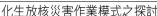
戰場情報準備運用於 化生放核災害作業模式之探討

作者簡介


龐廣江上校,陸軍官校正58期、化校正規班50期、國防大學 陸軍學院88年班、戰爭學院95年班、戰略研究所99年班;曾 任排、連、營長、軍團化兵組組長、群指揮官、組長,現任 職於化學兵學校戰鬥支援組。

提要>>>

- 一、本研究旨在探討政府及國軍執行化生放核災害救援之整備現況,研判可能 發生災害之潛在因素,瞭解「立即、可能與潛在威脅」,利用美軍戰場情 報準備作業模式及防救災資訊求得解答。
- 二、本島幅員有限,石化及生物科技產業、毒化物及放射性場址與生活地區毗鄰,一旦發生大規模複合性災害,將迫使人民陷入另類核生化戰場;而化生放核災害的威脅性與危害性橫跨平時與戰時,且須有高度專業防救與危機應變能力。
- 三、「災害情報準備」係藉有系統科學量化分析之架構,以戰場情報準備作業概念,運用於化生放核災害救援時所需諮詢之資訊,按界定災害區域、分析災害區域、評估災害威脅與研判災害效應等四個步驟進行預測。
- 四、化生放核災害情報準備策進作為:包括整合應變體系、健全災防準備;災

作戰研究

戰場情報準備運用於

害應變及諮詢資料庫建置;建立化生放核救災平臺;開發災害模擬訓練系統;運用演訓整合單位能量;建立災情回報機制及納入災害救援行動準據

等。

關鍵詞:戰場情報準備、化生放核、複合性災害

前 言

近年來天然及人為災害似將取代軍事 衝突或戰事,成為21世紀國家安全威脅的 主要來源。由於本島幅員有限,石化及生 物科技產業、毒化物及放射性場址與生活 區毗鄰,一旦發生大規模複合性災害,將 迫使人民陷入另類核生化戰場。其中化生 放核災害的威脅性與危害性更是橫跨平時 與戰時,且須要有高度專業防救與危機應 變需求。

本文旨在探討政府及國軍執行災害救援之整備現況,藉化生放核災害情報準備,期能於災害前確實掌握災情資訊,研判可能發生災害之潛在因素,與可能危害評估,瞭解「立即、可能與潛在威脅」,提出應建構的化生放核災害情報整備,進而掌控災情達成救援任務。

化生放核威脅環境探析

一、化生放核定義

軍事上核生化(NBC)定義係指核子、 生物、化學等三種武器之統稱,此三種 武器因均屬大規模毀滅性(WMD)武器, 故將其統合稱之。20世紀末美軍逐漸使 用化學、生物、放射性、核子(chemical, biological, radiological, and nuclear, CBRN) 來取代核生化(NBC), 直至2005年8月26日起新修訂出版之準則全數改為化生放核(CBRN)。1

化生放核則泛指可造成化學、生物、放射性與核子等武器或設施,其中放射性武器係指使用放射性物質而沒有核爆炸之武器。現行化生放核武器包括工業用、醫療用、農業用之毒性化學物資、生物調節物資(胜肽)、經過基因改造的細菌、病毒或其他微生物、放射性撒佈裝置(髒彈)、微當量核子武器等,其發生危害時機不一定在戰爭期間,亦可能在平時之意外事故或恐怖攻擊,須大量之專業單位共同協助處理。

二、我國化生放核災害威脅分析

近年來國內科技產業、輻射生化科技、核能工業與核能需求激增,在兼顧環保與國際能源逐漸短缺狀況下,我國也選擇核能為電力來源之一。目前臺灣有三座核能電廠在運轉,一座核能電廠興建中(如表一),其中核一廠和核二廠僅距離15公里、核二廠距離核四廠僅56公里,三座核電廠距離如此近,加上幅員有限、人口密集與地理位置的特殊性,以及人為與自然災害等危險因子等主客觀因素,一日發生

¹ 文上賢,〈從核生化(NBC)到化生放核(CBRN)〉,頁1。

ARMYBIMONTHLY

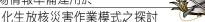
核子事故,後果將不堪設想。²綜觀史實 ,雖然人類在歷經美國三哩島及蘇俄車 諾比核電廠事件後,各國政府為避免核 子事故的發生,對於核電廠的選址、設 計、建造、測試、運轉與除役都設有嚴 格的要求與規範,我國也不例外。核子、 輻射災難不是會不會發生,而是何時發生 ,一旦發生後果將無法想像且影響甚鉅, 從福島核災對日本帶來嚴重損害便可以瞭 解。

依據政府統計資料顯示,本島除一般 化學工廠外,依法公告列管之毒性化學物 質達166類271種,運作總家數高達4,618 家,遍布全臺,其潛在威脅不容忽視。³ 在我國狹長地理空間型態中,石化廠等高 災害風險產業其區位與都市發展強度、工 業災害可能造成的損害有密切的關係。根 據工業技術研究院研究指出,各個產業中 ,以製造業中的化學材料製造業、化學製 品製造業、石油及橡膠製品製造業、塑膠製品製造業及電子零組件製造業等,⁴為較容易發生意外的產業,而一旦發生災害,將造成產業本身與周遭環境及民眾嚴重損失,甚至傷亡。由於臺灣地區工商業迅速發展,大量的化學物質被應用於製造各類產品的使用量逐年增加,一旦發生毒化物洩漏意外,將對廠區、周遭民眾造成嚴重的生命財產與環境損害損失,對社會與環境同樣造成相當大的衝擊,這是任何一個國家高度工業化後,所必須面臨之問題。

近年來隨著地球村來臨及交通的便捷 ,人、貨往來逐漸增加,屬於非傳統安 全的環境污染、流行疾病等對我造成的 衛生安全威脅不容忽視,疾病管制工作成 為首當其衝的重要課題。另一方面值得注 意的是,雖然70年後興起之生物技術,為 人類帶來莫大的福祉,也改變未來的生活

表一	业	133	17	丛上	ZX	痖	Tite.	運	1h	TH	30	
衣一	71	以	1%	ЯE	45	申	颅灯	垩	TF	77T	IJL	ı

電	廠	品	分	位	置	(距	離)	機	組	型	式	總	發	電	量	燃	料	種	類
第	一核	能電	、廠	新土市直				距臺: 里)	北	沸水	式反	應爐2	部	127	7萬2	千瓦					
第	二核	能電	、廠		上市 [線距			距臺 里)	北	沸水	式反	應爐2	部	197	7萬 1	五		4%1	低濃縮鉛	由-235	
第	三核	能電	、廠	屏東鎮直				距恆: 里)	春	壓水	式反	應爐2	部	190)萬2	千瓦	ı				
第	四核	能電	、廠	新北市直				距臺 里)	北	沸水	式反	應爐2	部	270)萬 1	瓦		興建	中預定	102年運	三轉


資料來源:原能會

² 蔡百靈,〈3核電廠毗鄰北臺剉咧等?〉《自由電子報》,2011年3月13日,http://www.libertytimes.com.tw/2011/new/mar/13/today-fo2.htm.

³ 曹君範,〈核生化威脅下我國面臨之挑戰〉《陸軍學術雙月刊》,民99年10月號,頁123。

⁴ 電子零組件(含IC等高科技產業)因其產製過程須使用毒性化學物質比例甚高。

戰場情報準備運用於

。尤其是在生物科技日益先淮的今天,各 生物實驗室所培養的生物科技專才越來越 多,管控上也越來越困難。一日因控管不 當流落在開放環境中,將不易由肉眼觀 察出,於是這類污染源將持續蔓延而不 白知, 直到產牛重大危害, 才會使人警覺

全球化也同時帶動不斷迎面來襲的疫 病,如歐美的西尼羅河病毒、猴痘、犴牛 症,臺灣的結核、瘧疾等,屢見蠢動。從 SARS、禽流感、新型流感等新興傳染病 的疫情,的確威脅一國的國家安全(如表 二)。類似此種情況在未來只有更加頻繁 與嚴峻,因為新興傳染病已造成另一場人 類對抗病毒的非軍事性無國界戰爭。根據 WHO及美國軍事醫藥情報中心評估,預 計到2020年為止,全球將有7項致命的傳 染病值得關注。5

另一項必須正視者,乃是中國大陸近

年經濟快速發展,對電力需求激增。近 年大陸新建的核電廠有13座,發電量達 3.140萬千瓦規模,興建中的核能發電廠 達2.067萬千瓦規模,占全世界興建中核 電機組3成以上,使得大陸成為全球興建 核電廠規模最大的國家。6

根據中央大學大氣物理研究所研究論 文指出:「浙江秦山核電廠若發生嚴重核 子事故, 黄河河套又剛好有大陸冷高壓, 從核電廠外洩的輻射物質最快一天內,就 會隨氣流擴散,沉降於臺灣60%的陸地面 積」。⁷為防範大陸沿岸的核能電廠或核 子設施(如圖一)發生核子事故,導致輻射 物質外洩,直接向東飄散污染臺灣,行政 院原子能委員會自2006年起在臺灣西部沿 岸和金馬地區增設環境輻射自動偵測站, 布建綿密輻射偵測網,以便在第一時間啟 動緊急應變體系,採取適當防護措施。8 在日本福島核災中,上述輻射偵測站每日

ま ー	垂大	流行症	悟的麻	中却	铅崩	影響規模
<i>~</i>	モ ハ	11111111	1 H H H 1/2	7 51	450C 75F	27 2 77 77

歷	年	疫	情	全	球	累	積	感	染	規	模	死	亡	人	數	平	均	致	死	率		
SARS(2003)							8,09	8人				774人					10%					
	禽流感(2004)						42	人				257人					61%					
	新型H1]	N1流感		100萬人以上									超過10,982人					0.4%~1.6%				
一般季節性流感												每年25~50萬人					0.1%					
西班牙流感(1918)					横掃全球								4,000萬人					1%				

資料來源:作者參考2009年5月23日陳宗薊,〈H1N1疫情規模預測和對經濟的可能影響〉《中央日報網路報》 整理。

未來七項可能致命的傳染性疾病依序為:愛滋病、肺結核、瘧疾、C型肝炎及B型肝炎、下呼吸道感染(5 如感冒、肺炎)、腹瀉或痢疾、麻疹。

http://www.twgocn.net/archiver/tid-53397-html, 2009年12月30日。 6

[〈]針對大陸核事故預警應變,西臺與金馬架設偵測網〉《中天電視網》,2006年2月21日。

同註7。

圖一 中國大陸運行中及興建中的核能機組分布圖

資料來源:潘欽,〈兩岸合作推動核電安全〉《交流雙月刊》,第117期,2011年6月。

定期實施偵測輻射劑量,供政府及民眾參 考以掌握輻射狀況。由此可知,如同蒙古 沙塵暴一樣,雖然鄰國與周邊地區發生核 子事故,但由於受大氣條件的影響,我國 一樣可能蒙受其害,間接造成國內之核子 事故。

災害情報整備及 運用災害救援作業模式探討

一、我國化生放核救災體系及整備現況

我國目前對化生放核災害依毒性化學物質、生物(人與動植物不同)、核子事故威脅之不同,訂立不同的法規及責成相對主管機關負責,較偏重於「災後處理」。

若依各種事件防救體系於災難中扮演的角色劃分,概可分「事件防救與應變指揮」、「整體應變資源與支援」與「軍事防護」三個區塊,以下分別就指揮體系及整備現況實施探討。

(一)化生放核防救與應變指揮體系

有關化生放核事件防救與應變指揮系統:包含核子事故緊急應變、生物病原事件應變、毒性化學物質事件應變等體系(如表三)

1.核子事故緊急應變體系

主管機關為「原能會」。《核子事故緊急應變法》為主要法源依據;其目的 在有效遂行核子事故緊急應變、救災與復

作戰研究

戰場情報準備運用於

化生放核災害作業模式之探討

表三 我國有關化生放核事件與應變指揮系統分析表

體			系	法源	主	管機	關	納編	單 位	職
災	害	防	救	災害防救法	行	政	院	中央災害防救委員會 變中心等9個中心, 設災害防救會報		指揮、督導、協調及災害防 救相關機關執行災害防救
核	子	事	故	核子事故緊急 應變法	原	能	會	臺灣電力公司、國防 經濟部、交通部、 農 、屏東縣、新北市、 市	委會、環保署	遂行核子事故緊急應變、救 災與復原
生	物	病	原	傳染病防治法	衛	生	署	國防部、內政部、經、財政部、金管會及		杜絕傳染病之發生、傳染及 蔓延,對動物與植物傳染病 、蟲害之預防、防疫及檢疫
毒	性化	學物	質	災害防救法	環	保	署	國防部、新聞局、內 國科會、勞委會、經 、消防署、警政署、 政府	濟部、交通部	防制毒性化學物質污染環境 或危害人體健康

資料來源:楊福助,〈我國防核生化威脅體系之檢討〉《陸軍學術雙月刊》,民國99年10月號。

原。⁹該法案規劃的體系架構可分為行政 組織與軍事組織兩部分,國軍部隊負責緊 急支援任務。

- 2.生物病原事件應變體系
- (1)傳染病防治與災後防疫

主管機關為「衛生署」,《傳染病防治法》為主要法源依據;其對象均屬人,其目的為杜絕傳染病之發生、傳染及蔓延。執行機關分為衛生署、直轄市政府及縣市政府。¹⁰傳染病防治法體系架構可分為三部分,¹¹國防部負責防疫物資支援

仟務。

(2)動、植物傳染病防治

主管機關為「農委會」,法源依據分別為《動物傳染病防治條例》與《植物防疫檢疫法》;其目的在對動物與植物傳染病、蟲害之預防、防疫及檢疫。¹²執行機關則包括農委會、直轄市政府及縣市政府。

3.毒性化學物質事件應變體系

主管機關為「環保署」,《災害防救法》為主要法源依據;其目的在於防制

⁹ 行政院災害防救委員會,〈核子事故緊急應變法〉《災害防救法規彙編》(臺北:行政院災害防救委員會,2004年),頁1051~1056。

¹⁰ 行政院災害防救委員會,〈傳染病防治法〉《災害防救法規彙編》(臺北:行政院災害防救委員會,2004年),頁1051~1056。

¹¹ 同註10,頁843。

¹² 行政院災害防救委員會,〈動物傳染病防治法〉《災害防救法規彙編》(臺北:行政院災害防救委員會, 2004年),頁688、689。

毒性化學物質污染環境或危害人體健康。 執行機關則包括環保署、直轄市政府及縣 市政府。¹³國防部主要負責支援人力、設 備投入支援救災工作。¹⁴

(二)整備現況檢討

為因應化生放核救災需要,每種 災害都需不同領域的專業,方能完成救災 任務。我國《災害防救法》在經過多次災 害事件之考驗後,其中在減災、整備方面 之問題,可歸納下列幾項亟待改善的課題 .

1.政策面相關法令欠周延

「國軍支援災害辦法」係以災防法 為母法依據。現行《災害防救法》(第二 條)所規定之天然或人為「災害」類型和 範圍,僅侷限於水災、風災、震災等天然 災害,以及火災、爆炸、空難交通事故 等災害,並無法涵蓋:動植物及人類傳 染病疫災(如口蹄疫、禽流感、SARS、登 革熱、新流感等)、核能災變或輻射污染 等災難所造成之災害,甚至出現複合性 災害事件或情勢,且前述各項災害之預防 、偵測、減災、整備、應變、復原與重 建等工作,均有賴於政府協調、跨部門 統合以及軍民合作、資源結合,絕非單 一部會或國軍便能擔負重責。目前災防 法僅以防救災任務為主,並未充分考量 複合性災害風險分析與評估、災後復原與 重建、區域防災或國際救援等議題,將難 以因應大規模化生放核或複合性災害之實 際需求。

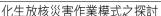
2.缺乏健全的防救災資料庫及災害管 理系統

目前災害防救組織運作過程中,各層級災害應變中心多缺乏防救災資料庫適時配合,且許多災情即時監控資料建置於各部會署及縣市政府各局處,導致災害應變中心無法即時掌握災情,做出最有效之決策措施。尤其化生放核災害,因分屬不同部會業管,衛生、環保及原能會等單位未能充分整合,未能整體考慮平時減災、災前整備、災時應變、災後復建及災後學習等各災害管理階段之需求,若發生複合性災害時,造成緊急應變資訊的彙整耗時。

3.災害研究資料深度及精度不足

由於政府及國軍在災害防救研究起步較晚,相關化生放核危險潛勢資料與防災基礎研究未完整建構,在空間規劃時,無法辨識危險潛勢地區,造成規劃上的困難,應依據災害特性與環境現況,建立災害防救基礎資料庫。災害防救、緊急應變等作業,都必須架構在完整與精確的資料上,而有效資料之蒐集則有賴第一線人員及業管部門之努力,但目前政府部門及部隊對資料蒐集未予適切重視,投入人力與經費亦不足,應責成相關單位負責所屬資料之調查及建置。

4.災害潛勢資料庫尚未完全建立


目前國軍各部隊在兵要及情報整備 上,均以作戰任務需求為主,對於災害防 救的情報整備目前以天然災害蒐整為主,

¹³ 行政院災害防救委員會,〈毒性化學物質管理法〉《災害防救法規彙編》(臺北:行政院災害防救委員會,2004年),頁759。

¹⁴ 行政院災害防救委員會,〈毒性化學物質災害防救業務計畫〉(臺北:行政院環保署,2004年),頁13~ 16。

自戰研究

戰場情報準備運用於

資料內容已逐年精准及更新。就化學兵部 隊而言,雖各作戰區偵消部隊均依規定建 立地區重要防護目標之救援手板及反恐資 料夾,對化生放核災害在不同規模下所可 能引起之衝擊,尚無充足之資訊與標準可 供決策者參考,以做為救災與整備措施擬 定之依據。另部分單位基本資料建置不完 整日未能適時更新,殊不知環境日漸惡化 ,相關基本資料的完備與否,將直接影響 防救災的成敗,如引用錯誤的資訊將使部 隊陷入危害,恐無法及時提出有效因應對 策及支援。

5.防救災資訊平臺建構不健全

目前政府各部會防救災資料與資訊 並無一致的介面標準,增加正確資訊取 得與應用的難度。相關資訊處理與傳輸 缺乏標準作業程序,有礙不同單位間資 訊整合,部分資訊尚未電子化,無法資 源分享。國軍化學兵雖已建置核生化下 風區危害預測模擬軟體,軟體設計係考 量平、戰時核生化防護需求,可預判敵 可能實施核、牛、化武器攻擊前、後,及 結合作戰實況回報,提供各作戰區下風危 害預測及部隊危害評估與防護等專業諮 詢。現行系統不足地方計有:第一是較 為被動,其運作多是在因應戰時狀況設 計,對平時的化生放核災害並未完整建置 。第二是欠缺與現今科技、環境等進行創 新的系統整合與鏈結,因此,各系統未能 在一個資訊作業平臺上,統合規劃運用, 缺乏完整圖資與災情資訊,影響決策分析 作業。

二、戰場情報準備運用於化生放核災害作

業模式之探討

「戰場情報準備」係對特定地理區域 之敵 重與環境,做有系統與連續性分析的 一種方法。它主要係藉各種有形之透明圖 式表解,取代往昔僅以文字敘述,但語 意甚為抽象之情報判斷,使指揮官及其 他參謀更易於理解戰場環境對作戰之影 響, 並依敵軍威脅程度, 合理研判敵可能 行動。15另因提供即時性地形、氣象與敵 情等戰場資訊,以所建立共同作戰平臺下 ,可有效協助指揮官精確接戰,期以最少 損耗獲致最大戰果。

「災害情報準備」係藉有系統科學量 化分析之架構,以戰場情報準備作業之 概念, 運用於化生放核災害救援時所需 諮詢之資訊,按界定災害區域、分析災 害區域、評估災害威脅與研判災害效應等 四個步驟進行預測,以完成各項災情研 析準備作為要領。本作業可作為未來災 害防救情報整備之重要一環,應置重點 於「救災前」預測作業為主,在平時或 接獲救災命令後,對其負責救援地區, 廣泛蒐集有關政府與民間學術研究機構 , 將各項天候、地形與災害潛勢因子等 成果資料整合,針對各種可能災害模式 與損害程度,可能影響我救援任務達成 , 進行全面評估與分析, 使救災部隊得 以採取適當救援作為與整備,有效掌握 災害後續行蹤,更能於爾後依實際狀況 與經驗常數變化逐步修正,精準反映災 害風險程度。

以下採災害防救想定架構方式,分析 相關作業模式與成果,以具體說明作業方

¹⁵ 程治樹,〈化學兵參謀核生化戰場情報準備作業之研究〉《核生化防護半年刊》,第79期,(桃園:陸軍 化學兵學校,民國94年),頁32。

ARMYBIMONTHLY

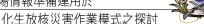
式,其想定概要分述如后:2011年7月總 長依國防部長指導,就國軍支援重大災害 防救協處之任務,依日本311震災經驗, 模擬臺灣北部外海遭受強震及引發海嘯, 造成北部沿海地區嚴重受創,核能一廠受 損嚴重,審慎分析並儘速研擬核災聯合救 援計畫,頒布各戰略執行單位。北部作戰 區接獲參謀本部指示,針對重大天災可能 引發複合性災害預為防範。作戰區指揮官 於接獲相關任務後,即實施災害防救計畫 程序有關作為,並指示情報處長、化學兵 組及所屬參謀儘速按戰場情報準備程序完 成相關作業,俾利後續救援計畫策訂。就 其步驟分段探討如次:

(一)第一步驟:界定災害空間

為建立災害救援環境全般概念, 與確定災害空間範圍,將影響指揮官決心 或救災部隊行動等災害因素,納入全面 分析與評估;然指揮官通常較關切有關 災害狀況、天氣、地形、環境等方面潛在 影響,如先期瞭解災害環境狀況,可有效 改善災情不確定性,為後續作業指引正確 方向,故依參謀本部救災構想,北部作戰 區考量核一廠災害空間範圍分述如后(如 圖二):

1.利害地區

包含災害發生過程可能影響民眾及部隊之所有災害危害地區,其範圍通常大


圖二 核一廠界定災害空間

資料來源:作者自繪

16 於下頁。

作戰研究

戰場情報準備運用於

於救援地區。

2.救援地區16

主要依參謀本部所賦予救援任務, 其災害救援責任區域應為:作戰區北起 蘭陽溪、南迄大安溪、西臨臺灣海峽、 東依中央山脈間地區,亦即作戰地境內 地區。

3.優先救援地區17

主要依核子事故緊急應變法及上級 所賦予救援任務,其災害救援責任區域應 為:核電廠半徑20公里以內地區(須注意 廠區內為臺電公司負責,國軍部隊不進入 此區),為主要救援地區。

4.後續救援地區

研析災害可能損害程度與氣象條件 及對整體救援任務達成之各項因素,並以 時間為優先考量因素,選定可立即動員抵 達區域,均屬相關協助救援範圍;就本狀 況言,故選定半徑20公里外至40公里內為 後續救援地區。

(二)第二步驟:分析災害區域

主要考慮因素有:分析氣象產生效應、確認環境不確定性、人為因素造成影響及災情環境情資獲得等項次,據以建立相關救災環境中有關地形資料,具體描述可能對救援能力與行動所產生

影響,並有效確認通行性、收容量、窒 礙區與重要救援目標等;特別注意地形 分析時,應將天氣影響因素一併納入考 量。

1. 氣象分析

藉由所獲責任區域之天氣預報表與 氣象條件參考表,進行綜合研析後,將其 成果調製為災害氣象狀況綜合分析表,以 利救援行動時氣象條件掌握。

(1)救災氣象條件參考表

依各項可能造成災害氣象臨界值 數據,與考量救災部隊任務與需求,分 析天氣預報單與救災氣象條件參考表後 ,並調製為救災氣象條件參考表,以顯示 可能影響各種救援行動之天氣狀態與時間 點,以避免於不利天氣狀況下實施救援作 業。

(2)救災氣象分析表

以結合上述所有氣象分析資料, 綜合研析可能發生災害時間,與確認可能 極受天氣影響之高警戒區域,續以完成救 災氣象狀況綜合分析表,可清楚顯示易受 天氣影響之區域與時間(如圖三)。

2.地形分析

為能避免受地形(包含天然及人為 之地物、地貌)不確定意外因素影響,¹⁸乃

¹⁶ 為上級所賦予或指揮官須直接完成之救災責任地區,本區域則須藉各種方式與手段,獲得非常詳盡災情預測資料,如:救災兵力、動員能力、災害潛勢與整備所需時間等相關因素,始可確保救援任務達成。

¹⁷ 因災害受損影響程度不同,除上級所望增援區域外,另考量損災情形、災區環境、救援能力、抵達時間、所需救援項目與可動員機具等因素,區分為優先與後續救援地區。

¹⁸ 所謂「災害潛勢因素」,是指在氣象、水文等的外在條件下,分析、模擬區域內各處發生災害機率或規模,劃分成不同等級,如高、中、低潛勢等,再利用地理空間方式呈現模擬地區的潛勢分布。有鑑於災害潛勢資料的重要性,應於平時依據政府、機關與學術機構研究與調查成果,將相關災害等潛勢資料完成分析工作,所獲成果應適時提供給各單位應用,便可依據預警資料擬定因應措施。參考謝龍生、陳聯光、蘇昭郎、葉森海,〈災害潛勢資料〉《科學發展》(臺北),第410期,民96年2月,頁36。

圖三 分析災害區域

資料來源:作者自繪

針對救援地區有關各項地形災害潛勢因素 實施分析,希建立救援行動所需「地形潛 勢因素」資料庫,更精準掌握救援地形資 訊,以綜合調製成災害套疊圖,可具體顯 示災害地區環境景況,與有利救災部隊即 時明瞭各項地形潛勢因素,以及可能面臨 救援窒礙之處與可能影響,俾利儘早完成 救災準備。

(1)地形因素透明圖

為地形資料庫之基礎,應由專責 製圖單位完成相關圖解分析後,主動提供 各救災部隊參考運用,內容包括山系、水 系、土質、植物與地物等因素透明圖;另 本透明圖為單純顯示救援區域地形現況, 並不實施分析與考量救援兵力分配與行動 等作為。

(2)潛勢因素分析透明圖

依據上述所需地形因素透明圖,與結合政府、民間研究機構,歷年易致災潛勢因子分析成果及災害事件規模記錄,進行各種不同類型易致災區域發生頻率分析,以正確獲得有關地震、海嘯、土石流、收容點及可通行路線等潛在因素與危險度,有利後續更詳盡地形研究與分析(如圖四)。

A.地震潛勢

在考量潛勢因素與所造成損害程度,須將規模大小、震源深度、距離震央遠近、活動斷層現況、地盤特性分類 及山崩淺感評估等因素納入評估與分析

■戰研究

戰場情報準備運用於

化牛放核災害作業模式之探討

昌 四 救災地形分析

資料來源:作者自繪

事項中;19另可參考中央氣象局所建立地 震資料庫中,有關岩盤、斷層帶分布與 歷年地震發生記錄,以能推估未來地震 可能發生位置、規模與震度;就依據上 述方式分析,獲知北部地區內共計11條斷 層帶,其中山腳斷層距核一廠7公里,其 地境內金山地區均屬地震高危險區(如圖 **Fi**) •

B.收容點

為能提供各救災部隊於災害已發 生或有發生之虞時,順利完成兵力預置、

疏散居民、災民安置、囤儲重要救災物資 及強化其他應變處理措施; 通常選定方式 就各災害區域周邊,選定安全性高與有利 於救援作業處所,並考量可通行機動路線 、良好直升機作業場地、適官安置災民空 間與具廣大物資庫儲設施,希能提升救援 能力(如圖六)。

C.可涌行路線

須藉由先期所選定可通行路線, 考量不同的假設情境及機率參數,即可針 對多條道路評選出相對風險較低的路線,

¹⁹ 黃南輝、謝正倫、黃建忠、蔡耀賢,《行政院公共工程委員會專案研究「各類型災害潛勢資料應用於公 共工程規劃設計之研究」》(臺北),民91年12月,頁2。

ARMYBIMONTHLY

圖五 北部地區地震潛勢分析因素

資料來源:作者自繪

圖六 收容點研析

資料來源:作者自繪

化牛放核災害作業模式之探討

可通行路線分析 圖七

資料來源:作者自繪

能於災害發生後,確保地面與空中救災部 隊機動順暢,避開災害危險地區,於第一 時間迅速抵達所望區域,執行各項救援工 作,使救援任務有效遂行,故具有極重要 關鍵地位。

路線可從陸、海、空三個層面來 考慮,當選定可通行路線時,除考慮所分 析之天氣與地形影響因素外,亦可將農委 會水土保持局所規劃避難路線同時納入考 量,及針對可誦達收容點、通行交通網狀 況、受災地區範圍、後勤運輸路線與預備 通行路線選定等要項實施考量,以選擇3 ~5條路線為主;另如缺乏工兵支援選擇 通行路線時,應儘量避開或減少通過障礙 (如圖七)。

3.核子災害套疊圖 在完成收容點與接近路線評估與選

定後,相關分析人員應將有關天氣與各潛 勢因素分析成果,疊套繪製成災害透明圖 ,更能於狀況發生時,快速掌握責任區域 可能災害位置,為有關天氣、地形與其他 等因素重要分析基礎,更是爾後各參對災 害地區特性考量之參考依據;另當地形、 兵要、人文及其他因素有所改變,應能適 時修正相關圖解,尤在災害可能發生前, 特須注意其正確性,以保持最精準之預測 。故北部作戰區核子災害套疊圖,係將地 震、海嘯等潛勢因素分析透明圖綜合疊套 研析後,並完成3條可通行路線與11個收 容點選定,可具體提供救援任務使用(如 圖八)。

(三)第三步驟:評估災害威脅

因災害均具有極高不確定性,故 預測人員無法準確預測其發生機率與規模

圖八 核一廠災害混合透明圖

資料來源:作者自繪

,及可能造成損害之控管;於實施災害區域威脅評估時,主要亦參酌相關災害風險主要成因,並藉風險評估方式實施,並以危害度與脆弱度兩項為主要分析要項,²⁰然本階段評估各種災害狀況時,應針對所有可能造成威脅進行研析,並依循:1.建立災害區與威脅基本資料庫;2.依據災害威脅模式轉化調製成圖形;3.分析高風險天然災害警戒基準值統計表;4.實施災害狀況特、弱點評析;5.整體災害能力、效

能與可能災損標準等5項,並針對災害能量、特性、規模、範圍、下風危害、可能發生狀況、後續威脅狀況、警戒基準值及後續影響等因素實施考量。通常分析人員對災害威脅瞭解程度愈高,其評估作業時間則愈短,反之,評估步驟將愈複雜及困難;另評估作業增減,均視對災情掌握狀況而定,切忌一廂情願、臆測或主觀認定。故依上述作業說明,研析北部作戰區遭逢地震來襲造成核電廠反應

²⁰ 危害度分析是指特定威脅發生的可能性,界定與瞭解不同地區之災害危險源特性,及其造成的危險潛勢分布特性,而脆弱度分析主要是估計受影響地區之災損特性,並分析影響災損程度的重要因素。參考施 鴻志,《地區發展管理》(臺北:建都文化事業股份有限公司,民91年5月),頁45。

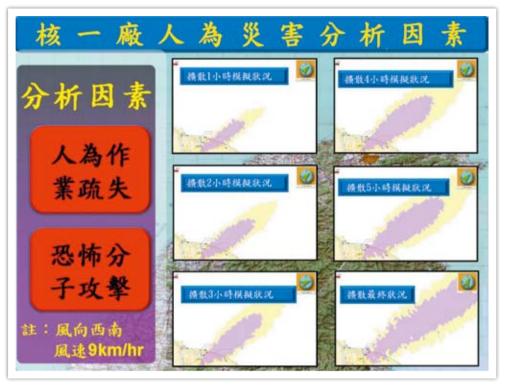
戰場情報準備運用於

化牛放核災害作業模式之探討

爐受捐,若以風向(東北與西南)等兩種預 測模式, 實施預測與模擬分析, 得知如風 向東北,所造成災情最為嚴重,續以高風 險災害警戒基準值統計表實施評估後, 可確認基隆市、臺北市、新北市及官蘭 縣屬災害高警戒區(如圖九、十)。

(四)第四步驟:研判災害效應

將災害能力、損害狀態、環境效 應及行徑模式等考慮因素,結合前項災害 環境(包含天氣、地形、人文、救援狀況 等)與災害威脅所獲之成果,並考量指揮 官救援目標、能力限制及行動要領等事項 後,將其綜合分析內容轉換為「預測性災 害發生可能假設」,以凸顯「未來」實際 救援環境「可能發生」災損模式。發展災 害可能假設時,亦需考慮下列事項:1.至 少須發展最大可能及最具威脅等2項災害 假設; 2.所研判可能災害假設,係根據其 威脅假設而非事實,故不能預先設定可能 發牛模式;3.後續狀況逐漸明朗,災情依 序驗證或獲得後,仍需對後續可能假設發 展賡續評估。依上述說明,北部作戰區在 結合分析災害區域及評估災害區與威脅等 成果,所研擬之狀況假設圖解,可具體瞭 解相對災情區域,與可能發生損害正確位 置(如圖十一)。


就上述四大步驟所為,對可能核電 廠輻射外釋事件,研判可能的危害評 估,特別重要的是「適當的工具」, 必須考慮增加專業的偵檢(測)、防護、 除污及危害評估系統與裝備,納入國 軍核牛化防護裝備籌購及配合演訓實 施演練,因此,平時的情報整備就顯 得特別重要。

圖九 天然災害分析因素

資料來源:作者自繪

圖十 人為災害分析因素

資料來源:作者自繪

圖十一 核子災害模式圖解

資料來源:作者自繪

戰場情報準備運用於

化生放核災害作業模式之探討

災害情報準備策進作為

未來國軍救災將屬常態性,而面臨的 挑戰將是複雜多變,防災如整軍,救災如 作戰。化生放核防救災之事務,可分為減 災、整備、應變、復原四個階段,各有不 同的作業重點。其中的情報整備,在災害 與偵蒐,則是要全面瞭解災區的災況。 變執行結果、氣象情況,資源配置等。故 有效掌握災害潛勢及預測救災重心、救援 動、重點及方式後,考量救援部隊能力、 現有救援手段、災害威脅特點及救援地區 環境條件等因素,提出相關災害防救情報 需求事項,建議針對以下方向進行調整與 強化:

一、整合應變體系、健全災防準備

針對我國化生放核災害防救及緊急應變體系之相關不足或缺失方面,當前優先課題應係以健全「國土安全網」防護網絡為最高目標,並藉由政策制訂、修法立徑、組織調整、加強訓練、落實執行等途徑、建立各災害(天災、人禍、核災、防費系(如災害防救體系、與之各災害(天災、人祸、核災害防救體系、緊急醫療體系、傳染病防治體系、及民防衛動員準備體系)、基至與國家安全情報體系間之連結,重新檢討災害防救任務垂直分工與平行協調與討斷。與實際變協調與指揮,有效動員公私人力與資源,加強綜合編組與演練,並強化災害

防救體系內之縱向通報、指揮、管控機制,及體系間之橫向聯繫、溝通、協調機制,從法令面接軌、從運作中統合、從演習中驗證,發揮資源共享效能,相互協助增援,實施緊急應變,因應複合式危機之挑戰。²¹

二、災害應變及諮詢資料庫建置

近年來,天然及人為災害已在本島各 地有逐漸擴大趨勢,然現行化學兵在兵要 整備方面,多以作戰或反恐應變方面為主 軸,缺乏有關各項災害因素分析資訊;各 救災部隊應於平時積極整合防災應變研究 成果,針對救援責任區域內有關氣象、水 文、地理等環境資料,實施長期蒐集、調 杳及研究,為建立化生放核災害情報準 備,更可做為戰場情報準備運用時重要 參考依據。救災有賴完整資訊及指揮系 統、迅速大量動員的能力,在講究時效的 化生放核緊急救災任務上,確有必要將資 訊系統導入救災體系。例如發生化學貯槽 大量外洩事故,可利用毒物擴散模擬系 統去估算化學毒物將污染那些區域,區 域中將有多少人口受影響?影響程度? 是否須進行撤離或就地掩蔽?搶救及醫 療等救災資源系統?解毒劑等其他可能 的支援?根據上述相關作業研判,提供 救災人員應變及諮詢參考,亦可作為化 學兵部隊執行救災任務重要情報資訊, 將有助於第一時間內,決定救災行動之成 敗。

三、建立化生放核救災共通平臺

救災工作要做的好,資訊化為必然的 趨勢。在網路、通訊、資訊科技演進到現

²¹ 張中勇等,〈現行災害防救體系結合民防與全民防衛動員機制之相關研究案〉,頁180、181。

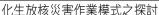
在,如何善用「好的」技術與「對的」系 統規劃,正考驗著政府及國軍相關單位 的前瞻與執行能力。現行國軍針對災害 預測方面,仍多有不足之處,可結合國 家與民間各學術研究機構研發相關資訊 ,因應各種災害發生及可能風險確認,能 有效精準掌握災害狀況。現陸軍司令部已 完成「數值軍圖應用系統」研製,具體提 供各種圖資讀取與測量、地形因素分析、 戰場情報準備分析與即時訊息接收、發送 等功能, 並完成各式作戰應用系統整合 ,可建構為流涌型共享圖資平臺。另軍 備局生產製造中心401廠研發的「三維戰 場資訊整合平臺」,透過程式設計及整 合網路鏈結等性能提升,開發出一套能 支援災害防救決策參考的輔助系統,可 即時監控災害發展情形,提供各作戰區 指揮官重要的救災決策;22後續亦可將化 生放核災害部分,整合國家與民間機構 各項災害研究成果納入系統中,以利爾後 實施本作業時,加速與準確掌握實際救援 景況。

四、開發災害模擬訓練系統

有關戰場情報準備運用化生放核災害模式,為平時針對可能災害研判進行預測,亦須經由「測試評估」機制,依所研析天候、地形及人文等影響與威脅成果,全數納入「災害模擬試驗」,以準確修正預測相關災損數據,藉其科學分析方式,以利後續有效調度與分配救災人力、機具或設備,俾使救援任務能夠

進行更快速、有效率。目前國軍已運用 電腦模擬系統與聯戰訓練管理及相關輔 助工具,以創造仿真之災害場景,磨練 作戰區指揮所,於救災仟務期間之指揮 管制與參謀作業程序,提升災害防救任 務執行能力。23未來配合國家毒化災訓練 場整體規劃,應開發多層次分散式的模 組化訓練資訊平臺,對災害潛勢分析及防 救方案的研擬,重建「仿真」化生放核災 害現場情境,依不同災害規模等級、情境 模擬條件(如災害以往發生的地點、災害 可能發生的地點、何處是災害最可能發生 的地區、災害變化的狀況、災害的危險性 分析、需何種程度的防災措施、災區內將 會有多少人、逃生、疏散路線的選擇與避 難、收容地點的位置)及參與人員等進行 聯合訓練,強化救災部隊研判能力。

五、運用演訓整合單位能量


對於地震與颱風災害各級政府與國軍 ,已建立許多良好的救援機制與救災經驗 ,目前最欠缺的是對化生放核防救災體系 的加強與整合。可由行政院推動跨部會簽 訂合作協議,確立國軍與相關部會合作範 圍、實施程序、權責分工、經費分擔等事 項。例如,有關化生放核災害可由國軍提 供化學兵等專業知識與裝備,協助地方政 府提升災防應變人力素質及熟悉機具使用 ,此外,災防應變體系應定期與國軍舉行 有關救災應變之兵棋推演、實兵演練等演 訓,俾強化指揮管制、作業程序、勤務支 援等機制與能力。

^{22 〈401}廠三維戰場資訊整合平臺救災新利器〉《軍聞社》,2010年6月10日,http://news.opview.com.tw/BiHistPage.aspx?daid=4073841&date=20100610.

²³ 王宗銘,〈國防部災害防救電腦輔助指揮所演習示範登場〉《青年日報》,2011年5月4日,版3。

∃職研究

戰場情報準備運用於

另將化生放核狀況納入演訓想定,除 原先配合政府機關實施的核安、化安及 萬安演習外,於其他演訓中增加遭遇 化生放核狀況之處置;在戰場情報準 備中亦應加入此類災害分析,並在指 參作業程序的架構下,使指揮官與各幕 僚在分析各項行動方案時能思考此種可能 狀況,並及早作好應變計畫或其他管控 作為。

六、建立各種災情回報機制

日本「311」震災時期,民眾大都 透過電子郵件、手機簡訊、Twitter、 Facebook等網路計群取得災情資訊,其中 也凸顯災情資訊雙向流通機制的重要性。 未來對於各種災害在平時減災、災前整備 、災時應變及災後復原等各階段之處置應 變措施,勢必要求所有災害防救資訊皆能 雷子化, 並目能夠迅速蒐集、涌訊、回報 、彙整與分析,並進一步根據分析結果淮 行決策、指揮與控制,以減輕災害事件所 造成之損失與衝擊。

汲取日本震災經驗,各作戰區除增列 核電廠、油庫及海嘯易侵襲地區目標圖資 ,並據以修訂情蒐作業程序,以完備災情 萬報機制。另完成相關救援計畫後, 救災 指揮官亦應針對有關災害預測重要內容, 提出災害情報需求規劃,並與政府、民間 相關機構完成聯防通報協調後,即發布所 屬災情蒐集單位,所需之災害情報內容, 期能適時回報災害發生位置、時間、狀況 、範圍與損壞情形,有效掌握災害行徑與 威脅範圍。各項災害情報即時獲得與掌握 ,對救災部隊指揮官而言,甚為重要;現 傳媒日趨發達與資訊發展快速,可運用其 特點,建立相關災情回傳機制,並主動納 入國家與地方災防應變機制,獲得即時災 **情資訊**。

七、納入災害救援行動準據

現行國軍救災相關準則及法規未臻成 熟,鮮少有明確規範災害防救預測及準備 作業程序;未來可將戰場情報準備運用天 然災害及化生放核災害模式納入準則運 用,同時修訂現行作業程序,以符「平 時整備,戰時應變」之效,瞭解、熟悉 各項作業內容及準據,期奠定部隊執行 災害防救任務評估良好規範,未來在面 對各種災害狀況發生時,方能臨危不亂。 另作戰區(含)以下救災部隊則以戰場情報 準備作業模式,依據上級專業研析內容, 已能清楚堂握災害型態、潛在威脅及救災 部隊限制等,始可形成上、下均具有專業 災害救援預測能力,有利整體救援任務遂 行。

結 語

科技與時俱進,災害與時惡化,大規 模化生放核災害具有時間之急迫性、空間 之廣域性及情境之複合性,面對複合性化 生放核災害遠超乎預期,已非現有單一災 害主管機關能完全掌控,更須著重於災防 預警情資蒐整與早期因應作為。尤其化 生放核災害具複雜及多變性,藉災害情 報準備與化生放核系統快速分析、研判 災害危害程度、下風危害範圍及採取因應 對策。基於政府一體、部會協調與資源共 享原則,應儘速修訂跨部會合作及軍民共 構災害防救,並持續進行資料庫建置與系 統更新,將可有效降低救災風險及提高救 災效率。

收件:101年2月29日 修正:101年3月1日 接受:101年3月2日