運用地圖支援砲兵測地之研究

壹、作者

耿國慶 雇員教師

貳、單位

陸軍飛彈砲兵學校目標組

參、審查委員(依初、複審順序排列)

張自治上校

何康濂上校

鄭錦松中校

陳鍵誼中校

肆、審查紀錄

收件:101年08月10日

初審:101年09月10日

複審:101年09月24日

綜審:101年10月22日

伍、內容簡介

地圖在軍事上可提供軍隊詳細的地形資訊,而地圖製作之良窳,與所運用之圖資有直接關聯。地圖之用戶,尤其是砲兵測地,與地圖關係密切,測地人員不僅須熟悉地圖閱讀基本技術,更須深入圖資之內在屬性,充分運用地圖。地圖可支援測地之項目甚多,通常用於偵選測地統制點、測地偵察與計畫、座標與標高轉換核對、方格偏差修正、越區磁偏常數計算與測地成果檢查等支援作為。國軍為求地圖品質提升,充分發揮作戰支援功效,除測地人員必須嫺熟地圖運用技術外,製圖單位則須適切提高地圖之精確性,俾能有效支援防衛作戰任務。

運用地圖支援砲兵測地之研究

作者:耿國慶 老師

提要

- 一、1990 年第一次波灣戰爭之「沙漠之盾」期間,地圖即列為美軍優先支援軍品,支援數量之鉅,為美軍戰史上空前創舉,充分顯現測繪科技支援作戰,益形重要。國軍一向重視測繪科技支援作戰,於民國 93 年地圖大幅改版,由原 GRS-67 改為 WGS-84 座標系統,97 年再度印頒新版地圖。如何提升砲兵運用地圖支援測地之能力,充分發揮新版地圖運用效益,成為當前重要課題。
- 二、地圖在軍事上可提供軍隊詳細的地形研究,組織軍事訓練與戰鬥行動之地 形保障。然地圖製作之良窳,與所運用之圖資品質有直接關聯,基於圖資 評選主要因素為比例尺、精確性、現勢性、完備性與表示法等五項。就砲 兵測地而言,適用兩萬五千分之一比例尺戰術地形圖,除可顯示地貌、地 物最為詳盡外,亦可提供小部隊行戰術指揮與砲兵射擊、測地之用。
- 三、砲兵測地與地圖關係密切,測地人員不僅須熟悉地圖閱讀基本技術,更須深入圖資之內在屬性,充分運用地圖。地圖可支援測地之項目甚多,通常用於偵選測地統制點、測地偵察與計畫、座標與標高轉換核對、方格偏差修正、越區磁偏常數計算與測地成果檢查等支援作為。
- 四、現代戰爭講求高科技與高效率,諸多戰役證實作戰對測繪之要求與依賴, 日益升高。國軍為求地圖品質提升,充分發揮作戰支援功效,除測地人員 必須嫻熟地圖運用技術外,製圖單位則須適切提高地圖位置與屬性精度、 內容完整性、地理正確性、現勢性等要求,俾能有效支援防衛作戰任務。

關鍵詞:軍用地形圖、地圖、砲兵測地、座標轉換

壹、前言

「軍用地形圖」(簡稱地圖)著眼於顯示適切之地形地物,以供軍事運用地形之憑藉,「其對現代軍事之重要性可由第一次波灣戰爭得知。1990年當「沙漠之盾」(Operation Desert Shield)行動開始,美國「國防製圖局」(Defense Mapping Agency,DMA);現已更名為「國家影像製圖局」(National Imagery and Mapping Agency,NIMA)即進入緊急狀態,聖路易與馬里蘭州之地圖印刷廠日夜開機,一週工作七天,先後共印製地圖 12,000 幅,總印刷數超過一億張。如此大量之地圖支援,在美國戰史上屬空前創舉,其重要性可由美國國防部測繪局約瑟夫・普拉特將軍之評價中獲得印證:「地圖列為優先支援軍品,每天以 C130 運輸機運往中東,其優先超過醫療設備,僅次於愛國者飛彈發射系統之備用料件」。2

現代戰役中不斷凸顯高科技與高效率為今後必然之作戰型態,致新的建軍思想因運而生,作為作戰支援之一的測繪科技,益形重要。國軍一向強調運用測繪科技支援作戰,地圖繼民國 93 年進行大幅度改版,由原 GRS-67 改為WGS-84 座標系統後,99 年再度印頒新版地圖。如何提升砲兵運用地圖支援測地之能力,並充分發揮新版地圖運用效益,成為當前重要課題。

貳、 砲兵測地適用地圖之條件

「地圖」區分為軍用地形圖、經建版地形圖³與數值地圖等三種型式,為地理學之特有工具,可濟文字說明之窮,亦可輔助因文字不同而起之隔閡,許多現象均可用地圖表示。⁴地圖在軍事上,可提供軍隊詳細地形研究、組織軍事訓練與戰鬥行動之地形保障;在經建上,可提供政府機關進行規劃設計、資源勘測、土地整理、交通選線與流域計算;在學術上,則可供從事各相關地理空間研究之運用;顯見地圖運用層面甚廣,尤以軍事用途最為重要。

然地圖製作之良窳,與所運用之地圖資料品質有直接的關聯,而基本圖資的分析、評價與選擇是地圖設計、編纂時,極其重要而又十分繁瑣之工作。圖資評選主要因素為:比例尺、精確性、現勢性、完備性與表示法等五項,⁵就砲兵測地而言,適用二萬五千分之一比例尺戰術地形圖,因此種地圖所顯示之地

^{1《}軍用地形圖閱讀手冊(增修版)》,(台北市,國防部情次室印發,民國 81 年 6 月),頁 2。

² 詹統光著,《測繪科技之重要與支援台澎防衛作戰之我見》,(桃園縣,陸軍學術月刊第 33 卷第 381 期,民國 86 年 5 月),頁 61。

³ 許哲明,《台灣地區五萬分之一地形圖整備之探討》,(台北市,測量技術通報第101期,民國88年6月),頁

⁴ 童約信著,《台灣主題地圖之研究》,(台北市,測量技術通報第101期,民國88年6月),頁29。

⁵ 許哲明、吳永清著,《地圖資料評價定量化之探討》,(台北市,測量技術通報第 95 期,民國 82 年 6 月),頁 40、46。

貌地物最為詳盡,故可供小部隊行戰術指揮與砲兵射擊、測地之用。⁶其條件分述如後:

一、比例尺

(一)大比例尺

大比例尺地圖涵蓋面積小,已按軍事需要繪出每一具有軍事價值之地 形地物,以二萬五千分之一比例尺戰術地形圖為例,每公里 4 公分見方, 且地形、地物清晰明顯,有利於測地偵察、選點、作業腹案(草圖)繪 製、擬定計畫與成果檢查等使用。

(二)座標型式

地理座標因經線在圖上多為弧線,不便於圖上作業,更不便距離與角度 換算。因此,在大比例尺地圖上皆繪有「1984 年世界大地系統」(World Geodetic System1984,WGS-84)之平面直角座標網,即「世界橫麥卡 脫投影座標」(Universal transverse Mercator grid,UTM)。UTM 方格座 標係依據「橫麥卡脫投影」而制定,因採用此種投影編成之地圖,所有 角度與地面相應角值甚為接近,故選以編製軍用地形圖,以提供砲兵、 測量與航行之用。⁷

二、精確性

地圖精度決定地圖之品質與其應用價值,對於地圖計測、分析十分重要。 地圖精度廣義而言包含「位置精度」與「屬性精度」,惟對地圖精度評估 而言,通常係指位置精度,即地圖中各種地形要素之幾何精確性,亦即圖 上地物點之位置與其實地真實位置之接近程度,一般包括「平面精度」與 「高程精度」,其依據使用者之需要與現有儀器設備所能達到之精度兩方 面因素所確定。

在實際運用地圖時,評估地圖精度為重要問題,其評估方法可分為理論推估法、實測統計法、座標比較法等三種,惟通常採用實地檢測方式評估地圖實際精度。8地圖圖廓右下角之「圖料表」(Coverage)內,通常註明地形圖之地區、比例尺、版本與精度(現行軍用地形圖平面精度標準,如表一)等,二萬五千分之一比例尺戰術地形圖註明「精度甚佳」,可提供測地以地圖量取假設諸元,或採「地圖與現地對照檢查法」,檢查測地成果

^{6《}軍用地形圖閱讀手冊(增修版)》,(台北市,國防部情次室印發,民國 81 年 6 月),頁 4。

^{7《}軍用地形圖閱讀手冊(增修版)》、(台北市,國防部情次室印發,民國81年6月),頁37。

⁸ 郭基賢、林譽方著,《地圖精度評估之研究-以 GPS 實測法評估地圖平面精度》,(台北市,測量技術通報第 101 期,民國 88 年 6 月),頁 63、64。

表一

-VC									
1/25,000 軍用地形圖平面精度標準對照表									
區 分	平	面	精	度	標	準	備考		
美國國家地圖精度	12.5	公尺							
標準 (NMAS) (圓形精度, CMAS)									
2 四 IE 8/ 10/ 目 17	第一級: 6.25 公尺								
美國攝影測量及 遙 感 探 測 協 會	(座村	(座標差異值:RMSEx,RMSEy)							
(ASPRS)	第二								
(座標差異值:RMSEx,RMSEy)									
中華民國國防部	20 公	尺(均	与方根 ,	MSPE)				

資料來源:郭基賢、林譽方著,《地圖精度評估之研究-以 GPS 實測法評估地圖平面精度》,(台北市, 測量技術通報第 101 期,民國 88 年 6 月),頁 73。

三、現勢性

圖資是否新穎,不僅影響地形圖地形、地物之真實性,亦決定使用者對地 形圖的運用成效與信任程度。通常新版地形圖其圖資較新穎,除非製圖單 位現地調製不確實,則有賴使用者利用「參謀旅行」或「兵要調查」方式 補充、更正圖資,俾發揮使用功效。

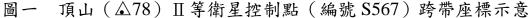
四、完整性

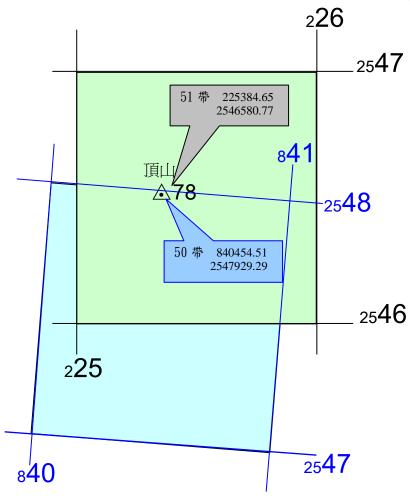
(一) 圖廓資料完整

地圖圖廓外資料通常包括:圖名、圖號、圖例、偏角圖、比例尺、等 高線間隔、地圖基準(橢球體、方格、投影、高程基準、平面基準、資 料時間、發行、印刷)、地點顯示例、詞彙、圖料表、行政界線略圖、 圖幅結合表、坡度尺、方格座標、地理座標與機密等級等,可供地圖閱 讀、控制點成果查取、座標系統對照、磁偏常數換算、方格偏差修正等 使用(圖廓外資料用於測地作業對照,如表二)。

表二

地	圖	圖	廓	外	資	料	用	於	測	地	作	業	對	照	表
項目	名			稱	用										途
1	圖			號		•	_	查取. 角點					刂點、	·衛星	星水
2	圖			例	閲 物		形	圖上:	控制	點位	置與	人對只	照地:	形、	地
3	偏		角	昌	2.	越區	换.	格磁 算磁 則時	偏常		格偏	3差值	多正	0	
4	地	圖	基	、準	面	.*		••	•	-	-	•,		石程 與 統統	• •
5	地	點	指方	下 例		取點讀報			用方	格參	考系	.統_	(M	IGRS	S)
6	地	理	座	標	2.	天體	觀	象台/則時	,計	算正	北之	方格	各偏差	差修」 。	正。
7	方	格	座	標										立、終 を準。	
8	跨	带力	万格	座標		. •	' '	座標 [,] 校準		是供力	· 標	轉換	與定	C 位分	こ向


資料來源:作者自製。


(二)加註跨帶方格附記

方格帶與帶之交接處,有30分之重疊。在重疊區域內,須將兩帶之方格同時印於地圖上,此種方格稱之為「跨帶方格」。臺、澎與馬祖地區均出現跨帶方格,常以短線繪於圖廓線之四邊,其方格數值之註記方法與主要方格相同。凡有跨帶方格之地圖上,其圖廓外資料中須有附記,以說明圖中各方格系之名稱、顏色、特性及其量度單位(如圖一)。,目前地圖上主帶(51帶)為「黑色」註記,重帶(50帶)為「藍色」註記。

砲兵有時須射擊鄰帶目標,因陣地與目標並非同一投影帶,座標系統亦不相同,造成指示目標與計算砲目距離與方位角之困擾。為便於相鄰兩帶之圖幅可使用統一之方格座標網,重疊地區 30 分內,須將兩帶之方

格同時印於地圖上,且須規定統一使用某一帶座標,再將兩對應圖廓間之短線連成直線,即可構成鄰帶統一之方格座標網。

資料來源:作者自製

五、表示法

地球表面之天然或人為地形、地物,於地圖中往往無法顯示其真實形狀,必須以某種符號文字代替,凡屬相同種類之地圖,其符號必須統一,以使製作單位有所遵循,而使用者亦易於閱讀。此種統一規定之符號或文字,即稱之為「圖示」,區分為記號、地貌之顯示與註記。二萬五千分之一比例尺戰術地形圖圖示符合下列原則,利於使用者閱讀與測地運用。

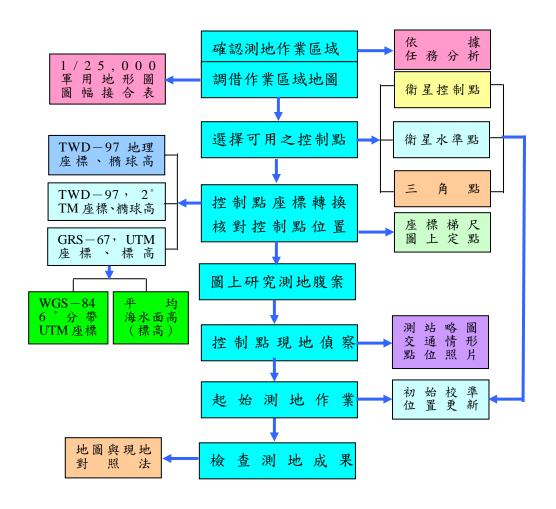
(一) 記號務求簡單,使易於描繪與複製。

- (二) 記號之形狀易於瞭解,一見即憶起實物。
- (三) 隨物體之性質及重要之程度,以粗或細之線條表示。
- (四)註記或文字,以大小分別其輕重,以字體分別其種類。
- (五) 所用顏色應力求調和,始能鮮明奪目有美觀之感。9

參、地圖支援測地作為

目前兵科學校「地圖閱讀」課程包括:地圖簡介、比例尺與距離、方向與方位、地圖座標、地貌與斜坡、地圖定向與定位等內容,僅屬一般性基本學能,對測地人員而言則嫌不足。因測地不僅需熟悉地圖閱讀基本技術,更須深入圖資的內在屬性。如:新化(圖號 9419 II SW)25、46 方格內之△78,一般使用者認為代表 78 高地,測地人員則必須視為:頂山(編號 S567) II 等衛星控制點,標石種類為花崗石(如圖二),再進一步由內政部衛星測量中心(網址:http://www.moidlassc.gov.tw/cp5.htm)查其點位 TWD-97 絕對經緯度座標、橢球高與地圖投影後之縱橫座標,以及相關屬性資料(如點位說明、點位路線、點位透空圖、點位相片、點位附近地形圖等),俾供支援測地使用。地圖可支援測地作業之項目甚多(地圖支援測地作業流程示意,如圖三),較典型之支援作為列舉如後。

圖二 頂山(編號 S567) Ⅱ 等衛星控制點(由編號 567 之Ⅲ 等三角點升級)



資料來源:作者自製

第7頁,共25頁

^{9《}軍用地形圖閱讀手冊(增修版)》,(台北市,國防部情次室印發,民國81年6月),頁5。

圖三 地圖支援測地作業流程示意

資料來源:作者自製

一、偵選測地統制點

砲兵測地須利用精度良好之已知點(國家控制點、砲兵測地基準點、統制點等)起始測地作業,建立作業地區測地統制或射擊單位之測地成果。如賦予「國家控制點」(衛星控制點、水準點、三角點)作為測地統制點時,其精度較佳(如表三),且符合地圖之座標系統,將可減少累積誤差,有利於測地任務之達成。國家控制點分述如下。

(一)衛星控制點

地形圖之測製與編纂之基本控制是依賴「控制點」之佈設與成果。內政部為建立完整、統一與高精度之基本控制點系統,於82年度開始辦理「應用全球定位系統時台閩地區基本控制點測量計畫」,規劃與台閩地區設立8個衛星追蹤站,經參酌傳統三角點與中研院現有衛星點,並配

合網形分布與點位實用性,計規劃 I 等衛星控制點 105 點、II 等衛星控制點 621 點,分別於 84 至 87 年辦理測量工作完竣,同時為配合潮流趨勢研訂「1997 台灣大地基準」(Taiwan Datum 1997,TWD-97)。 10

表三

衛星控制點等級與精度規範表										
等級區分	I 等衛星控制點	Ⅱ等衛星控制點								
基線長標準誤差	5mm+1.0ppm	10mm + 2.0ppm								
95%信心 區 間	10mm+2.0ppm	20mm+4.0ppm								

資料來源:內政部地政司衛星測量中心-衛星測量中心公布欄 (網址:http:

//www.moidlassc.gov.tw/cp5.htm)

(二) 衛星水準點

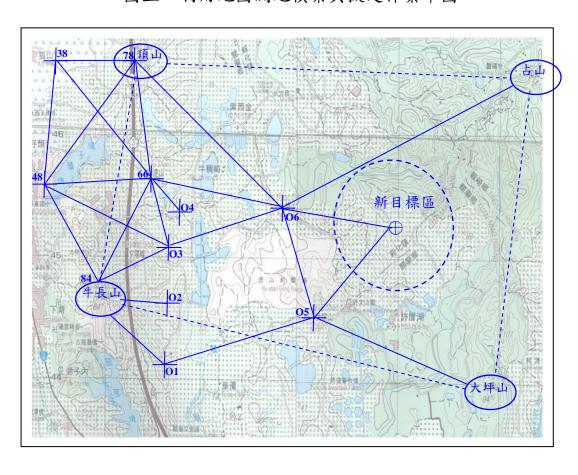
內政部為建置高精度之成控制點系統,提供現代化三度空間控制資訊, 自 88 至 91 年度辦理「國家基本控制點建立與應用計畫」,以四年時間 在台灣本島設置 I 等一級水準網 1,294 點與 I 等二級水準網 1,054 點(如 圖四),並為達到全控制點目標, I 等水準網除辦理水準測量外,並實 施衛星定位與重力測量,使其具備高程與平面座標,大幅增加平面控制 點數量與密度。

圖三 西螺交流道(編號 1112) [等一級衛星水準點

資料來源:內政部衛星測量中心 (網址:http://www.moidlassc.gov.tw/cp5.htm)

 $^{^{10}}$ 許哲明,《台灣地區五萬分之一地形圖整備之探討》,(台北市,測量技術通報第 101 期,民國 88 年 6 月),頁 18 。

(三)三角點


民國 65 年聯勤測量署應內政部委託實施基本控制點檢測,檢測項目包括 I等天文方位角測量 (8 點)、I等基線測量 (8 條)與I等水準測量; I等 (93 點)、II等 (337 點)、III等 (1,687 點)三角、精密導線 (545 點)測量與平差計算、成果編纂作業,以及台灣本島與澎湖三角點連測¹¹。 採用「大地參考系統 1967 年」(GRS-67) 橢球體,以南投埔里虎子山大地基準點起算,亦稱為「虎子山座標系」;高程基準面為基隆平均海水面 (澎湖為馬公平均海水面),於 69 年 2 月頒布成果表。目前部分三角點已提升為衛星控制點,仍使用原三角點標石;未提升者如確認點位無誤,始可使用。

目前地圖上以"△"記號標示「衛星控制點」,"○"記號標示「水準點」, "×"記號標示三角點或經校正之獨立標高點,點側則為四捨五入之標高 公尺整數;測地人員可於地圖上對作業地區行圖上偵察,就近偵選適當之 國家控制點,作為測地統制點。以本校關廟新校區為例,為先期完成新校 區射擊場與測地教練場之測地成果,由 1/25,000 新化(圖號 9419 II SW)、 關廟(圖號 9418 I NW)地圖圖上依據國家控制點"△"記號偵察,並無 結果。改以經校正之獨立標高點"×"偵察,發現作業地區附近存在「頂 山」(編號 S567)、大坪山(編號 S526)兩個 II 等衛星控制點,惟大坪山 距新校區較遠,且點位地勢較高,不利測地使用。特依據"×"記號於圖 上另選牛長山(Ⅲ等、編號 531)、占山(Ⅲ等、編號 502)等兩個三角點, 作為測地統制點或已知點閉寒檢查使用。

 $^{^{11}}$ 《台灣地區三角點成果表》,(台北、內政部、聯勤測量署印頒),民國 69 年 2 月,台灣地區三角點成果明。 第 10 頁 , 共 25 頁

二、測地偵察與計畫

地圖上以「圖式」(地物記號、地貌與註記)表示地表天然或人為地形地物,¹²基於地圖平面精度標準規範嚴謹,使用者可依據需要在任何區域模擬現地,進行地理空間之研究。就砲兵測地而言,除可先期於圖上擬定測地作業草圖(腹案)外(如圖五),亦可在急迫狀況下,以圖上偵察取代現地偵察,爭取作業時效。

圖五 利用地圖測地偵察與擬定作業草圖

資料來源:作者自製

_

 $^{^{12}}$ 《軍用地形圖閱讀手冊(增修版)》,(台北市,國防部情次室印發,民國 81 年 6 月),頁 5。 第 11 頁,共 25 頁

三、座標、標高轉換核對

內政部衛星測量中心所公佈之衛星控制點成果區分為兩類,一是 TWD-97 (ITRF94,1997.0,GRS80)絕對座標一以經、緯度、高程(橢球高)表示(如表四);二是地圖投影後之縱橫座標(ITRF94,1997.0,GRS80,2°TM) (如表五)。另「三角點成果表」則使用 GRS-67 座標系統(如表六-左,表六-左),皆與現行地圖所使用之 WGS-84、6°UTM 方格座標與「平均海水面高」迥異,須經由電腦程式精確轉換後,方可使用(國家控制點座標、標高轉換示意,如圖六)。

表四

內政部二等衛星控制點坐標成果表 (絕對坐標-以緯度、經度、高程表示)

(ITRF94,1997.0,GRS80)

點名	點號	緯度(dd:mm:ss) 經度(dd:mm:ss)				高程(m)	所在地	921 後重測 (標石現況)				
大坪山	S526	22	58	53.16988	N	120	21	21.58726	Е	114.554	台南縣關廟鄉	
頂山	S567	23	0	17.9047	N	120	19	15.33875	Е	97.814	台南縣關廟鄉	
附記:內	附記:內政部於民國 87 年公佈此資料,故使用舊行政區名稱。											

資料來源:內政部衛星測量中心 (網址:http://www.moidlassc.gov.tw/cp5.htm),頁17。

表五

內政部二等衛星控制點坐標成果表

(地圖投影後之縱橫座標)

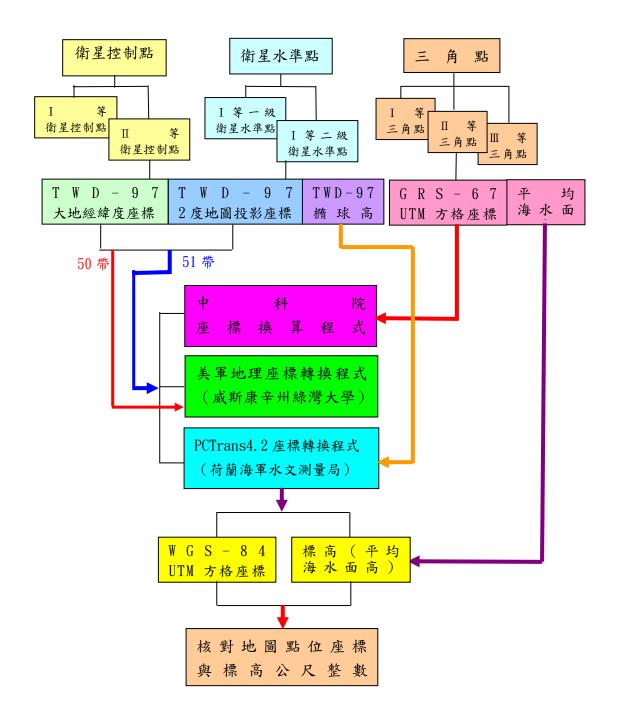
(ITRF94,1997.0,GRS80,2°TM)

點	名	點號	縱坐標值 (m)	横坐標值 (m)	所 在 地	921後重測(標石現況)
大	平山	S526	2542372.377	183971.729	台南縣關廟鄉	
頂	山	S567	2544995.083	180388.131	台南縣關廟鄉	

資料來源:內政部衛星測量中心 (網址:http://www.moidlassc.gov.tw/cp5.htm),頁4。

表六(左)中華民國台灣地區三角點成果表(2°、3°、6°分帶成果)

	五萬分一展點圖圖號 9418-1、9419-Ⅱ											
編號	等級	標石號	上 名	高程	1924 年海佛原子 緯 度 (ψ) 經 度 (λ)	U T M 座 標 縱 線 (N)						
51	Ш	526	大坪山	m 97.310	空度(九) · · // 22 58 59.4840 120 20 52.6090	横線(E) m 2544150.400 228100.600 2545611.460 943296.150						
52	Ш	531	牛長山	84.140	22 59 19.9260 120 18 32.6070	2544852.060 224128.780 2546150.290 839296.840						
4	Ш	502	占山	136.760	23 00 21.7190 120 21 05.2280	2546674.540 228505.950 2548151.460 843597.950						
5	Ш	567	頂 山	77.590	23 00 24.2000 120 18 46.3450	2546822.940 224550.790 2548137.760 839637.970						


資料來源:《中華民國台灣地區三角點成果表 (2°、3°、6°分帶成果)》,(台北市,聯勤總部測量署,民國74年12月),頁27。

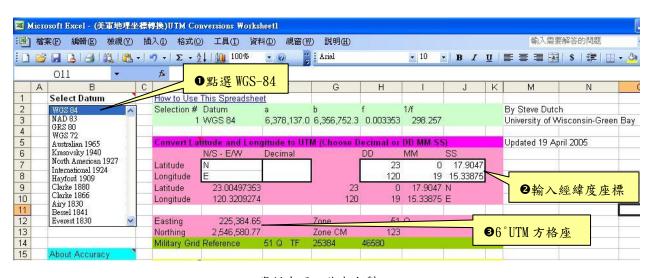
表六(右)

	五萬分一展點圖圖號 9418-1、9419-Ⅱ											
	1967 年原子 (GRS-67)	TM	1	UTM 座標 6 度分帶	nt b							
高 程	緯度(Φ)	2 度分帶 縱線(N)	3 度分帶 縱線(N)	縱線(N)	備考							
	經度(λ)	横線(E)	横線(E)	横線 (E)								
m 93.792	22 58 59.5177 120 20 52.5137	m 2542580.080 183144.316	m 2542834.364 283137.630	m 2544126.936 228108.280	本帶 (51 帶)							
	120 20 02.0 10 1	2543066.374 388204.924	2544612.957 590792.580	2545587.827 843280.406	重帶 (50 帶)							
84.756	22 59 19.9668 120 18 32.7081	2543227.332 179165.527	2543481.680 279158.443	2544828.805 224136.436								
		2543659.426 384217.000	2545179.116 586798.409	2546126.873 839281.123								
137.263	23 00 21.7600 120 21 05.1247	2545108.496 183514.673	2545363.033 283508.024	2546651.468 228513.322								
		2545600.065 388540.826	2547150.354 591111.369	2548128.207 843581.953								
77.761	23 00 24. 2438 120 18 46. 2470	2545202.733 179560.373	2545457.278 279553.329	2546799.769 224558.450								
		2545640.348 384584.927	2547163.634 587153.009	2548114.424 839622.267								

資料來源:《中華民國台灣地區三角點成果表 $(2^{\circ} \cdot 3^{\circ} \cdot 6^{\circ}$ 分帶成果)》,(台北市,聯勤總部測量署,民國74年12月),頁28。

圖六 國家控制點座標、標高轉換示意

資料來源:作者自製


(一) 座標轉換

現行座標轉換主要區分為下列三種類型:

- TWD-97(1997年台灣大地系統)絕對經、緯度座標轉換為 WGS-84 (1984年世界大地系統)6°UTM方格座標(如圖七)。
- TWD-97 地圖投影後之 2°TM 縦横座標轉換為 WGS-84、6°UTM 方格座標(如圖八之一、八之二)。
- 3. GRS-67 (1967 年大地參考系統) 6°UTM 轉換為 WGS-84、 6°UTM 方格座標(如圖九之一、九之二)。

目前經確認可用之座標轉換程式版本為:中科院、美軍(美軍與「威斯康辛州綠灣大學」—University of Wisconsin-Green Bay 合作研發)、「荷蘭皇家海軍水文測量局」(Royal Netherlands Navy,Hydrographic Service) PCTrans4.2 等三種,亦可經由「定位定向系統」(ULISS-30)之控制顯示器轉換。惟無論使用何種方式轉換,其結果均須經由地圖定點核對,以確保正確無誤。

圖七 利用美軍地理座標轉換程式將「頂山」TWD-97 絕對經、緯度 座標轉換為 WGS-84、6°UTM 方格座標

資料來源:作者自製

圖八之一 利用中科院座標轉換程式將「頂山」TWD-97、2°TM 座標轉換為 WGS-84、6°UTM (步驟 1-3)

註:TWD-97座標系統對製圖而言,視同 WGS-84。

資料來源:作者自製

圖八之二 利用中科院座標轉換程式將「頂山」TWD-97、2°TM 座標轉換為 WGS-84、6°UTM (步驟 4-5)

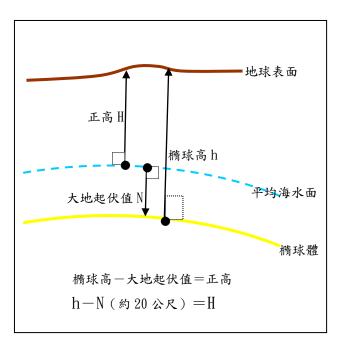
資料來源:作者自製

圖九之一 利用中科院座標轉換程式將「頂山」GRS-67、6°UTM 轉換為WGS-84、6°UTM 方格座標(步驟 1-3)

資料來源:作者自製

圖九之二 利用中科院座標轉換程式將「頂山」GRS-67、6°UTM 轉換為 $WGS-84 \cdot 6$ °UTM 方格座標(步驟 4-5)

資料來源:作者自製

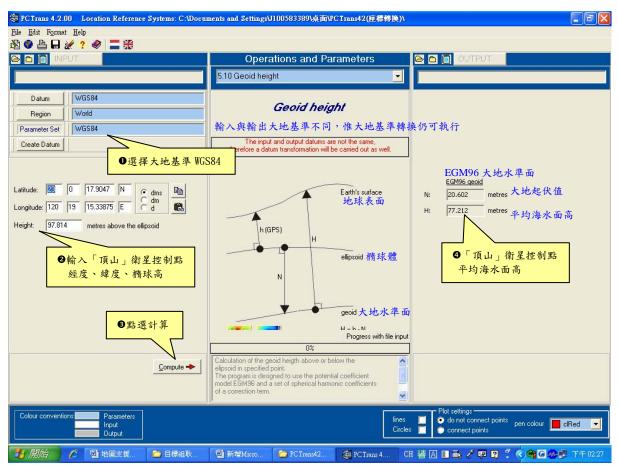

(二)標高轉換

標高轉換係將「橢球高」(Ellipsoid height)轉換為「平均海水面高」。由於 GPS 定位技術之發展,目前可定出高精度之「橢球高」,因此內政部提供之衛星控制點「高程」即為「橢球高」。如配合由精密水準測量求得之「正高」(Orthometric,即平均海水面高),即可獲得其「大地起伏值」(Geoidal Undulation)。同樣的如能有一高精度之大地水準

面,即可計算其「正高」值(如圖十)。13

基於砲兵測地與射擊必須使用「正高」,台灣地區通常「橢球高」較「正高」高出 20 公尺,因此時間急迫時,將橢球高減 20 公尺,即為正高。然為提高轉換精度,目前可經由 PC Trans4.2 座標轉換程式 5.10「大地水準面高」(Geoid height),利用「國際大地測量協會」1996 年所公佈之「大地位能係數模式」(Earth's Geopotential Model,EGM-96)內插方式,計算台灣地區大地起伏值與正高(如圖十一)。惟因 EGM96 為全球性之大地位能模式,推求點位之大地起伏值其精度為 0.5 公尺左右,雖不如利用重力資料而推求之大地水準面,可提升至 10 數公分左右之精度,¹⁴惟已可滿足砲兵測地(射擊)需求。標高轉換所得之結果,均須與地圖控制點、水準點與獨立標高點記號點側四捨五入之標高公尺整數核對,以確保正確無誤。

圖十 台灣地區橢球體、正高、大地起伏值關係示意



資料來源: 作者自製

¹³ 甯方璽著,《以環狀積分法推求台灣地區大地起伏值之研究》,(台北市,測量技術通報第 101 期,民國 88 年 6 月),頁 148。

¹⁴甯方璽著,《以環狀積分法推求台灣地區大地起伏值之研究》,(台北市,測量技術通報第 101 期,民國 88 年 6 月),頁 153。

圖十一 利用 PCTrans4.2-「5.10 Geoid height」轉換程式將頂山「橢球高」97.814 公尺轉換「平均海水面高」為 77.212 公尺

資料來源:作者自製

四、方格偏差修正

地圖之方位偏角圖,係提供使用者能變換(改算)其基本方向,乃於地圖圖廓外下方印出三種北方,以三直線共交於一點,表示其偏差情況(如圖十二)。¹⁵砲兵有時須藉由「天體觀測」方式,利用觀測天體(太陽、北極星或其他恆星)位置,計算某一地線相對於正(真)北之關係,以決定較佳精度之方位角。因天體觀測所得之方位角為正(真)方位角,須經由「方格偏差」(即正北與方格北之夾角)修正將正(真)方位角換算為方格方位角。通常方格偏差修正採計算法,同時配合偏角圖上方格偏差值檢查;如時間急迫或無法計算時,則可使用測站所在地圖偏角圖之方格偏差值,直接修正。

範例:

測站位於「頂山」Ⅱ等衛星控制點(編號 S567),利用天體觀測測得某一標點之正(真)方位角為 175 度 58 分 30 秒,試分別以「計算法」與「偏角圖查取方格偏差值法」兩種方式,修正方格偏差?

(一) 計算法

公式:經度差(單位化成分) xSin 緯度

經度差:123°-120°19′15″ =2°40′45″ =160.75′

方格偏差:160.75′×Sin23°0′18″

 $=1^{\circ}02'49.38''$

=18.6 密位(測站在中央經度以西,為正值)

正(真)方位角 175°48′30″ = 3125.5 密位

3125.5 密位+18.6 密位=3144.1 密位

(二)偏角圖查取方格偏差值法

查取新化(圖號 9419 II SW)地圖偏角圖(參考圖十二),方格偏角為 1°03″,相當於 19 密位。將正(真)北方位角加方格偏角,即為方格方位角。

3125.5 密位+19 密位=3144.5 密位

_

^{15《}軍用地形圖閱讀手冊(增修版)》,(台北市,國防部情次室印發,民國 81 年 6 月),頁 48。 第 21 頁,共 25 頁

圖十二 軍用地形圖偏角圖

地磁計算模式為 NGK 之 WMM2010

資料來源: 1/25,000 關廟(圖號 9418 I NW) 地形圖

五、越區之磁偏常數換算

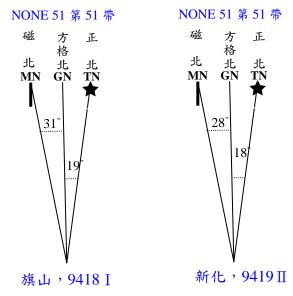
當部隊運動超過 40 公里後, M2 方向盤之磁偏常數已不適用(跨帶時, 僅移動數公里即須校正), 亟須利用該地區設置之磁偏校正站, 求取正確的磁 偏常數。如當地未設置磁偏校正站或無法及時校正時,則須運用相關公式, 換算 M2 方向盤在新地區之磁偏常數因應。惟此舉無法取代正常校正程序,仍 須於狀況許可時,補行磁偏校正。

節例:

砲一營第一連 M2 方向盤 1 個月前曾在牛長山(1/50,000 旗山,圖號 9418 I)實施磁偏校正,其平均磁偏常數為 6371 密位。目前該連機動至官田 (1/50,000 新化,9419Ⅱ),在無法獲得磁偏校正站之狀況下,如何將牛 長山所得之磁偏常數換算為官田地區之磁偏常數? (旗山、新化地圖之 偏角圖:如圖十三)。

磁偏常數換算:

公式:原磁偏常數+原「方格磁角」=磁針分劃


磁針分劃-當地方格磁角=當地磁偏常數

或:原磁偏常數+原方格磁角-當地方格磁角=當地磁偏常數

換算:6371-+31-=6402-(磁針分劃)

6402--28-=6374(官田地區磁偏常數)

或:6371-+31--28-=6374-(官田地區磁偏常數)

圖十三:旗山、新化地圖方位偏角圖

資料來源:台灣省五萬分一軍圖:旗山、新化(87年版)

六、測地成果檢查

「地圖與現地對照」為測地檢查法之一,係利用作圖定點技術將測地成果定於大比例尺(1/25,000)地圖上,比對圖上與現地位置之差異,達成檢驗測地成果精度之目的。基於 1/25,000 地圖平面精度為±20 公尺(均方根),足以達到檢查效果,惟目前定點器材(如座標梯尺、直梯尺)解析度有限,僅可發現較大之錯誤,對較小之誤差,效果則不明顯,須配合其他檢查法(如程序檢查法、閉塞檢查法、方位檢驗法、交會閉塞法、分組計算法、射擊法等),俾儘早發現錯誤,採取有效改進措施。

肆、地圖精進建議

現代戰爭講求高科技與高效率,致測繪科技支援三軍作戰,益形重要。就砲兵測地而言,地圖不僅使用於一般軍事事務,對砲兵測地支援層面更為廣泛且重要。基此,砲兵對地圖製作之良窳與圖資品質,極為講究。當甫獲新版(99年)地圖後,即配合教學進行圖籍數學基礎(比例尺、參考橢球體、地圖投影與座標系)瞭解,評價圖資精度、內容完整性、地理正確性與現勢性等,極為肯定製圖單位(軍備局生產製造中心第 401 廠)對地圖製作的努力與貢獻。惟為求地圖品質更臻完善,充分發揮作戰支援功效,精進建議分述如後。

一、詳實標繪衛星控制點

舊版(93年)與新版(99年)地圖上控制點標繪方式與數量差異甚大,以二萬五千分之一關廟地圖(圖號 9418 I NW)為例,舊版(93年)與內政部衛星測量中心公告之Ⅱ等衛星控制點數量(6點)相同,新版(99年)地圖上僅剩「過坑子」(Ⅱ等,編號 S343)1點,惟就現地勘察所見,公告6點中除「青埔乾」(Ⅱ等,編號 S613)於96年即已遺失,其餘均完好(調查表,如表七)。顯見99年版地圖對衛星控制點之標繪遺誤其多,宜儘速勘誤,俾利砲兵測地使用。

表七

新、	新、舊版「關廟」地圖(圖號 9418 I NW)衛星控制點調查表										
順	衛星控制點	點 號	所 在 地	調查	結 果						
序	點名	(標石種類)	(舊行政區域)	93 年版	99 年版						
1	過坑子	S343 (花崗石)	台南縣關廟鄉	\triangle	<u></u>						
2	新鳥山	S504 (花崗石)	高雄縣田寮鄉	\triangle	×74						
3	深坑子	S508 (花崗石)	台南縣關廟鄉	\triangle	×42						
4	大坪山	S526 (花崗石)	台南縣關廟鄉	\triangle	×94						
5	青埔乾	S613 (花崗石)	台南縣歸仁鄉	\triangle	×14						
6	仁德休息站	S907 (鋼 標)	台南縣仁德鄉	\triangle	無標示						
		▲: 表示衛星	控制點,新版地圖	已在符號	旁加上四						
附	記	捨五入之	2標高公尺整數。								
		×14::表示獨	立標高點(經校正	.)。							

資料來源:作者自製

二、適切標繪水準點

內政部所公佈之 I、Ⅱ等衛星控制點合計 726 點,僅為原三角點數量之四分之一。特於台灣本島設置 I 等一級水準網 1,294 點與 I 等二級水準網 1,054 點,並為達到全控制點目標,使其具備高程與平面座標,大幅增加平面控制點數量與密度,以利測繪運用,惟目前地圖多未標繪(⑤)。建議未來新版地圖編製時,可考慮將衛星水準點納入標繪,俾擴大使用層面。

三、統一圖式符號

地圖中之「圖式」包括表示地物之記號,俾使地圖使用者可確切瞭解某一記號所代表之地物。93 年版地圖之「衛星控制點」(△)點側並無四捨五入之整數標高註記,致記號較不明顯;99 年版已在衛星控制點側增加四捨五入標高公尺整數(△14),惟多更改為「經校正之獨立標高點」(×14),無法得知為製圖單位記號錯誤或實地調繪不實,致使用者誤認為「衛星控制點」遺失,而錯失使用機會。

四、確實調繪圖資

新版 (99 年) 地圖圖廓中央下方註明資料時間為「中華民國 99 年 1 月國 防部軍備局生產製造中心第 401 廠現地調繪」,表示該時間前之資料皆已納入圖資中,惟就二萬五千分之一關廟地圖(圖號 9418 I NW)為例,「歸仁鄉納骨堂」(五條寮,24·37 方格)與「交通大學臺南校區光電研究所」(高鐵台南站,22·37 方格)分別於 95 年 10 月與 98 年 6 月竣工,均未納入圖資。使用者必需利用「參謀旅行」或「兵要調查」方式,補充與更正圖資,方可滿足使用需求。

伍、結語

「軍用地形圖」可提供軍隊詳細地形研究、組織軍事訓練與戰術行動之地 形保障,尤其是兩萬五千分之一比例尺「戰術地形圖」,除提供小部隊行作戰術 指揮外,亦可提供砲兵射擊、測地使用。基於砲兵測地與地圖之關係至為密切, 測地人員不僅須熟悉地圖閱讀基本學能,更須深入圖資內在屬性與測地運用要 領,始可適切支援測地作業。

現代戰爭講求高科技與高效率,第一次「波灣戰爭」證實測繪支援作戰之要求與依賴性,日益提高。國軍為求地圖品質提升,充分發揮作戰支援功效,除測地人員必須嫺熟地圖運用技術外,製圖單位則須適切提高地圖位置與屬性精度、內容完整性,地理正確性,現勢性等要求,俾能有效支援防衛作戰任務。