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Pathology and Risk Factors in Osteoarthritis
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Osteoarthritis is the most common disorder of the synovial joint. The pathological changes that occur in the osteoarthritic
joints are well known and the molecular and cellular events that drive these are increasingly understood. The risk factors
that predispose to the development of OA such as increasing age, obesity, genetics and mechanical loading have also been
known for some time. As a consequence of population ageing and an increase in the rates of obesity the prevalence of OA
is significantly increasing bringing more demands on health care systems. As such it is becoming additionally important
to understand how these risk factors may individually and synergistically interact to contribute to disease susceptibility
and pathogenesis. Such knowledge is accumulating and is beginning to indicate new routes by which OA may be prevent-

ed and managed in the clinic.
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INTRODUCTION

Osteoarthritis (OA) is a disorder of diarthrodial or syn-
ovial joints. Although once thought of as a degenerative
disease of articular cartilage, OA is now believed to be a
disease of the diarthrodial joint as an organ. Pathological
changes are seen in all joint tissues including cartilage,
synovium, periarticular bone, menisci (when present),
ligaments and fibrous capsule. OA may develop in any
of the synovial joints but is most commonly seen in the
joints of weight bearing joints such as the hip and knee
or in the first metacarpal phalangeal joint of the hand and
the distal interphalangeal joints of the fingers. Although
OA may be associated with a slight increase in mortality
its major effects are through a combination of pain and
reduced joint function. As such the disorder is a signifi-
cant burden on the individual through loss of quality of
life and society as a whole through an increasing eco-
nomic burden as a result of increased health care costs
and loss of time at work. OA is a relatively common
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disease which is beginning to reach epidemic proportions
globally Currently the lifetime risk of developing OA in
one or more joints is in the region of 40-50% but this is
expected to rise as the population ages and obesity be-
comes more widespread.

The pathological changes that occur in joints with
OA are well recognised and the molecular and cellular
mechanisms by which they arise are being increasingly
understood. The risk factors that predispose to the devel-
opment of OA such as increasing age, obesity, genetics
and mechanical loading have also been known for some
time. New insights into how increasing age, obesity and
genetic variation may influence joint structure and func-
tion including the how mechanical loads are perceived
and responded to by chondrocytes provide an opportunity
to identify novel routes by which this debilitating disease
can be treated or prevented.

Pathological Features of Osteoarthritis

The osteoarthritic joint shows the result of both tissue
loss and attempts at repair.

Avrticular cartilage

The loss of the protective function of the cartilage
covering the articulating surfaces of the bones in the
joint results in terminal joint failure. The progressive
biochemical and histological changes in articular carti-
lage are well recognised. In early OA cartilage volume
is increased due to increased water content and proteo-
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glycan swelling which occurs secondary to physical or
proteolytic disruption of the type Il collagen network.**
Subsequently, cartilage proteoglycan content decreases,
a result of increased expression and activity of matrix
metalloproteases (MMPs) and ADAMTS aggrecanases.”
As OA progresses direct physical forces on the weakened
cartilage cause matrix fibrillations, cracks in the super-
ficial layer of the articular cartilage that run parallel to
the surface. These cracks in time extend, following the
tangential and vertical orientation of the collagen fibres
in the mid and deep cartilage zones. Fissure branch and
propagate as a result of ongoing mechanical trauma and
this, in conjunction with continuing proteolytic activity
leads to progressive cartilage loss.

In response to injury, chondrocytes the resident car-
tilage cells, either proliferate or under go cell death by
apoptosis and necrosis leading to areas of hyper or hy-
pocellularity. Proliferative activity is confined initially to
the superficial zone. The increase in chondrocyte number
is reflected in formation of small aggregates or clusters
of cells. The size of these clusters and the number of
constituent cells increases as the disease progresses. In
areas of chondrocyte death the local tissue homeostasis is
lost and absence of reparative activity enhances cartilage
deterioration.

In contrast to reduction in the volume of non-calcified
articular cartilage, the thickness of the calcified cartilage
zone increases and is associated with duplication/multi-
plication and vascular invasion and innervation through
the tidemark that separates calcified from non calcified
cartilage.>® Microcracks also appear in the calcified car-
tilage and may initiate bone remodelling.” The duplica-
tion / multiplication of the tidemark reflects episodes of
tidemark advance which also contribute to cartilage thin-
ning.”

Synovium and Meniscus

The synovium can be flat or demonstrate villous hy-
perplasia with increased numbers and size of surface syn-
oviocytes, particularly macrophage-like type-A synovio-
cytes.” The synovial subintima is frequently hyperaemic
and may be fibrotic or oedematous and contain a mild to
marked chronic inflammatory cell infiltrate comprising
macrophages, T and B lymphocytes.”® Neutrophils are
not common in uncomplicated disease. In rapidly pro-
gressive OA a granulomatous response with foreign body
giant cells is seen. Traumatic meniscal injuries predis-
pose to osteoarthritis. However in OA joints, even in the
absence of a known previous of joint injurym menisci are
rarely normal. They show a range of degenerative chang-
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es including macroscopic tears." Histologically areas of
mucoid degeneration, surface fibrillations and deeper fis-
sures within the matrix are identified and are associated
with hypo and hypercellularity and metaplasia to a more
overt chondrogenic phenotype.

Bone

Pathological changes are seen in subchondral bone
with changes in bone structure, cyst formation and radio-
logically recognised bone marrow lesions. At the margin
of the joint osteophytes are formed.

In established OA increased thickening of the sub-
chondral bone plate and changes in the architecture of
subchondral bone trabeculae result in radiologically dis-
tinctive osteosclerosis. Subchondral bone sclerosis occurs
as a re/modelling response® to the increased mechanical
loads that are transmitted to the bone through as a con-
sequence of altered biomechanics within the joint and
cartilage loss. The trabecular bone volume increases by
around twenty percent™ due to an increase in trabecular
bone number and reduced separation between trabeculae,
rather than through thickening of the trabeculae. As the
new bone formed is less mineralized than normal bone,
although there is an increase in apparent density, the ma-
terial density of the bone is significantly reduced."***

Subchondral bone cysts usually present deep to areas
in which the overlying cartilage has been completely lost
but this is not always the case. Subchondral bone cysts
are histologically diverse consisting of pools of mucoid
material or reparative mesenchymal tissue showing vari-
able degrees of fibrous and fibrocartilaginous differentia-
tion. There is usually evidence of new bone formation
and remodelling at the periphery of the cysts but the
cysts themselves do not normally contain bone — hence
their radiolucency. Bone marrow lesions are areas of ill-
defined bone marrow hyperintensities seen on T2W im-
ages in patients with osteoarthritis. Histological studies
indicate that these are areas of localised bone and mar-
row necrosis with fibrosis and reparative changes.” They
can be thought of as bone bruises. Some may progress to
bone cysts.

Osteophytes arise at the periphery of the joint from
perichondral / periosteal stem cells that are induced to
proliferate and undergo chondrogenic differentiation
under the influence of growth factors such as TGFbeta.'
They are seen in load bearing and non-load bearing joints
with both biomechanical and humoral factors being in-
volved in their initiation."” Although they may be seen in
joints where there is minimal or no cartilage damage the
presence and size of osteophytes correlates with the ex-



tent of cartilage loss."
Risk Factors and Osteoarthritis

Risk factors for the development of OA have been
recognised for some time. These include increasing age,
obesity, genetic predisposition and inappropriate me-
chanical loading. Racial/ethnic differences in the preva-
lence of OA and specific patterns of joint or compartment
involvement have been noted. For instance, hand and
hip OA appear to be less prevalent among Chinese than
Caucasians™® whilst lateral compartment knee OA is more
common in this population.”

Osteoarthritis and Ageing

Age is a major risk factor for osteoarthritis. The rela-
tionship between increasing age and OA appears com-
plex involving all tissues of the joint and supporting tis-
sues such as skeletal muscle. A number of structural and
functional changes occur with ageing that can influence
development and progression of OA. Age-related decline
in proprioception with a reduction in joint stability dur-
ing locomotion may increase mechanical stresses within
joints.”* These may be compounded by the natural loss of
muscle mass and strength seen with increasing age* that
further compromise joint stability with movement.

Cellular and matrix changes are now recognised in
cartilage with increasing age. Unlike most other tissue
cells chondrocytes appear to have only limited replica-
tive activity in vivo. As such with age there is relatively
little renewal of the resident population of chondrocytes
within articular cartilage. As individuals age their carti-
lage and chondrocytes age with them and chondrocytes
from normal aged cartilage show a loss of the normal mi-
togenic response to growth factor stimulation.”® Chondro-
cytes from cartilage of older individuals show shortened
telomeres indicating senescence which is likely to be
induced in response to accumulated exposure to oxida-
tive stress and inflammatory mediators.”*** Chondrocyte
senescence is associated with development of a secretory
phenotype in which there is preferential production of
pro-inflammatory cytokines and reduction of anabolic
responses to growth factors such as IGF-1."*

Age-related changes also occur in cartilage matrix that
may contribute to the development of OA. Proteins in
cartilage of elderly individuals show increased levels of
advanced glycation end-products (AGE), protein modi-
fication that occurs through spontaneous non-enzymatic
glycation of proteins when reducing sugars such as
glucose, fructose or ribose, react with lysine or arginine
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residues.”*® Accumulation of AGEs may adversely influ-
ence the biomechanical properties of the matrix through
increasing collagen cross linking.*

Obesity and Osteoarthritis

Individuals who are obese have almost a three times
risk of knee OA and the risk of OA increases with body
mass index (BM1).**** The effects of obesity, like that of
other risk factors in OA are complex and multiple and
include biomechanical, endocrine and metabolic factors.
Increased weight results in excessive loading through
weight bearing joints but in addition abnormal gait and
joint malalignment may affect stresses within and across
joints.

Obesity is however also associated with hand OA
indicating that obesity has an effect on OA through
mechanisms other than excessive or abnormal loading of
joints. White adipose tissue is a rich source of endocrine
molecules including pro-inflammatory cytokines such as
IL-6, IL-1 and TNF-«, as well as adipokines, such as
leptin, adiponectin, resistin, visfatin, chemerin, lipocalin,
and serum amyloid A3 (SAA3).*** As such obesity is
now thought of as being a low grade chronic inflamma-
tory condition and it has been proposed that the secretion
of adipokines by white fat tissue may directly influence
cartilage metabolism.” IL-6, leptin and adiponectin
have each been linked with OA.** Leptin and its re-
ceptor Ob-R are increased in OA cartilage and synovial
fluid. Leptin induces production of proinflammatory and
catabolic factors known to be involved in cartilage de-
generation supporting a role for this molecule as a pro-
OA agent.*** Similarly adiponectin has been shown to
be pro-inflammatory and pro-catabolic when applied to
chondrocytes in some studies, increasing IL-6, MMP-3,
MMP-9, and MCP-1 production in the same cell type.”
However the roles and effects of adiponectin appear
complex. In some in vitro studies adiponectin has been
shown to be anti-inflammatory, inhibiting the effects of
IL1beta.* In addition not all clinical studies have con-
firmed a positive correlation between adiponectin levels
and OA disease severity and indeed there is a suggested
protective effect in hand OA."*® Nevertheless increased
production of adipokines from intra-articular sources
such as the infrapatellar fat pad in the knee joint are like-
ly to be important in the pathogenesis of certain forms of
osteoarthritis.*’**

Genetics and Osteoarthritis

The heritable component of OA is estimated to be
around 40-65%. Candidate gene studies™ and more re-
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cently genome wide association scans™ are beginning to
help identify key genetic factors that may influence sus-
ceptibility to onset and progression of OA. Genetic varia-
tion also partly explains ethnic and racial differences in
OA.

From candidate gene studies genetic polymorphisms
in a number of genes have been identified that appear
to be associated with OA. These include ASPN, COMP,
FRZB, COL2A1*, GDF5” and IL4Ralpha.”® Subsequent
large scale studies and meta-analyses have often failed
to support the initial findings but associations between
OA and polymorphisms in GDF5>* and ASPN® continue
to be of interest. The gene for GDF5 codes for growth
differentiation factor 5, is a member of the TGF-beta
superfamily and is closely related to the bone morphoge-
netic protein (BMP) family. GDF5 has important roles in
skeletal and joint development™® and mutations result
in a range of skeletal abnormalities. The rs143383 SNP
causes a C to T transition which results in reduced GDF5
transcription in all joint tissues.” In vivo studies also
support a role for decreased expression of GDF5 being
associated with OA development.” ASPN encodes for
asporin, a member of the sub family of small leucine-
rich proteoglycans (SLRPs) that also includes decorin
and biglycan.” Functionally, asporin binds to transform-
ing growth factor-beta (TGF-beta), preventing its bind-
ing to the TGF-beta type 1l receptor and inhibiting TGF-
beta-induced expression of anabolic cartilage molecules
including aggrecan and type I collagen.®* The effect on
TGF-beta activity is allele-specific, with the D14 allele,
which is associated with OA, causing a greater inhibition
of TGF-beta activity than other alleles.”

Genome-wide association scans of OA provide
the opportunity for discovery of unsuspected and un-
known genes that are associated with OA. To this end,
one such study has shown an association signal with a
locus of high linkage disequilibrium on chromosome
7922 stretching over 500kb that contains at least six
genes PRKAR2B, HPB1, COG5, GPR22, DUSAL and
BCAP29, none of which were obvious OA candidates.”
The arcOGEN study has recently reported a GWAS on
individuals with severe hip and knee OA, many of whom
had undergone total joint replacement.”® They identi-
fied polymorphisms in a number of loci and genes with
genome wide significance. The most strongly associated
locus straddled GLT8D1 and GNL3 on chromosome
3p21.1. GLT8DL1 encodes the protein glycosyltransferase
8 domain containing 1, a member of the glycosyltrans-
ferase family that is of unknown function in cartiage.
GNL3 encodes the guanine nucleotide binding protein-
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like 3, also known as nucleostemin. This molecule binds
p53 and is involved in regulating differentiation and cell
cycle transit. In vitro studies show that GNL-3 is pres-
ent in the nuclei of OA chondrocytes and may be up-
regulated in disease. Specific roles in cartilage are as yet
unknown. Three other novel associated loci identified as
being associated with OA were PTHLH, CHST11 and
FTO. PTHLH codes for parathyroid hormone-like hor-
mone that has roles in endochondral bone development.
CHST11 codes for carbohydrate (chondroitin 4) sulfo-
transferase 11 and catalyzes the transfer of sulfate to po-
sition 4 of the N-acetylgalactosamine (GalNAc) residue
of chondroitin during glycosaminoglycan synthesis. FTO
(fat mass and obesity assocoiated gene) is strongly as-
sociated with fat mass, obesity and diabetes. These genes
may have theoretical effects through actions on bone me-
tabolism, cartilage matrix structure or white fat metabolic
activity respectively but their function in regulation of
joint tissue homeostasis remains to be elucidated.

Mechanical Loading and Osteoarthritis

Mechanical loading within a physiological range is
necessary for maintaining joint tissues and cartilage in
particular, in a healthy state. As such abnormalities of
mechanical loading are central to the development of
OA. OA arises when there is an imbalance between the
mechanical forces within a joint and the ability of the
cartilage to withstand these forces. This arises in two sit-
uations. In the first normal articular cartilage is exposed
to abnormal mechanical loads whereas in the other the
articular cartilage is fundamentally defective with bioma-
terial properties that are insufficient to withstand normal
load bearing. Risk factors associated with development
of OA may give have effects in either one or both of
these scenarios. For instance some of the genetic predis-
position to OA may be a result of subtle abnormalities of
joint shape that result in abnormal loading through carti-
lage. The accumulation of AGEs in cartilage matrix with
age results in a more brittle collagen network that is less
able to withstand normal loads, again leading to cartilage
degeneration.

Mechanical loading that is either below or in excess
of the physiological range causes cartilage degeneration.
The mechanisms are now beginning to be understood.
Chondrocytes are able to recognise mechanical stimuli
transmitted through the matrix. The mechanical forces
are recognised by mechanoreceptors such as integrins.*
Activation of these transmembrane molecules with as-
sociated proteins including CD47% results in stimulation



of a series of intracellular signal cascades that lead to ex-
pression of cartilage matrix molecules such as aggrecan
and inhibition of matrix protease production.” As such
an anabolic response is produced that maintains, and in
some circumstances, improves cartilage structure and
function. Mechanical signalling induces activation of a
large number of intracellular molecules and cascades in-
cluding FAK, PKC, JAK/STAT and MAP kinases.””* The
particular cascade stimulated will depend on the mecha-
noreceptor activated and the involvement of downstream
autocrine and paracrine activity through release of locally
acting mediators that include interleukin-4 and substance
PI70,71

In contrast overloading induces molecular and bio-
mechanical changes that shift the balance of tissue re-
modelling in favour of catabolic over anabolic activity.
Although these events also appear to be integrin medi-
ated, the molecules involved and pathways activated are
different from that seen when cartilage is physiologically
loaded. Stimulation of stress-induced intracellular path-
ways leads to the production of proinflammatory cytok-
ines such as IL-1 and TNF-« which increase production
of MMPs and aggrecanases.””" Interestingly chondro-
cytes from OA cartilage show an altered responsiveness
to mechanical loads as they fail to show an anabolic re-
sponse to physiological loading but instead demonstrate a
pro-inflammatory IL-1 beta dependent response.”’” This
may further accelerate disease progression and attenuate
cartilage repair.

CONCLUSION

OA is a disease of the diarthrodial joint with the gross
and microscopic pathological changes being seen in all
joint tissues although changes in articular cartilage are
still believed to be paramount in the disease. The risk
factors that predispose to the development of OA such as
increasing age, obesity, genetics and mechanical loading
have been known for some time. However it is only re-
cently that we have begun to understand how these may
influence normal joint function and response to injury.
New insights into the effects of age, obesity and genetic
variation on how mechanical loading is perceived and re-
sponded to by chondrocytes and other mechanosensitive
cells within the joint environment may at last indicate
novel routes by which this debilitating disease can be
treated or prevented.
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