has the capability of restoring
fertility in rodents, including PGCs derived from mouse
PSCs*“*, SSCs remain the gold standard for coloniz-
ing cells which recapitulate spermatogenesis following
transplantation.*®*” Thus differentiating PSCs into SSCs
is an important step in the future ability for using patient-
specific PSCs to restore fertility, as SSCs derived from
PSCs can be transplanted into the sterilized testes to re-
store spermatogenesis (Figure 2). Furthermore, the sperm
generated following transplant would, in theory, be the
patient’s own genetic material.

However, transplantation of SSCs derived from PSCs
supposes that the somatic environment of the testis re-
mains intact. Prolonged clinical interventions, injury,
exposure to environmental toxins, etc. can cause steril-
ity and render the somatic environment useless for SSC
transplantation. For these patients, complete spermato-
genesis in vitro is critical for generating haploid products
useful for ART procedures to fertilize a partner’s oocyte
and pass along their own genetic material (Figure 2).
Our differentiation protocol generates haploid products
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consistent with round spermatids. While techniques for
utilizing round spermatids to fertilize oocytes have not
been proven in human and non-human primates, our dif-
ferentiation protocol at least shows the feasibility of gen-
erating haploid products that could be useful in in vitro
fertilization (IVF). This would suggest that functional
haploid cells may be obtained from no greater starting
material than a skin biopsy needed for iPSC derivations
(Figure 3).

In vitro spermatogenesis also holds great promise to
diagnose male infertility and provides a novel tool for
exploring root causes for male infertility. By deriving
hiPSCs from infertile men, such as from patients with
Sertoli-cell-only (SCO) syndrome, followed by direct
differentiation with our protocol, we can examine where
spermatogenesis arrests, and in the case of SCO patients,
identify whether hiPSCs can differentiate into SSCs and
whether viability of SSCs is a major concern. A similar
strategy can be implored for men with defects in Leydig
Cell function, DAZ-family deletions and even Klinefelter
Syndrome. In cases where spermatogenesis arrests in
vitro, chemical screens can be employed with a read-out
for haploid cell production to identify novel compounds
that could treat known causes for male infertility. In this
same light, chemical screens can be utilized to discover
male forms of birth control that temporarily arrest sper-
matogenesis but do not endanger SSC survival. Thus the
clinical uses for in vitro spermatogenesis are substantial
and could lead to the first cures for male sterility.

Ethical Considerations for In Vitro Spermatogenesis

As briefly mentioned above, the ethical concerns for
utilizing in vitro spermatogenesis in a clinical setting
should be considered. The benevolent goal of restoring
fertility in a sterile male is noteworthy, but only if the
result allows the patient to pass along his own genetic
material to his offspring. There are studies that suggest
that hiPSCs are not identical to their parent cell lines due
to the reprogramming process’s strain on the epigenetic
makeup of the parent line**, notwithstanding the inabil-
ity right now to efficiently generate clinical grade iPSCs.
If these results hold true, then truly patient-specific stem
cells would be unattainable with current methodologies
and would render in vitro spermatogenesis useless as an
infertility treatment. However, in vitro spermatogenesis
would still be useful for chemical screens, identification
of novel root causes for infertility, pathways critical in
spermatogenesis, among others.

Related to whether iPSCs are truly patient specific is
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the concept that iPSCs often carry epigenetic marks simi-
lar to the original cell type and thus somewhat impact
differentiation. For example, iPSCs derived from blood
cells maintain epigenetic marks similar to the original
blood cell type and thus differentiate into better blood
cells than iPSCs derived from skin tissue.”* The same
problem could exist for in vitro spermatogenesis in that
skin fibroblasts might not generate the most functional
spermatids. Deriving iPSCs from multiple cell types and
then differentiating in our protocol is necessary to deter-
mine which adult somatic cell type generates the most
functional sperm cell lineage.

Another ethical concern would be the imprinting
status of the haploid products generating by in vitro
spermatogenesis. To date, we have shown that haploid
products derived by our protocol are epigenetically simi-
lar to fertile human sperm on two loci”, but all imprinted
genes would have to be examined before this technique
could be utilized in a clinical setting. Human imprinting
disorders exist, and recent reports suggest that IVF ba-
bies show a slight increase in incidences of rare imprint-
ing disorders.”® Whether IVF with spermatids derived
from adult somatic cells would show a higher incidence
in imprinting disorders would need to be investigated.

CONCLUSION

While the risks and ethical considerations for moving
in vitro spermatogenesis to the clinic are great, the po-
tential rewards are sufficient to continue to explore this
option to treat male infertility. To date, our methodology
needs to be refined to use xeno-free conditions to gener-
ate haploid spermatids for use in the clinic. As advances
in in vitro spermatogenesis are made, this technique may
become fundamental in diagnosing and treating a cur-
rently incurable disorder: male infertility.
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