提升本軍步兵反裝甲火力之研究 一 以瑞典為例

作者簡介

夏天生中校,第一士官學校常士班36期、陸軍官校專科11期、步校正規班316期、中山大學大陸研究所碩士;曾任排長、連長、中隊長、教官,現任職於步兵訓練指揮部暨步兵學校總教官室兵器組反裝甲小組。

提要>>>

- 一、瑞典生產的反裝甲火箭彈,其優異性能經戰場實戰考驗,先後出口30餘國。面對各國競爭,該國能突破挑戰,建立獨特品牌,成為箇中佼佼者誠屬不易。
- 二、隨著彈藥技術日益精進,反裝甲火箭彈在戰場的運用日益廣泛,以反裝甲 為重點,進而附加反制堅固工事、城鎮家屋與人員殺傷等多樣用途,甚至 能對低飛滯空的航空器形成重要威脅。
- 三、近年中科院在國造一式66公厘火箭彈之基礎,進一步研發C308紅隼反裝甲 火箭彈,足見我國已具相當自製能力。
- 四、瑞典成功經驗對我軍之啟發:(一)積極強化部隊反裝甲之戰力;(二)有效建立裝備自主研發能量;(三)積極發展第三代反裝甲火箭;(四)裝備性能多樣滿足作戰需求;(五)整合新舊武器差異,有效發揮裝備效能。

關鍵詞: 卡爾古斯塔夫系列、拋棄式火箭彈、國防自主

科技新知

提升本軍步兵反裝甲火力之研究

——以瑞典為例

前 言

瑞典雖為北歐小國,卻是傳統軍事強 國。早在17世紀中葉,因日耳曼強迫改信 宗教而引發的「三十年戰爭」,瑞典即以 強大的軍事實力與該國國王古斯塔夫的指 揮,先後擊敗丹麥、俄羅斯及波蘭等國。 爾後200年貫徹「保持中立」政策,兩次 世界大戰,始終保有繁榮經濟發展與堅實 國防武力,以嚇阳德、俄侵略之野心。¹ 簡言之,該國自始即保有高水準軍事工藝 技術,積極發展各項軍備,建立強大軍事 實力,如空軍主力戰機JAS、²陸軍主力戰 車Strv-103等,性能深獲世界各國好評。 尤其單兵反裝甲武器研製,因無需高度軍 事工藝技術即能產製,而能於軍火市場上 不乏各式產品供需求者選擇; 面對各國競 爭,瑞典能突破挑戰,建立獨特品牌,成 為箇中佼佼者實有諸多成功因素。本文透 過文獻分析與教學研究心得,試圖探究瑞 典反裝甲火箭彈發展沿革與成功經驗,同 時藉由整合該國與其他先進國家之長,研 析我部隊反裝甲戰力不足之處,以尋求精 淮之道。

瑞典反裝甲火箭彈發展現況

對於多數國家而言,火箭彈的代表,即為俄製火箭發射器(Rocket-propelled

Grenade, RPG)。究其主因,實受惠冷戰 時期華沙公約集團內各國多使用俄製裝備 ,在無從選擇與浩價低廉等因素,造就 RPG成為牛產數量及使用國家最多的單兵 反裝甲武器。相對華沙公約集團,西方國 家則呈現百家爭鳴之勢,例如:德國「 鐵拳」、英國「LAW80」、以色列「B-300」,以及美國「SMAW」系列均堪稱 經典。面對各國挑戰,瑞典所生產的反裝 甲武器,卻能打破西方各國藩籬,先後出 口超過30餘國,成為僅次於RPG系列的反 裝甲火箭彈,成就深獲世人肯定。在分類 上,該國產品含括發射裝具「重複使用」 及「射擊後拋棄」兩大主流,以因應不同 作戰任務需求。僅簡介該國4種反裝甲武 器與彈藥,概列如后:

一、M2卡爾古斯塔夫火箭筒

瑞典反裝甲火箭彈發展緣起,可追溯至第二次世界大戰結束後,總結戰場經驗開始發展符合自身需求的反裝甲武器。不同於其他西方國家較偏愛「射擊後拋棄」型,該國反而較傾向選擇俄製RPG模式。1948年FFV軍備公司,首次研製成功M2「卡爾古斯塔夫」火箭筒(如圖一)。該系統全長約1.3公尺、重量14.2公斤、彈藥初速310公尺/秒。彈種包含穿甲彈、高爆榴彈、煙幕彈等。穿甲彈有效射程400公尺、穿甲厚度約40公分。高爆榴彈

¹ 瑞典於1814年起決定「中立政策」,兩次世界大戰中與冷戰時期,該國均維持一貫政策。直至1995 年為要加入歐盟,才宣布放棄維繫200多年的中立主義。〈瑞典〉,中華百科:http://wikiyou.tw %E7%91%9E%E5%85%B8/

² JAS-39系列戰機是瑞典空軍的代表作,該機型屬於第四代戰機。2008年4月23日性能更為優異的JAS-39NG正式問世、立刻引起各國高度關注。

⁽¹⁾ \langle 瑞典JAS39獅鷲式戰機 \rangle 《青年日報》,http://www.youth.com.tw/db/epaper/es001005/eb0548.htm

⁽²⁾中華民國空軍軍事新聞網,http://air.mnd.gov.tw/Publish.aspx?cnid=1732&p=38829&Level=1

ARMY BIMONTHLY

圖一 M2卡爾古斯塔夫火箭筒

資料來源:維基百科,http://zh.wikipedia.org/wik

配合多用途引信與預鑄850顆鋼珠,可對1,300公尺內重要目標形成破壞及殺傷。因M2重達14.2公斤,故在筒面設計上加裝護板、肩托、握把及兩腳架等輔具,以有效強化射擊穩定度。同時為確保操作人員安全,保險裝置設計除保險卡榫和壓板外,增加了擊發阻鐵保險。此一設計特性成為卡爾古斯塔夫的特色,即便延伸產品—AT-4火箭彈,亦強調雙重保險的重要性。

1970年代冷戰氛圍達到最高點,東、西兩大集團透過「代理人」戰爭展現影響力,³各類先進武器紛紛出籠。FFV軍備公司運用較先進的FFV556光學瞄準具

裝配於M2卡爾古斯塔夫火箭筒,定名為M2-550改良式火箭筒。該瞄準具內含測距與前置計算儀,測距可達1,000公尺。裝配先進瞄準具後,M2火箭筒有效射程增加至700公尺,整體重量亦同步加重至18公斤。儘管如此,該火箭筒仍能銷售美國等20餘國。4英、阿福島戰爭中,英國海軍運用M2-550火箭筒擊落阿根廷直升機,使其聲名大噪。5

二、M3卡爾古斯塔夫火箭筒

實戰是驗證武器的最佳時機與場所。 冷戰時期賦予各類軍備發展的重要契機, 裝甲防護技術日益進步,複合裝甲、反應 裝甲等先進裝甲材質大量運用,為克服裝 甲防護力之增進,火箭彈研發技術乃進 入第三代。"其中口徑112公厘、有效射程 500公尺、穿甲厚度72公分的法製APILAS 火箭彈可謂最具代表性。但是威力強大就 必須承擔重量過重、射擊時筒後噴火過大 等限制因素(如圖二)。同時在「反裝甲飛彈 作」的發展趨勢,造就更多射程介於 500~2,000公尺間之近、中程反裝甲飛彈 ,如龍式、沙蛇、掠奪者飛彈等。而對火

³ 該時期尤以1973年第四次中東戰爭、1980至1988年兩伊戰爭最具代表性。

⁴ 美軍於1980年開始使用M2-550火箭筒,2003年進一步採購M3卡爾古斯塔夫火箭筒配賦特種部隊使用, 一般步兵部隊則以AT-4火箭彈為主。1984年日本豐和公司正式獲得瑞典生產授權,於該國建立生產線以 裝配日本自衛隊,同時將其裝備形式正式定名為「84公厘無後座力砲」。新加坡亦以卡爾古斯塔夫火箭 筒為其步兵反裝甲主要武器。

⁽¹⁾名劍、趙智立等著,《先進單兵武器發展史》(臺北市:通寶文化有限公司,2009年12月),頁7。

^{(2)〈}卡爾古斯塔夫M3式84mm火箭筒〉,百度百科:http://baike.baidu.com/view/413266.htm

⁽³⁾步兵學校反裝甲小組教學研究資料。

⁵ 同註4(1),頁11~13。維基百科:http://zh.wikipedia.org/wiki/%E5%8D%A1%E7%88%BE%C2%B7%E5%8F%A4%E6%96%AF%E5%A1%94%E5%

⁶ 黃守銓、卞榮宣著,《世界軍武發展史.輕兵器篇》(臺北縣:世潮出版有限公司,2004年3月),頁250。 步兵學校反裝甲小組授課資料。

科技新知

提升本軍步兵反裝甲火力之研究

箭彈重型化與輕型反裝甲飛彈的雙重挑戰 ,瑞典並未放棄自己的風格,仍相信卡爾 古斯塔夫的價值。

考量90年代地面部隊面對的戰場環境 ,瑞典企圖建構出能發揮沂距離反戰車與 多面向步兵火力支援武器,遂於1984年在 M2火箭筒技術基礎上,發展出M3卡爾古 斯塔夫火箭筒。不同於前者,M3火箭筒 增加提把便於戰鬥間攜行,新式光學瞄準 具加上夜視鏡,更能符合全天候作戰要求 。同時受益材料科學進步,M3火箭筒大 量採用碳纖維複合材料,使重量由14.2公 斤降至9.5公斤(如圖三)。為提升火箭筒戰 場價值,世界各國設計重複式裝填系列, 相當重視射擊彈藥的多樣性(如表一),瑞 典自然瞭解此一重要趨勢。因此,M3火 箭筒除保有射擊M2既有彈藥能力外,更 能射擊口徑132公厘之FFV 597翼穩超口 徑穿甲彈(如圖四),該彈藥有效射程250 公尺,可有效擊穿90公分均質鋼板,足 以對付現代先進主力戰車。⁷整體而言, 其配賦彈藥多仍以84公厘口徑為主(如表 二),針對衍生型彈藥如AT-4,亦採用與 M3火箭筒相同的生產技術,有效降低生 產成本與後勤補給。8

三、AT-4(CS)火箭彈

考量世界各國需求不同,針對習慣使 用筒彈一體、使用後拋棄式的國家,瑞典 於1984年推出AT-4火箭彈。該彈藥口徑84 公厘、全重6.7公斤、有效射程300公尺, 內裝約450公克錐形裝藥使其具備40公分 穿甲效能(如圖五)。相對M72系列採前、

同註4,頁13~18。

7

圖二 APILAS火箭彈射擊產生之筒後噴火

資料來源:研究小組整理自實彈射擊訓練。

M3火箭筒具備操作簡單之特性

資料來源: 龍騰網: http://www.wwgc.cc/luntan/viewthre ad.php?tid=64226

後筒設計概念,⁹AT-4採一體成型模式, 使操作者無需先完成用、收筒即可實施射 擊。為確保射擊安全,該彈藥沿用古斯塔 夫多重保險機制,設置保險針保險、拉柄 保險及前方保險;除非三種保險均已開啟 ,否則無法擊發。1987美軍正式向瑞典進

步兵學校反裝甲小組授課資料。 8

於下頁。

R BIM ONTHLY

主 _	业 田 夕 国	十西岳治	ギル.	箭筒性能分	14
衣一	世乔各國	王罗申秽	式,火	前同性能分	杌

武 器 型 式	口徑 (公厘)	重量 (公斤)	觀瞄系統	有效射程 (公尺)	穿甲厚度 (公分)	配 賦 彈 種
瑞典M3卡爾古 斯塔夫	84	9.5	光雪 制 光 電 光 電 光 電 光 電 光 電 光 職 準 進 異 異 異 異 異 異 異 異	活動:300 固定:700	90	穿甲彈、雙效能彈、防衛彈、高爆榴彈、照明彈、 煙幕彈
蘇聯RPG16型 火箭筒	58	10.3	光機 微光 瞄準 準 具 具 具 具 具 具 具 具	500	37.5	同口徑穿甲彈、85公厘穿 甲彈
中共69式火箭筒	40	5.6	機械瞄準具 夜視瞄準具	500	40	同口徑穿甲彈、85公厘穿 甲彈
德國鐵拳3型	60	重型:12 輕型:9	光學瞄準具夜視瞄準具		70~90	90、110、125公厘穿甲彈 、110公厘雙效能彈、碎甲 彈、煙幕彈等
以色列B300 火箭筒	80	8	光學瞄準具 測 距 儀鏡 星光夜視鏡	400	60~80	穿甲彈、連續爆破彈、照 明彈
美國巨蟒火箭筒	83	13.6	數位熱影像 彈 道 解	500	65	穿甲彈、雙效能彈、高爆 榴彈

資料來源:一、明劍、趙智立、楊溫利,《先進單兵武器發展史》(臺北市:通寶文化,2009年12月)。

- 二、〈卡爾·古斯塔夫武器系統〉,互動百科:http://www.hudong.com/wiki hudong
- 三、馬汀·道格提著, 《界武器大觀 —— 輕型經典武器圖鑑》(臺北:明天國際圖書,2008年12月)。
- 四、黄守銓, 卞榮宣, 《世界軍武發展史.輕兵器篇》(臺北縣: 世潮出版有限公司, 2004年3月)。
- 五、國防部譯,《城鎮戰彙編》(臺北:國防部史政編譯室,2008年9月)。
- 六、美商雷神公司商情簡報。
- 七、作者自行整理。

行採購與配賦作業,並命名為M136.AT-4 一步提升基層部隊反裝甲戰力。 火箭彈,1994年本軍向美採購獲得,10進

傳統火箭彈為求能達無後座力效果,

^{9 1966}年美國春田兵工廠(後更改為泰瑞公司)首度突破筒、彈分離觀念,研發口徑66公厘、穿甲厚度25公 分之單兵反裝甲火箭彈,其型式計M72、M72A1至M72A6等。中科院參考M72A2,研製出國造一式66 公厘火箭彈。

⁽¹⁾研究小組教學資料。

⁽²⁾美商泰利公司商情簡報。

¹⁰ 陸軍總司令部印頒,《近程反裝甲火箭-AT-4操作手冊》(桃園:陸軍總司令部,2000年11月),頁1-1~ 2-2 •

—以瑞典為例

M3卡爾古斯塔夫火箭筒及配賦之各 型彈藥

資料來源:中華網:http://club.china.com/data/ thread/12171906/2734/81/06/0 1.html

射擊時運用「作用反作用力」戴維斯原理 ,將相對的能量導引至後方;此模式除 會產生高音爆外,特徵顯著的筒後噴火 極易暴露射擊位置與危害友軍, 更無法 選定於狹小空間射擊。AT-4火箭彈為改善 前述限制因素,於彈體後端加裝以海水為 主體的封閉層,運用能量吸收方式,在拋 射藥快速燃燒並向後噴火時,同時引爆封 閉層產生霧狀體降低壓力波,大幅縮短筒 後噴火距離,使射手面對城鎮作戰環境, 能在較狹小的空間實施射擊。在增加夜視 鏡組裝功能後,夜戰能力更形強化,而經 改良後AT-4正式定名為AT-4CS(Confined

表二 M3卡爾古斯塔夫火箭筒射擊各類84公厘彈藥性能分析

彈 藥 形 式	重量 (公斤)	初速 (公尺/秒)	有效射程 (公尺)	性 能 概 述
551型高爆穿甲彈	全重:3.2 彈重:2.4	255	700	1.備炸距離:5~15公尺。 2.穿甲厚度:35公分均質鋼板。
751型高爆穿甲彈	全重:3.8 彈重:2.9	210	600	1.彈藥備炸距離:20~40公尺。 2.穿甲厚度:50公分均質鋼板。
502型雙效能彈	全重:3.3 彈重:2.5	230		1.備炸距離:15~40公尺。 2.穿甲厚度:50公分均質鋼板。 3.主要為應付城鎮作戰環境所面對之輕型戰甲車 、建築物、野戰工事及地面人員。
ADM401型 近距離防衛彈	全重:2.7 彈重:1.8	300	100	該彈藥在其內部預置約1,000枚箭型彈頭,發射內部高壓氣體將其彈藥呈錐形狀釋放,在有效射程內每平方公尺內將產生5~10枚箭型彈,以殺傷來犯之敵。
441D型高爆榴彈	全重:3.1 彈重:2.3	240	1,250	1.備炸距離:20~70公尺。 2.引信設置方式:空炸或瞬發。 3.該彈藥在其內部預置約800顆鋼珠,彈藥爆炸 後鋼珠將以霧狀形式散開,殺傷人員。
545C型照明彈	全重:3.1 彈重:2.1	260	2,100	1.發光強度:約650,000燭光。 2.照明範圍:直徑400~500公尺 3.照明時間:約30秒。
469C型煙幕彈	全重:3.1 彈重:2.2	240	1,300	主要在執行煙幕遮障效果。

資料來源:一、明劍、趙智立、楊溫利,《先進單兵武器發展史》(臺北市:通寶文化,2009年12月),頁21。

二、龍騰網:http://www.wwgc.cc/luntan/viewthread.php?tid=64226

三、研究小組整理。

Space) • 11

四、新一代反裝甲火箭彈 — 機械人-57型

隨著裝甲材質日益精進,傳統「反戰車」(Anti-tank)單一概念,逐漸改變為以反裝甲(Anti-armor)為重點,同時附加反制堅固工事、城鎮家屋與人員殺傷等多樣用途。原專為飛彈設計的資訊化觀瞄系統,積極建置於火箭彈本身,透過精密的觀瞄系統,有效增加射程與精度,強化整體作戰效益。目前第三代反裝甲飛彈,正積極運用「頂攻」射擊模式以有效摧毀目標,「造為能符合前述性能需求,該國將比爾飛彈與AT-4CS優異性能加以整合,成功

圖五 AT-4火箭彈

資料來源:研究小組教學資料

研發下一代輕型反裝甲武器 — 「機械人-57型」(Robot 57)(如圖六)。¹³該火箭彈口徑115公厘、全重約11公斤、有效射程600公尺。

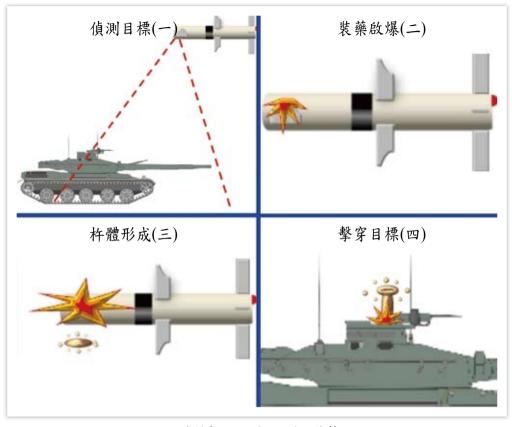
與傳統火箭彈「直攻」方式不同,機械人-57型飛行路徑將維持於目標上方約1公尺,當彈體飛抵目標上方時,內部引信自動引爆主裝藥,開口向下之藥型罩將形成高速、高壓、高密度金屬噴流,擊穿戰甲車頂部摧毀目標(如圖七)。

綜觀瑞典反裝甲火箭彈發展沿革,可 發現具有以下特性:

(一)兼具「重複使用」及「筒彈一體」性能,並以同質性生產技術發展衍生型裝備,有效降低生產成本與後勤補給。

(二)彈藥效能多樣化、有效滿足作戰

圖六 瑞典新一代火箭彈 — 機械人-57



資料來源:http://www.fyjs.cn/bbs/read.php?tid=173455

- 11 〈AT-4〉, 維基百科: http://zh.wikipedia.org/wiki/gd/wiki/AT4
- 12 「頂攻」之理念即是由瑞典比爾(BILL)反戰車飛彈首開先河。「頂攻」射擊意指飛彈發射後,以較高的 飛行高度向目標前進。目前有兩種飛行模式,一種採取較大曲線角度,從目標上空俯衝攻擊,如標槍飛 彈;而拖式2B型等飛彈,則以直線飛行方式保持其高度於目標上方約1.5公尺處,待欲通過目標時,透過 飛彈內部之「雷射」及「磁感」引信起爆主裝藥,攻擊戰甲較脆弱的頂部。
 - (1) 吳承叡,《陸軍M220A2 拖式Ⅱ發射系統操作手冊》,陸軍司令部,民國100年6月,頁2-14~2-17。
 - (2)蔡超,《標槍飛彈(Javelin)操作手册》,陸軍司令部,民國97年4月,頁1-1~2-35。
- 13 國防部, 《城鎮戰彙編》(臺北:史政編譯室,2008年9月),頁197、198。

—以瑞典為例

圖七 機械人-57型頂攻模式示意圖

資料來源:研究小組自行繪製

實需。

(三)保有穩定射程之「膛線」技術, 兼具無後座力效能,使步兵得以有效操 作。

(四)整合先進資訊、射控技術,增加 有效射程及精度。

對我軍之啟發

瑞典研製步兵肩射型反裝甲武器之所 以成功,主要歸功於整合國家資源、開 發精密軍事工藝技術與戰場實務驗證。 是項武器發展,同時擁有裝備輕量化、 射控系統半自動化、彈藥功能多樣化等 現代條件,方能在競爭激烈的市場中擁 有重要成就。我國多年前即具備火箭彈製

造技術,如國造一式66公厘火箭彈即配賦 國軍使用多年,近年更在其基礎上研發 C308紅隼反裝甲火箭彈(如表三)。然綜觀 本軍部隊反裝甲戰力,則仍有下列諸項不 足之處:

- (一)穿甲厚度20~30公分,無法有效 擊穿共軍裝配先進裝甲材質之戰甲車 鹹。
- (二)有效射程300公尺,接戰距離過 短,易遭敵火威脅。
- (三)傳統「硬式發射」模式,無法於 狹小、隱密空間射擊,嚴重影響射手安 全。
- (四)無夜間瞄準裝置,缺乏全天候作 戰能力。

ARMY BIMONTHLY

重要	要諸元	養備	名稱	M3卡爾古斯塔夫火箭筒	C308紅隼反裝甲火箭彈
有	效	射	程	依據彈藥特性:100~2,100公尺	300公尺
裝	備	重	量	發射筒:9.5公斤 彈藥:2.7~3.8公斤	全重約3.5公斤
穿	甲	厚	度	551型高爆穿甲彈:35公分 751型、502型高爆雙效能彈:50公分 FFV597高爆穿甲彈:90公分	30公分
觀	瞄	系	統	光學瞄準具、雷射測距儀、夜視瞄準具	光學瞄準具
射	擊	彈	種	高爆穿甲彈、高爆雙效能彈、近距離防衛彈、高爆榴彈、 照明彈、煙幕彈	高爆穿甲彈
操	作	方	式	二人操作	單人操作
備			考	C308紅隼反裝甲火箭彈仍在研發階段	

表三 M3卡爾古斯塔夫、C308紅隼反裝甲火箭彈性能分析表

資料來源:研究小組整理

(五)彈藥功能單一性,戰場運用選項 不足。

面對中共武力威嚇,若要積極整備我 軍部隊反裝甲之戰力,瑞典等西方國家之 經驗,可給予以下之啟發:

一、積極強化部隊反裝甲之戰力

臺灣本島四面環海,未來防衛作戰陸上作戰依然為勝負之關鍵。共軍積極強化兩棲能力,並在「多層雙超」的登陸作戰思維指導下,空降部隊亦編配輕型戰甲車。因此,本軍無論是第一線守備或打擊部隊,皆可能面對敵戰甲車輛。若敵突入我城鎮地區,則更要面對異常艱困的戰場環境。以此觀之,防衛作戰全期,必須集中整合現有如66火箭彈等近程部隊反裝甲戰

力,於敵可能登陸之地區,在三軍聯合泊 地攻擊之指導下,配合陸航、砲兵重砲等 各型遠程火力,制壓及打亂敵之作戰編組 ;而拖式、標槍飛彈則以機動支援運用方 式對敵實施遠距離摧毀射擊;待目標出現 於300公尺以內,實施部隊反裝甲作為, 形成有效的反裝甲作戰縱深。惟檢視中 共現役主力戰車、步兵戰鬥車基本性能 ,我軍反裝甲戰力確有待強化之必要(如 表四)。

此外,肩射型反裝甲武器,因為軍事 工藝技術日益精進,除能射擊戰甲車外, 各類工事掩體、密集散兵、多人操作武器 ,甚至低飛滯空飛行載具都已納入射擊範 圍。¹⁴性能多元化的反裝甲武器,將更能

^{14 1993}年10月美軍於索馬利亞的「摩加迪休戰鬥」中,遭到當地民兵以RPG-7火箭彈擊落2架黑鷹直升機,並擊傷另外2架及數量悍馬車。鄧坤誠,〈共軍登陸作戰主力—兩棲機械化步兵師簡介與我精進作為〉《陸軍學術雙月刊》(桃園),第47卷,第516期,100年4月,頁71、72。

——以瑞典為例

表四 中共現役主力戰車、步兵戰鬥車基本資料分析表

名 稱	重 量	武器口徑(公厘)	裝甲材質	最高速率(公里/時)	備		註
59式系列	35噸	100	均質	50	履	带	型
63 A 式	22噸	105	複合	28 (水上)	履	带	型
69式系列	36.7噸	100	均質鋼板	50	履	带	型
79式	36.8噸	105	均質鋼板	50	履	带	型
80/88C式	38噸	105	反應、複合	57	履	带	型
85Ⅱ式	39.5噸	105	複合	57	履	带	型
85Ⅲ式	42.5噸	125	反應、複合	65	履	带	型
98式	51噸	125	反應、複合	60	履	带	型
90系列	16噸	25機砲	反應、複合	60	輪		型
92式系列 (WZ55)	16噸	30機砲	反應、複合	85 7(水上)	輪		型
93式	11~15噸	50機槍	反應、複合	70 8 (水上)	輪		型
86B式	13.3噸	30機砲	複合	65 7 (水上)	輪		型

資料來源:一、魏宗志,〈共軍坦克發展之研究〉《裝甲兵季刊》,2008年10月。

二、鄧坤誠,〈共軍登陸作戰主力-兩棲機械化步兵師簡介與我精進作為〉《陸軍學術雙月刊》,96年4月,第43米第492期。

三、劉建宏,〈共軍輪型戰甲車發展現況研究探討〉《裝甲兵季刊》,2010年6月。

四、研究小組自行整理。

保證部隊能應付多方挑戰,掌握戰場優勢 ;價格與飛彈相比尤為低廉,更能在有限 的國防資源發揮最大效能。因此,基於「 打、裝、編、訓」之建軍理念,與面對未 來戰場環境的挑戰,本軍應建置500公尺 以上,2,000公尺以內射程反裝甲武器, 配合現有反裝甲飛彈,建構出以飛彈系統 為核心,火箭彈為輔助之高效能部隊反裝 甲戰力(如表五)。

二、有效建立裝備自主研發能量

歐盟各國平均約85%軍備採購,限定 採購國內生產裝備,主要目的不僅是為了 保護國內就業機會、促進投資意願,更要 確保供應鏈無虞與保護重要關鍵技術,¹⁵ 增加國防工業之研發成果。如電子、資訊 、通信、奈米等尖端技術,民間產業更能

¹⁵ 歐盟地區每年的國防交易額約550億歐元,提供近30餘萬人就業機會。李育慈譯,〈歐洲國防工業提升競爭力策略〉《國防譯粹》(臺北),第36卷第9期,國防部史政編譯局,2009年9月,頁81。

农业 关于各级所称及《十级/发星配// 为例》《							
武器類別	有效射程(公尺)	穿甲厚度(公分)	編配單位				
SMAW火箭彈	500	60	班(陸戰隊)				
AT-4 CS火箭彈	300	40~70	班				
M-72系列火箭彈	300	30	班				
拖式飛彈	3,750	102.5(拖2A)	1.依單位特性配賦連(排)級 2.營級具有拖式飛彈排編制				
標槍飛彈	2,000	75	排				
掠奪者飛彈	700	60	排				

表五 美軍營級部隊反裝甲戰力建置能力分析表

備考:

- 1.美國雷神公司正積極針對SMAW火箭彈射控系統實施功能升級,除保有既有之機械式瞄準外,另增加數位熱影像、彈道計算及雷射測距儀等功能,以滿足美軍陸戰隊作戰需求。
- 2.美軍專為特種部隊設置卡爾古斯塔夫系列。

資料來源:一、HEADQUARTERS DEPARTMENT OF THE ARMY, FM 3-21.91(FM 7-91), DECEMBER 2002《美軍反裝甲教則》。

- 二、美國雷神公司商情簡報。
- 三、研究小組自行整理。

透過技術移轉,強化產業升級提升競爭力 ,職是之故,各國莫不積極提升國防自主 性。瑞典獨立自主的軍備研製機制,創造 出許多享譽盛名的軍事裝備,該國三軍部 隊所使用武器,絕大多數為其自製品。 在其技術基礎上整合他國資源所發展。 國早已認知此一重要性,民國89年公布《 國門法》第20條中明訂:「行政院所屬各 機關應依國防政策,結合民間力量,發展 國防科技工業,獲得武器裝備,以自製為 優先,向外採購時,應落實技術轉移 處所科技工業,獲得武器裝備,以自製為 優先,向外採購時,應落實技術轉移 處所發,亦本「先求有、再求好、再求更好 成獨立自主之國防建設。」新式武器裝備 研發,亦本「先求有、再求好、再求更好 」政策指導,¹⁶其目的即希望透過國家資 源,主導整體軍備發展達成國防自主目標 。民國100年即研製1萬2千餘項,產值328 億餘元。¹⁷

然自主研發經常必須面對需求量少、研發成本提升致使單價過高等限制因素。我國自當著重關鍵技術研究,並改良現行裝備為重點,除積極提升66火箭彈性能外(如圖八),亦應參考瑞典發展經驗,研發新式無座力砲與火箭彈,整合飛彈以建置全縱深反裝甲體系。我國早期亦曾自主研發膛線式無座力砲:如射程900公尺、穿甲厚度10公分75公厘無座力砲;又如有效射程1,096公尺、穿甲厚度50公分的106公厘無座力砲,皆曾是本軍主要部隊反裝甲武器。

三、積極發展第三代反裝甲火箭

¹⁶ 國防部,《中華民國壹百年國防報告書》(臺北:國防部,2011年7月),頁150。

¹⁷ 同註16,頁153~154。

以瑞典為例

C308紅隼反裝甲火箭彈

資料來源: http://big5.huaxia.com/thjq/jsgc/jsgcwz/2011 /10/2628180.html

1980年代初期裝甲防護技術不斷提升 與改淮, 復因地面戰場裝甲車輛運用日益 增加,若僅依賴數量少且價格昂貴的反裝 甲飛彈,將無法滿足反裝甲戰鬥需求。因 此,各國加速研發第三代反裝甲火箭彈, 一般包含以下特點:

(一)穿甲能力增加:第二代反裝甲 火箭彈穿甲厚度均在20~30公分之間, 無法有效剋制現今戰甲車輛,必須透過 加大彈頭直徑、改良引信作用模式及優 化藥型罩設計,提升穿甲厚度。例如: 卡爾古斯塔夫射擊135公厘超口徑彈藥, 穿甲厚度達90公分;德製鐵拳3型使用 之MK118高爆穿甲彈,在彈藥前端加裝 探針式的延遲引信,當彈藥撞擊如裝甲 車等密度較高的硬質目標能瞬間啟爆, 若目標是野戰工事或建築物等軟性目標

,彈藥則能透過延遲裝置,於淮入目標 內部後再行啟爆,提高破壞效能;俄製 RPG-29改良傳統單錐藥型罩改採雙錐或 多錐藥型罩,同時運用冷擠壓18或旋壓成 型工藝技術,19改善金屬噴流的連續性與 質量,穿甲厚度達70公分以上,可對付反 應式或複合式等現代裝甲。

(二)增大有效射程與精度:新一代火 箭彈運用光學瞄準具、雷射測距等取代傳 統簡易的機械瞄準具。甚至加裝小型的光 雷射控系統,不僅提高命中率,並配合適 量的拋射藥量將有效射程增加至600公尺 以上。如中共PF-98營用型反裝甲火箭, 其有效射程可達800公尺。

(三)提升戰場存活力:傳統火箭彈射 擊的筒後噴火,往往造成廣面積能量釋 放, 造成明顯的射擊特徵, 暴露射手位 置及無法在小空間(如碉堡、建築物等) 射擊;高達700度以上的高溫,更有傷 及友軍的顧慮。如何改良前述限制因素 ,則需重新選擇新型發射裝置。如運用 反衝重物技術20或使用少量推進裝藥方 式等,²¹以降低射擊特徵,提升射手戰 場存活率。例如:鐵拳3型、Wasp-58及 AT-4CS等,即能在有條件之密閉狹小空 間使用。

(四)多功能、多用途:經過多年的戰 爭經驗,許多國家已體認出多用途火箭彈 是有其必要性。卡爾古斯塔夫系列配賦之

¹⁸ 陳國光,〈彈藥製造工藝學〉《第四章彈體毛坯冷擠壓》,北京理工大學出版社,2004年10月,頁137。

王儒策,《第六章彈藥裝藥技術》(北京),2002年12月,頁216、217。

反衝重物技術,利用後拋的附加物來平衡向前運動的彈九,如AT-4CS筒後方有鹽水用來中和火燄。廖英 20 輝,〈步兵的即時火力支援-肩射反裝甲武力武器〉《全球防衛雜誌》,1991年4月,第80期,頁53。

²¹ 同註6,頁258。

各型彈藥,即針對現代戰爭步兵必須面對更多樣的目標,所銳意發展之成果。 其他如美製SMAW火箭發射器、以色列 B-300、南非FT-5、中共PF98營、連用反 裝甲火箭與俄製RPG-29,亦在此需求面 上朝多功能、多用途,以滿足多元化的任 務。

四、裝備性能多樣滿足作戰需求

瑞典在研製過程中,裝備性能的多樣 性,實為建立優質品牌的重要關鍵。儘管 諸多國家均採用「拋棄式」彈藥,該國卻 依然能堅持發射裝具重複使用之務實態度 , 並透過不斷改良與嚴格的戰場驗證, 進 一步提升裝備性能,使卡爾古斯塔夫能行 銷30餘國。不僅建立起優質商譽,而AT-4 系列在拋棄式系列亦有舉足輕重之地位, 甚至在新一代火箭彈發展上,超越其他西 方國家。考量共軍地面武力配賦大量的戰 甲車輛,未來我陸上作戰環境,不論在灘 際、城鎮、山地等地形作戰,應以優先打 擊敵裝甲部隊為首要。故建構完整的部隊 反裝甲火力,有效運用地形、障礙設置與 反裝甲武器相配合,乘敵立足未穩之際, 一舉擊滅來犯之敵。

五、整合新舊武器差異有效發揮裝備效能

儘管我國在裝備自主研發有其主、客 觀限制因素,然並不代表無研發實力。例 如;66火箭彈看似無法符合現行戰爭,但 正如美軍應付恐怖主義挑戰時,對於潛藏 於洞穴、掩體、建築物內之敵,重型武器 反而無法發揮所長,而必須重新啟用M72 型66公厘火箭彈。²²國內軍事專家曾祥穎 亦指出,面對國防預算必然削減的事實,各國部隊出現新舊裝備並存的現象不足為奇,如何提升現役裝備功能,整合新舊世代武器之間的差異,延長服役年限,期能肆應未來戰爭需要,是現代建軍備戰相當重要的課題。²³

結 語

21世紀的軍事衝突表現出戰爭環境的 多變性,瑞典能依據其國情研製符合作戰 需求的戰具,自立自主,不受外界左右, 深值吾人借鏡。近年無論是以城鎮戰為主 的伊拉克戰爭,亦或是逼使美軍不得不進 入崇山峻嶺的阿富汗戰爭,吾人可發現上 述地區,除使大規模的武裝部隊無法施展 外,殺傷力強的高精密火力,亦受到運用 限制,步兵肩射型反裝甲武器卻在此際發 揮「不對稱作戰」效益。共軍地面機械化 部隊,不論在火力、防護力、機動力等各 項效能均有所精進,對我陸上防衛作戰形 成重大壓力。因此,如何在既有的軍事技 術基礎與有限的國防資源,積極籌購新式 裝備外,整合現有武器系統、強化地面防 衛部隊整體反裝甲戰力、落實戰場經營作 為,充分發揮「以弱擊強」之戰術戰法, 方是對敵進行有效打擊,確保國土安全之 重要手段。

收件:101年7月31日

第1次修正:101年8月17日 第2次修正:101年8月21日

接受:101年8月27日

²² 國防部,《城鎮戰彙編》(臺北:史政編譯室,2008年9月),頁194。

²³ 曾祥穎,《第五次軍事事務革命》(臺北市:麥田:城邦文化,2003年12月),頁148。