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Osteoarthritis is the most common disorder of the synovial joint. The pathological changes that occur in the osteoarthritic 
joints are well known and the molecular and cellular events that drive these are increasingly understood. The risk factors 
that predispose to the development of OA such as increasing age, obesity, genetics and mechanical loading have also been 
known for some time. As a consequence of population ageing and an increase in the rates of obesity the prevalence of OA 
is signifi cantly increasing bringing more demands on health care systems. As such it is becoming additionally important 
to understand how these risk factors may individually and synergistically interact to contribute to disease susceptibility 
and pathogenesis. Such knowledge is accumulating and is beginning to indicate new routes by which OA may be prevent-
ed and managed in the clinic.
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INTRODUCTION

Osteoarthritis (OA) is a disorder of diarthrodial or syn-
ovial joints. Although once thought of as a degenerative 
disease of articular cartilage, OA is now believed to be a 
disease of the diarthrodial joint as an organ. Pathological 
changes are seen in all joint tissues including cartilage, 
synovium, periarticular bone, menisci (when present), 
ligaments and fi brous capsule. OA may develop in any 
of the synovial joints but is most commonly seen in the 
joints of weight bearing joints such as the hip and knee 
or in the fi rst metacarpal phalangeal joint of the hand and 
the distal interphalangeal joints of the fi ngers. Although 
OA may be associated with a slight increase in mortality 
its major effects are through a combination of pain and 
reduced joint function. As such the disorder is a signifi -
cant burden on the individual through loss of quality of 
life and society as a whole through an increasing eco-
nomic burden as a result of increased health care costs 
and loss of time at work. OA is a relatively common 

disease which is beginning to reach epidemic proportions 
globally Currently the lifetime risk of developing OA in 
one or more joints is in the region of 40-50% but this is 
expected to rise as the population ages and obesity be-
comes more widespread. 

The pathological changes that occur in joints with 
OA are well recognised and the molecular and cellular 
mechanisms by which they arise are being increasingly 
understood. The risk factors that predispose to the devel-
opment of OA such as increasing age, obesity, genetics 
and mechanical loading have also been known for some 
time. New insights into how increasing age, obesity and 
genetic variation may infl uence joint structure and func-
tion including the how mechanical loads are perceived 
and responded to by chondrocytes provide an opportunity 
to identify novel routes by which this debilitating disease 
can be treated or prevented.

Pathological Features of Osteoarthritis

The osteoarthritic joint shows the result of both tissue 
loss and attempts at repair. 

Articular cartilage
The loss of the protective function of the cartilage 

covering the articulating surfaces of the bones in the 
joint results in terminal joint failure. The progressive 
biochemical and histological changes in articular carti-
lage are well recognised. In early OA cartilage volume 
is increased due to increased water content and proteo-
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glycan swelling which occurs secondary to physical or 
proteolytic disruption of the type II collagen network.1-3 
Subsequently, cartilage proteoglycan content decreases, 
a result of increased expression and activity of matrix 
metalloproteases (MMPs) and ADAMTS aggrecanases.4 
As OA progresses direct physical forces on the weakened 
cartilage cause matrix fi brillations, cracks in the super-
fi cial layer of the articular cartilage that run parallel to 
the surface. These cracks in time extend, following the 
tangential and vertical orientation of the collagen fi bres 
in the mid and deep cartilage zones. Fissure branch and 
propagate as a result of ongoing mechanical trauma and 
this, in conjunction with continuing proteolytic activity 
leads to progressive cartilage loss.

In response to injury, chondrocytes the resident car-
tilage cells, either proliferate or under go cell death by 
apoptosis and necrosis leading to areas of hyper or hy-
pocellularity. Proliferative activity is confi ned initially to 
the superfi cial zone. The increase in chondrocyte number 
is refl ected in formation of small aggregates or clusters 
of cells. The size of these clusters and the number of 
constituent cells increases as the disease progresses. In 
areas of chondrocyte death the local tissue homeostasis is 
lost and absence of reparative activity enhances cartilage 
deterioration.

In contrast to reduction in the volume of non-calcifi ed 
articular cartilage, the thickness of the calcifi ed cartilage 
zone increases and is associated with duplication/multi-
plication and vascular invasion and innervation through 
the tidemark that separates calcifi ed from non calcifi ed 
cartilage.5,6 Microcracks also appear in the calcifi ed car-
tilage and may initiate bone remodelling.7 The duplica-
tion / multiplication of the tidemark refl ects episodes of 
tidemark advance which also contribute to cartilage thin-
ning.8 

Synovium and Meniscus
The synovium can be fl at or demonstrate villous hy-

perplasia with increased numbers and size of surface syn-
oviocytes, particularly macrophage-like type-A synovio-
cytes.9 The synovial subintima is frequently hyperaemic 
and may be fi brotic or oedematous and contain a mild to 
marked chronic inflammatory cell infiltrate comprising 
macrophages, T and B lymphocytes.10 Neutrophils are 
not common in uncomplicated disease. In rapidly pro-
gressive OA a granulomatous response with foreign body 
giant cells is seen. Traumatic meniscal injuries predis-
pose to osteoarthritis. However in OA joints, even in the 
absence of a known previous of joint injurym menisci are 
rarely normal. They show a range of degenerative chang-

es including macroscopic tears.11 Histologically areas of 
mucoid degeneration, surface fi brillations and deeper fi s-
sures within the matrix are identifi ed and are associated 
with hypo and hypercellularity and metaplasia to a more 
overt chondrogenic phenotype. 

Bone
Pathological changes are seen in subchondral bone 

with changes in bone structure, cyst formation and radio-
logically recognised bone marrow lesions. At the margin 
of the joint osteophytes are formed.

In established OA increased thickening of the sub-
chondral bone plate and changes in the architecture of 
subchondral bone trabeculae result in radiologically dis-
tinctive osteosclerosis. Subchondral bone sclerosis occurs 
as a re/modelling response12 to the increased mechanical 
loads that are transmitted to the bone through as a con-
sequence of altered biomechanics within the joint and 
cartilage loss. The trabecular bone volume increases by 
around twenty percent13 due to an increase in trabecular 
bone number and reduced separation between trabeculae, 
rather than through thickening of the trabeculae. As the 
new bone formed is less mineralized than normal bone, 
although there is an increase in apparent density, the ma-
terial density of the bone is signifi cantly reduced.12,14 

Subchondral bone cysts usually present deep to areas 
in which the overlying cartilage has been completely lost 
but this is not always the case. Subchondral bone cysts 
are histologically diverse consisting of pools of mucoid 
material or reparative mesenchymal tissue showing vari-
able degrees of fi brous and fi brocartilaginous differentia-
tion. There is usually evidence of new bone formation 
and remodelling at the periphery of the cysts but the 
cysts themselves do not normally contain bone – hence 
their radiolucency.  Bone marrow lesions are areas of ill-
defi ned bone marrow hyperintensities seen on T2W im-
ages in patients with osteoarthritis. Histological studies 
indicate that these are areas of localised bone and mar-
row necrosis with fi brosis and reparative changes.15 They 
can be thought of as bone bruises. Some may progress to 
bone cysts.

Osteophytes arise at the periphery of the joint from 
perichondral / periosteal stem cells that are induced to 
proliferate and undergo chondrogenic differentiation 
under the infl uence of growth factors such as TGFbeta.16 

They are seen in load bearing and non-load bearing joints 
with both biomechanical and humoral factors being in-
volved in their initiation.17 Although they may be seen in 
joints where there is minimal or no cartilage damage the 
presence and size of osteophytes correlates with the ex-
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tent of cartilage loss.18 

Risk Factors and Osteoarthritis

Risk factors for the development of OA have been 
recognised for some time. These include increasing age, 
obesity, genetic predisposition and inappropriate me-
chanical loading. Racial/ethnic differences in the preva-
lence of OA and specifi c patterns of joint or compartment 
involvement have been noted. For instance, hand and 
hip OA appear to be less prevalent among Chinese than 
Caucasians19 whilst lateral compartment knee OA is more 
common in this population.20

Osteoarthritis and Ageing
Age is a major risk factor for osteoarthritis. The rela-

tionship between increasing age and OA appears com-
plex involving all tissues of the joint and supporting tis-
sues such as skeletal muscle. A number of structural and 
functional changes occur with ageing that can infl uence 
development and progression of OA. Age-related decline 
in proprioception with a reduction in joint stability dur-
ing locomotion may increase mechanical stresses within 
joints.21 These may be compounded by the natural loss of 
muscle mass and strength seen with increasing age22 that 
further compromise joint stability with movement. 

Cellular and matrix changes are now recognised in 
cartilage with increasing age. Unlike most other tissue 
cells chondrocytes appear to have only limited replica-
tive activity in vivo. As such with age there is relatively 
little renewal of the resident population of chondrocytes 
within articular cartilage. As individuals age their carti-
lage and chondrocytes age with them and chondrocytes 
from normal aged cartilage show a loss of the normal mi-
togenic response to growth factor stimulation.23 Chondro-
cytes from cartilage of older individuals show shortened 
telomeres indicating senescence which is likely to be 
induced in response to accumulated exposure to oxida-
tive stress and infl ammatory mediators.24-26 Chondrocyte 
senescence is associated with development of a secretory 
phenotype in which there is preferential production of 
pro-inflammatory cytokines and reduction of anabolic 
responses to growth factors such as IGF-1.27,28

Age-related changes also occur in cartilage matrix that 
may contribute to the development of OA. Proteins in 
cartilage of elderly individuals show increased levels of 
advanced glycation end-products (AGE), protein modi-
fi cation that occurs through spontaneous non-enzymatic 
glycation of proteins when reducing sugars such as 
glucose, fructose or ribose, react with lysine or arginine 

residues.29,30 Accumulation of AGEs may adversely infl u-
ence the biomechanical properties of the matrix through 
increasing collagen cross linking.31 

Obesity and Osteoarthritis
Individuals who are obese have almost a three times 

risk of knee OA and the risk of OA increases with body 
mass index (BMI).32,33 The effects of obesity, like that of 
other risk factors in OA are complex and multiple and 
include biomechanical, endocrine and metabolic factors. 
Increased weight results in excessive loading through 
weight bearing joints but in addition abnormal gait and 
joint malalignment may affect stresses within and across 
joints.

Obesity is however also associated with hand OA 
indicating that obesity has an effect on OA through 
mechanisms other than excessive or abnormal loading of 
joints.  White adipose tissue is a rich source of endocrine 
molecules including pro-infl ammatory cytokines such as 
IL-6, IL-1 and TNF-α, as well as adipokines, such as 
leptin, adiponectin, resistin, visfatin, chemerin, lipocalin, 
and serum amyloid A3 (SAA3).34-36 As such obesity is 
now thought of as being a low grade chronic infl amma-
tory condition and it has been proposed that the secretion 
of adipokines by white fat tissue may directly infl uence 
cartilage metabolism.37 IL-6, leptin and adiponectin 
have each been linked with OA.38-40 Leptin and its re-
ceptor Ob-R are increased in OA cartilage and synovial 
fl uid. Leptin induces production of proinfl ammatory and 
catabolic factors known to be involved in cartilage de-
generation supporting a role for this molecule as a pro-
OA agent.41,42 Similarly adiponectin has been shown to 
be pro-infl ammatory and pro-catabolic when applied to 
chondrocytes in some studies, increasing IL-6, MMP-3, 
MMP-9, and MCP-1 production in the same cell type.43 
However the roles and effects of adiponectin appear 
complex. In some in vitro studies adiponectin has been 
shown to be anti-infl ammatory, inhibiting the effects of 
IL1beta.44 In addition not all clinical studies have con-
fi rmed a positive correlation between adiponectin levels 
and OA disease severity and indeed there is a suggested 
protective effect in hand OA.45,46 Nevertheless increased 
production of adipokines from intra-articular sources 
such as the infrapatellar fat pad in the knee joint are like-
ly to be important in the pathogenesis of certain forms of 
osteoarthritis.47,48 

Genetics and Osteoarthritis
The heritable component of OA is estimated to be 

around 40-65%. Candidate gene studies49 and more re-
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cently genome wide association scans50 are beginning to 
help identify key genetic factors that may infl uence sus-
ceptibility to onset and progression of OA. Genetic varia-
tion also partly explains ethnic and racial differences in 
OA.

From candidate gene studies genetic polymorphisms 
in a number of genes have been identified that appear 
to be associated with OA. These include ASPN, COMP, 
FRZB, COL2A151, GDF552 and IL4Ralpha.53 Subsequent 
large scale studies and meta-analyses have often failed 
to support the initial findings but associations between 
OA and polymorphisms in GDF554 and ASPN55 continue 
to be of interest. The gene for GDF5 codes for growth 
differentiation factor 5, is a member of the TGF-beta 
superfamily and is closely related to the bone morphoge-
netic protein (BMP) family. GDF5 has important roles in 
skeletal and joint development56,57 and mutations result 
in a range of skeletal abnormalities. The rs143383 SNP 
causes a C to T transition which results in reduced GDF5 
transcription in all joint tissues.58 In vivo studies also 
support a role for decreased expression of GDF5 being 
associated with OA development.59 ASPN encodes for 
asporin, a member of the sub family of small leucine-
rich proteoglycans (SLRPs) that also includes decorin 
and biglycan.60 Functionally, asporin binds to transform-
ing growth factor-beta (TGF-beta), preventing its bind-
ing to the TGF-beta type II receptor and inhibiting TGF-
beta-induced expression of anabolic cartilage molecules 
including aggrecan and type II collagen.61 The effect on 
TGF-beta activity is allele-specifi c, with the D14 allele, 
which is associated with OA, causing a greater inhibition 
of TGF-beta activity than other alleles.62

 Genome-wide association scans of OA provide 
the opportunity for discovery of unsuspected and un-
known genes that are associated with OA. To this end, 
one such study has shown an association signal with a 
locus of high linkage disequilibrium  on chromosome 
7q22 stretching over 500kb that contains at least six 
genes PRKAR2B, HPB1, COG5, GPR22, DUS4L and 
BCAP29, none of which were obvious OA candidates.50 

The arcOGEN study has recently reported a GWAS on 
individuals with severe hip and knee OA, many of whom 
had undergone total joint replacement.63 They identi-
fi ed polymorphisms in a number of loci and genes with 
genome wide signifi cance. The most strongly associated 
locus straddled GLT8D1 and GNL3 on chromosome 
3p21.1. GLT8D1 encodes the protein glycosyltransferase 
8 domain containing 1, a member of the glycosyltrans-
ferase family that is of unknown function in cartiage. 
GNL3 encodes the guanine nucleotide binding protein-

like 3, also known as nucleostemin. This molecule binds 
p53 and is involved in regulating differentiation and cell 
cycle transit. In vitro studies show that GNL-3 is pres-
ent in the nuclei of OA chondrocytes and may be up-
regulated in disease. Specifi c roles in cartilage are as yet 
unknown. Three other novel associated loci identifi ed as 
being associated with OA were PTHLH, CHST11 and 
FTO. PTHLH codes for parathyroid hormone-like hor-
mone that has roles in endochondral bone development. 
CHST11 codes for carbohydrate (chondroitin 4) sulfo-
transferase 11 and catalyzes the transfer of sulfate to po-
sition 4 of the N-acetylgalactosamine (GalNAc) residue 
of chondroitin during glycosaminoglycan synthesis. FTO 
(fat mass and obesity assocoiated gene) is strongly as-
sociated with fat mass, obesity and diabetes. These genes 
may have theoretical effects through actions on bone me-
tabolism, cartilage matrix structure or white fat metabolic 
activity respectively but their function in regulation of 
joint tissue homeostasis remains to be elucidated.

Mechanical Loading and Osteoarthritis

Mechanical loading within a physiological range is 
necessary for maintaining joint tissues and cartilage in 
particular, in a healthy state. As such abnormalities of 
mechanical loading are central to the development of 
OA. OA arises when there is an imbalance between the 
mechanical forces within a joint and the ability of the 
cartilage to withstand these forces. This arises in two sit-
uations. In the fi rst normal articular cartilage is exposed 
to abnormal mechanical loads whereas in the other the 
articular cartilage is fundamentally defective with bioma-
terial properties that are insuffi cient to withstand normal 
load bearing. Risk factors associated with development 
of OA may give have effects in either one or both of 
these scenarios. For instance some of the genetic predis-
position to OA may be a result of subtle abnormalities of 
joint shape that result in abnormal loading through carti-
lage. The accumulation of AGEs in cartilage matrix with 
age results in a more brittle collagen network that is less 
able to withstand normal loads, again leading to cartilage 
degeneration. 

Mechanical loading that is either below or in excess 
of the physiological range causes cartilage degeneration. 
The mechanisms are now beginning to be understood. 
Chondrocytes are able to recognise mechanical stimuli 
transmitted through the matrix. The mechanical forces 
are recognised by mechanoreceptors such as integrins.64 

Activation of these transmembrane molecules with as-
sociated proteins including CD4765 results in stimulation 
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of a series of intracellular signal cascades that lead to ex-
pression of cartilage matrix molecules such as aggrecan 
and inhibition of matrix protease production.66 As such 
an anabolic response is produced that maintains, and in 
some circumstances, improves cartilage structure and 
function. Mechanical signalling induces activation of a 
large number of intracellular molecules and cascades in-
cluding FAK, PKC, JAK/STAT and MAP kinases.67-69 The 
particular cascade stimulated will depend on the mecha-
noreceptor activated and the involvement of downstream 
autocrine and paracrine activity through release of locally 
acting mediators that include interleukin-4 and substance 
P.70,71 

In contrast overloading induces molecular and bio-
mechanical changes that shift the balance of tissue re-
modelling in favour of catabolic over anabolic activity. 
Although these events also appear to be integrin medi-
ated, the molecules involved and pathways activated are 
different from that seen when cartilage is physiologically 
loaded. Stimulation of stress-induced intracellular path-
ways leads to the production of proinfl ammatory cytok-
ines such as IL-1 and TNF-α which increase production 
of MMPs and aggrecanases.72-75 Interestingly chondro-
cytes from OA cartilage show an altered responsiveness 
to mechanical loads as they fail to show an anabolic re-
sponse to physiological loading but instead demonstrate a 
pro-infl ammatory IL-1 beta dependent response.76,77 This 
may further accelerate disease progression and attenuate 
cartilage repair.

CONCLUSION

OA is a disease of the diarthrodial joint with the gross 
and microscopic pathological changes being seen in all 
joint tissues although changes in articular cartilage are 
still believed to be paramount in the disease. The risk 
factors that predispose to the development of OA such as 
increasing age, obesity, genetics and mechanical loading 
have been known for some time. However it is only re-
cently that we have begun to understand how these may 
influence normal joint function and response to injury. 
New insights into the effects of age, obesity and genetic 
variation on how mechanical loading is perceived and re-
sponded to by chondrocytes and other mechanosensitive 
cells within the joint environment may at last indicate 
novel routes by which this debilitating disease can be 
treated or prevented.
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