精進戰車砲「一發命中、先敵射擊」技術之研究

提 要

- 1. 在當前這個蓬勃發展的「武器競技場」上, 戰車必須發揚「快速」、「猛烈」和「精準」的火力要求才得以生存,這個基礎乃建立在務實的裝備保養與射擊訓練之上, 理由有二:一為戰車的設計需求以反戰車戰最主, 也就是要攻擊遠距離的點目標; 二是交戰過程尚無法全自動化, 亦即它還不能像飛彈那樣『射後不理』, 必須在發射前就藉修正的瞄準線賦予砲彈飛向目標所需的火砲指向。
- 2. 現代戰車雖配備先進 的武器與射控系統,但由於砲彈投射系統機械結構、 光學瞄準及操作介面之鏈結、調校與操作不當,均可能導致射擊精度與反 應速度降低,故在「裝備精度」與「人員素質」兩方面的統合程度,攸關 它的效能可否「百分百」發揮。
- 3. 綜合戰車部隊歷來射擊演訓之經驗,部隊由於對裝備保養與訓練整備全般概念不足,以致發生戰車射擊校正效率不彰與失誤的現象。這些問題只要正確落實一、二級裝備預防保養檢查勤務,並體認戰車射擊訓練內容與方法,即可輕而易舉的達到「人裝一體」的戰鬥效能。

前 言

本軍二代戰車具有先進的武器 射控系統,配備由紅外線瞄準具、電 腦化彈道計算機和穩定系統組成之 射控裝置,對環境與武器狀況具有感 測與補償修正的能力,可以執行全天 候和運動狀況下之作戰,有效發揚戰 車 一發命中、先敵射擊」的傳統火 力先制特性。縱然如此,戰車戰鬥員 對於射控系統結構與作用原理的瞭 解、操作熟練度,以及裝備維保勤務 執行程度,相對地對其效能產生加乘 或減分的結果,這常在實彈射擊演訓 經驗中,得到具體的印證。謹將個人 實彈射擊與教學訓練之體認整理歸 納,希能提供各級幹部建立整體的整 備概念,以增進其戰車砲射擊與指導 學能,確保戰車砲發揚精準的打擊火力。

壹、現代戰車發展變化基本認知

 因此產生下述重大變化,特別值得吾 人觀察注意:

- 二、彈藥性能的變化-穿甲力變強且 彈道效能更高。主要是採用截面 積小的次彈丸結構及高密度合 金鋼材質,飛行初速將近 1800 公尺/每秒,彈道性能穩定,但 在 2500 公尺以上射距離精度將 大為降低。目前美軍 M1A2 戰車… 120MM 翼穩脫殼穿甲彈初速可達 1800 公尺/秒,穿甲厚度達 800 公釐;另外,砲射導彈的發展, 導入了反裝甲飛彈的特性,改善 了傳統戰車砲彈射程與穿甲能 力的限制,大大增進了遠距離打 擊的能力,這個接戰距離可以延 伸到 4000 公尺,如此便相對的 提高本身的安全。
- 三、武器系統的變化一口徑變大、壽 限延長且可靠度變好。為獲得砲 彈更高的初速,加大口徑及長 度,並採用「自緊式砲管」的製

- 五、射控系統的變化—射擊反應速度 變快。配備目標獵殺系統的變化。 系統的實際, 發快。雷射測距機及簡易的 系統,使戰車在運動中隨 ,使戰車在運動中隨 ,使 ,據說美軍 M1A2 戰車在 5 秒鐘就可完成一個目標接戰可 對這項挑戰可以說是最嚴對 問題,除非有辦法能夠在敵 車向你擊發雷射時,能夠迅速感

應前採取適當的反制措施或戰 術動作,還可能有機會逃過被擊 中的惡運。

六、射彈修正的變化-自動化修正初 發射彈的偏差。系統中導入主動 歸向技術,在初發射彈未命中目 標時,由系統自動感知偏差量 後,迅速將修正量補償到火砲和 瞄準系統中,而準確的在第二發 修正射擊將目標消滅。這一項發 展可說明創舉,更不得不如此, 試想一發戰車砲彈飛行速度每 秒 1800 公尺,以人工的方式如 何觀測到正確的偏差量?再者 手動模式完成修正射擊的效 率,如何「制敵機先」?目前中 共先進的戰車已研發配備此種 系統,如果第一發射彈射擊失 誤,可以很快速、又精準的實施 次發修正射擊。

- 1. 保持戰場監偵系統優勢—持續改 良獲得先進的戰車觀瞄裝備。
- 2. 提昇先敵射擊能力—實施射控系 統升級,精實戰車射擊預習訓練。

- 3. 掌握「第一發命中」射擊技能—實施射控系統升級,精實系統操作、 戰車射控系統校正、戰車射擊預習 與修正射擊訓練。
- 提昇能見度不良狀況下射擊能力—實施夜視裝備性能提昇,精實能見度不良狀況射擊訓練與技術。
- 5. 重視訓練場地、器材投資—充實改善射擊訓練場地、器材,精實運動射擊、活動目標射擊訓練。
- 6. 落實砲塔預防保養檢查勤務—嚴 密一、二級預防保養檢查,精實補 保紀律與督管機制。

貳、裝備保養層面對戰車砲射擊之影 響

以往在戰備訓練上我們總是把「戰車開的動、砲打的響」作為戰訓整備指導原則,如此似乎足以應付當時戰場上敵人坦克。這在 20 年前還是第一世代戰車的較勁之中,也許並

沒有太大爭議,但是第二世代以後的戰車配備精密的電腦化射控裝置、之下實際,如果少了「打的快、打的準」,如果會變得怎麼樣呢?所以讓一個事實的認識,將有助於讓一人意識到「裝備保養層面」與「打破人意」的關係和重要性,從而建立明確的裝備整備作法。

事實一: 瞄準機構未緊固或聯結

事實二:武器操控機構機械結構上之 廻隙

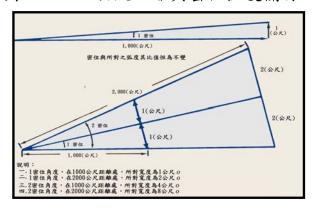
擊「散佈」」或「偏差²」的現象,更因人力或動力操作方式之不同,而有不同的影響,這方面問題的改善可以藉由操作手訓練和保養得到控制和補償,以獲得 0.3 密位以內的空迴誤差。

事實三:武器(主砲)與主要瞄準具 同步校準偏差

這個現象發生在戰車主砲 與瞄準系統間俯仰運動中 彈道驅動裝置與瞄準具之 聯動發生高低誤差或偏向 誤差,這種情形通常由於彈 道驅動器「砲耳軸支臂-偏 心軸」偏移、11 英吋臂不當 調整或熱源成像儀鏡頭故 障。要防止這種偏差應於定 期保養勤務(S保)及熱源 成像儀拆裝後落實執行「同 步校準」勤務,並恪遵保修 紀律嚴禁越級保養。而此種 偏差情形在一般射擊訓練 中,因射擊陣地無大角度的 俯仰角並不易被察覺,但如 果到戰場上執行攻擊(一般 實施仰角射擊)或防禦(一 般實施俯角射擊)的戰術任 務時,變換到一處仰高或俯

0.64 密位(射距1200公尺,30英吋),即顯示戰車射擊射擊散佈過大,或在各發射間,過多亂射錯誤。

¹ TT17-12-1 一○五公厘戰車砲射控系統校正 第二章 偏差:從瞄準點至彈著中心之距離,如超過 0.75 密位 (射距 1200 公尺,36 英吋),即顯示射控系統 偏差,或在對此一方向射擊時,偏離瞄準太遠。
² TT17-12-1 一○五公厘戰車砲射控系統校正 第二章 散佈:測量最高及最低彈著之垂直距離,以及 最左及最右彈著間之水平距離,每項測量如超過


低的陣地射擊時的情形,將是一種常態,因此可能完全失去命中精度。故這一偏差的發覺和改善,必須仰賴砲塔,才得以獲得火砲適當的課於。

事實四:光學瞄準系統視差

事實五:火砲腐蝕的偏差

 在探討了上述事實之後,大部分 人員都可能無法理解到其嚴重性,而 直接忽略未加理會。可別小看上述事 實存在的誤差量,它們的偏差雖僅在 0.1至0.3密位之間,它們卻都是戰 車砲射擊時造成「散佈」與「偏差」 等不穩定性的元凶。我們可以用「密 位公式」計算出彈著在 1000 公尺的 **距離,偏差量達 10 到 30 公分**(距離 如果延伸到 2000 公尺則加大一倍) 得到驗證。(如附圖一)我們可以試 想一輛在 1200 公尺而正向我的敵軍 戰車(平均高度2.5公尺、正面寬度 3公尺),其大小在瞄準具中的比例, 可想而知其在瞄準與砲彈投射的困 難程度,尚不論敵我戰車所處狀態 (運動),這正是提昇戰車射擊技術 先必須掌握的裝備誤差因素,而它們 實際上都可以透過一、二級保養檢查 與操作訓練來獲得其系統精確性。 (在本文第四段中將具體說明其整 備作法)

圖一:1000公尺距離與密位弧度關係

參、訓練層面對戰車砲射擊之影響

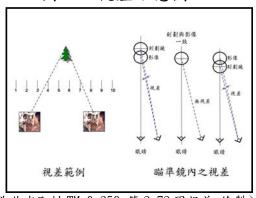
戰車射擊訓練一般可區分為「基 本射擊訓練」與「實彈射擊訓練」兩 階段,並依循「先基礎、再組合」的 訓練流程,結合部隊駐地、專精訓練 與基地演訓,逐步奠立戰鬥射擊能 力。根據以往經驗戰車砲射擊訓練最 大的問題,往往囿於師資本身對於裝 備性能和作用原理的概念不足, 及本 身射擊實務經驗缺乏…等因素,以致 在「基本射擊訓練」階段,未能充分 把握「射擊訓練重點和方向」,造成 徒具形式之無效訓練現象,無法確保 戰車砲射擊「精準和快速」的可靠度 與穩定性。實際上,戰車砲射擊訓練 內涵,必須要能達到「戰鬥」與「技 術」兩個層次要求,本段透過下列事 實的認識,來探討「人員訓練」層面 和「打的快、打的準」的關係,進而 意識到射擊訓練的內涵,以利掌握 戰車射擊訓練整備的方向。

事實一:射控系統性能、作用與 原理之認識不足

這一事實的本質為人對於裝 備功能、作用原理之瞭解程 度不足,所衍生的技術性偏

失。戰車戰鬥員之訓練,一 般較重視操作程序與要領, 經常忽略一些關鍵性的技 術,比如:火砲操縱空迴、 瞄準具與瞄準視差、自動感 測前置量…等,這些現象亦 會發生前述「散佈」問題, 而產生命中不穩定的現象。 分析其原因,通常由於訓練 人員實彈射擊與整體裝備維 保實務缺乏,對裝備之性能 認識不足,在對部隊訓練時 又不能把握到這些訓練重 點,以適時採取補償消除措 施。這個現象可以從提昇訓 練人員(師資)的學能與經 驗及加強駐地保持訓練與規 劃,來獲得實質的改善。

事實二:射控系統操控制介面基礎訓 練精熟度不足


事實三:戰車射擊預習訓練強度不足 戰車射擊預習的目的, 乃在 奠立戰車乘員實彈射擊的基 礎。這一事實的本質為「訓 練程序 | 重視度之問題,一 般是由於訓練者經驗缺乏和 認知不夠,容易輕忽「射擊 預習」這個訓練環節,而衍 生的訓練成本耗廢與射擊成 效不彰之偏失。部隊實務中 較為常見的例子,諸如:目 標獲得速度緩慢、車長賦予 射向及瞄準超過時限、及行 進間(或對活動目標)跟蹤 瞄準射擊穩定性不足…等等 現象,這些情形將對戰場生 存與射擊反應速度產生影 響。這方面可以藉「戰車射 擊」操典規範之內容、要求 標準與要領來實施。

事實四:射控系統校正之程序及作法

不夠精熟

戰車由於射控系統機械與保 養問題潛存之失誤,如經過 射擊系統精度檢驗合格及以 砲口規正儀實施覘視規正、 射擊精度審查測試程序,即 可參加實彈射擊訓練或作 戰。這一程序就是「射控系 統校正,其目的即在校準射 控系統,建立戰車射擊基本 精確度。這一事實的本質通 常為「人為疏失與誤差」,所 衍生出來射擊精度的偏失, 與規正效率不彰、成本耗 費。這一問題的相關例子, 主要是「系統存在誤差未檢 驗出、濾光鏡片未選擇或瞄 準位置的視差(如圖二)、火 砲操縱空迴、砲口規正儀使 用及審查測試程序錯誤…」 等保養與人為所造成,而這 一事實的本質則在於裝備操 作手對於覘視規正與求取修 正係數的訓練不足。針對這 個問題,可以藉由從部隊駐 地保持訓練, 反覆訓練來逐 步加以落實。

圖二:視差示意圖

(本圖為作者取材 TM 9-258 第 2-72 圖視差 繪製)

事實五:射擊命中誤差之影響認知不 足

> 在前面已經探討過戰車的任 務主要是攻擊 1200 公尺以 上距離的點目標,基本上它 可能因投射系統、武器、彈 藥、環境、地形、人員和保 養…等因素使命中率發生變 動,對這些來源的瞭解,將 影響戰車乘員採取適當的補 償措施,以獲得可靠的命中 效果。這一事實通常在實彈 射擊中較為常見,譬如:砲 管磨耗、膛線斷落、彈藥瑕 疵或火砲跳動…等所引起的 命中偏差,而未能及時發 現,而且來源數同時在射控 系統發生時,其效應可能更 大。針對這些問題,唯有豐 富的保養基礎、射擊經驗與 相關理論作為基礎,才得以 適時採取適當補償措施,增 進命中率。

事實六:次口徑射擊訓練未能啣接戰 車砲射擊

提昇射擊士的能力,亦可節 省訓練成本。而本項事實的 本質在於未按程序落實 一、二、三習會射擊及未把 握訓練方向與重點,所衍生 出訓練流於形式上的射 擊,未能真正達到次口徑射 擊的目的。較常見的例子, 譬如:盲目性的射擊、缺乏 訓練得失的統計和分析,以 及實施的編組、方法不適 當,形成效果不彰的偏失現 象。吾人必須深切意識到次 口徑射擊的精神意涵,於平 時駐地訓練時間落實次口 徑射擊,以奠立戰車砲實彈 射擊基礎。

肆、戰車砲射擊裝備整備實務作法

戰車預防保養檢查勤務,為裝甲 部隊各級主官所重視工作,但對於 「砲塔保養」部分,一直都未能如同 底盤保養般得到重視與落實。問題主 要在於各級主官及督導階層,對砲塔

一、落實砲塔射控系統校正-精度檢 驗勤務

本項勤務執行之目的,主在於檢驗存在於射控系統的誤差,其執行之良窳足以影響裝備的妥善、射擊精度與系統校正-審查測試效率、彈藥消耗和時間效率…。相關實施程序、步驟、要領「各車型戰車操作手冊-射控系統校正」執行。

- (一)執行人員:戰車乘員。
- (二)實施時機:本項勤務為「砲塔 一級預防保養勤務」的輔助手 段,應於每月配合週保養時間 執行。
- (三)檢驗內容與改進措失:
 - 1.零壓力檢查:目的在確定液壓動力系統有足夠的氮氣與作用油,以避免過大或不足與損壞液壓元件。若檢查發現射控察統氮氣壓力過大或不足、儲油桶液壓油過多或不足,則通知二級保養人員處理。(實施主蓄積器氮氣充填與液壓油

補充)

- 3. 人機內無不知人排液保養動務)
- 4. 瞄準具緊固性檢查:目的在確定直接瞄準裝置之安裝是否穩固。若推拉主、次瞄準具本體,發生內部瞄準十字線有移動現象,則通知二級保養人員處理。(實施緊固調整)
- 5. 覘視規正調整螺之空迴、直線

³ 基本光學與射控器材之運用(TM9-258) 第二章第 七節 段次 2-38。

性及重覆性檢查:目的在確定 規正調整螺之作用是否正確 無偏差。若各個規正轉螺之空 廻量在 0.15 密位以上;規正 轉螺 1 密位不能瞄準鏡內十 字線同步移動 1 密位,則通知 高保養人員處理。(辦理轉 廠保修)

- 6. 射控系統彈道解答檢查:目的 在確定彈道計算機解算彈道 (射角)之能力是否正常。若 檢驗發現各彈種彈道解答,不 能進對正解答方框,通知二級 保養人員處理。(辦理轉廠保 修)
- 8. 高低空迴檢查:目的在確定彈 道驅動器高角箱內部齒輪之 傳動有無過大的迴隙。若檢驗 發現火砲俯低後存有 0.3 密 位以上的迴隙,則通知二級保 養人員處理。(辦理轉廠保修)
- 二、縣密射控與瞄準系統之定期保養 勤務

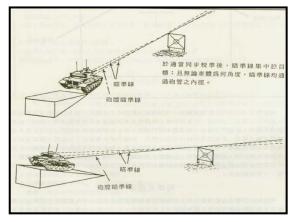
本項勤務主要在檢查射控與瞄

準系統是否存有光學視差、高低 空迴間隙、同步校準(武器與問 等)偏差,以採取適當的 調整與保養行為,以確保射控 統有良好的作用與精度。相關 統程序、步驟、要領,應參閱「各 車型戰車二級技術手冊-砲塔之 部」執行。

- (一)執行人員:砲塔二級修護士。
- (二)實施時機:半年(S)保養勤 務或執行熱源成像儀本體拆 裝後。

(三)勤務內容:

- ○瞄準裝備視差檢查:本項檢查 同屬一、二級人員對「射控與 瞄準系統」之預防性檢查勤 務,其實施要領與「射控系統 校正-精度檢驗(瞄準視差檢 查)」相同。
- □高低空迴間隙檢查:本項檢查 同屬一、二級人員對「射控與 瞄準系統」之預防性檢查勤 務,其實施要領與一級「射控 系統校正-精度檢驗(高低空 迴檢查)」相同。
- 宣同步與校準檢查⁴


本項勤務可確保火砲及瞄準 具在仰角及俯角射擊中之適 當關係。

 「同步」檢查:在測試火 砲各種仰度之射角誤差或 偏差。測量熱源成像儀及 測距儀,在火砲仰角及俯

⁴ M60A3 戰車戰鬥射擊教範(FM 17-12-3) 附錄 A 同步及校準。

- 角全程之±0.3 密位射角 內,配合主砲運動之能力。
- 2.「校準」檢查:在測試火 砲各種仰度之射向誤差。 偏差。目的在檢查偏合 的誤差。測量熱源成像儀 及測距儀,在火砲仰角及 俯角全程之±0.3 密位射向 內,配合主砲運動之能力。

圖三:瞄準具垂直校準示意圖

(本圖取材自 FM 17-12-3 第 488 頁)

- 四射擊控制系統測試
 - 1. 本項測試包含:(1) 彈道 計算機自我測試。(2) 熱 源成像儀測試。(3) 彈道 計算機系統解析測試。
 - 2. 測試程序要領,應參閱相關車型二級技術手冊。參閱的時應特別注意「彈道計算機系統解析測試」算報行,以確定計算就環境感測單元之功用正常。
 - ※由於「彈道計算機自我測 試」,僅執行彈道計算機系 統與各感測單元間電路 (不包含感測單元)之狀 況。
- 五方向機空迴總成調整
 - 1. 本項勤務於定期保養勤務 (S保)或於平時人力操作 砲塔方向時出現打滑情形 時,須執行砲塔方向環及小 齒輪之調整。
 - 2. 調整程序要領,應參閱相關 車型二級技術手冊。執行本

項勤務時除應要求調整程序之正確之外,須留意反覆檢查、調整,直到獲得「空迴」現象改善為止。

- 1. 本項勤務於更換伺服濾清器、液壓系統油路元件或火 砲操控時出現空迴、抖動、 不順暢…等情形時,須執行 液壓系統之排氣勤務。

也砲管磨耗量測與補償

1. 砲管磨耗因彈種之不同,每 發砲彈對砲膛產生 0. 5 至 1 發砲彈對砲膛產生 0. 5 至 5 9 在 9 全 裝 選 過 超 度 的 耗損量 身 報 費 損 重 再 每 由 明 報 其損 長 事 每 由 明 保 養 勤 務 中 , 所 費 工 以 拉 量 量 規 量 , 亦 隨 費 響 戰 管 的 壽 限 , 亦 所 膛

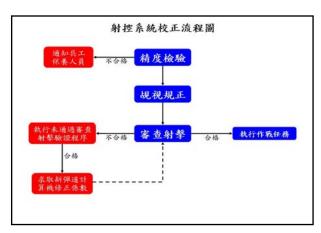
- 徑之磨損加大而降低射擊 之精確度。
- 3. 以量具量測磨耗量:為一較 精準的量測方法,通常每半 年由支援保修單位(三級) 實施一次定期檢測,或未逾 半年累計射擊發數達 200EFC時,亦須實施檢測。
- 4. 由於砲管磨耗對射擊精準 度之影響極大,現代戰車之 彈道計算機電腦,均具備修 正此一偏差之性能,射擊手 可應用上述兩種方法將砲 管磨耗輸入計算機,以補償 此一可能之誤差。

表一: 砲管磨耗輸入換算表

量规读数	电管實際投	电管绘画	地管對餘壽命百分比
		(EFC)	(%)
0.000	4.134	1000	100
0.003	4, 137	950	95
0.006	4.140	900	90
0.008	4.142	850	85
0.011	4.145	800	80
0.014	4.148	750	75
0.017	4.151	700	70
0.020	4. 154	650	65
0.023	4. 157	600	60
0.025	4. 159	550	55
0.028	4. 162	500	50
0.031	4.165	450	45
0.034	4.168	400	40
0.037	4. 171	350	35
0.040	4.174	300	30
0.043	4.176	250	25
0.045	4.179	200	20
0.048	4.182	150	15
0.050	4.184	100	10
0.053	4. 187	50	5
0.056	4.190	0	0

伍、戰車砲射擊訓練整備實務作法

戰車交戰在搜索、識別及確認目 標是敵人後,僅需「瞄準-測距/前 置量-瞄準-發射」幾個簡短接戰過 程,這些過程看似輕而易舉,但每一 過程的動作要領和熟練性,均維繫命 中目標的結果。在經驗中,每每沒命 中目標時,許多人可能會一頭霧水, 而不知所措。事實上,這可以從戰車 未命中之七大因素5:(一) 覘視規正 不正確。(二)乘員未實施正確的準 備射擊或武器精度檢查。(三)射擊 中乘員操作錯誤(如瞄準十字線不在 目標的中心)。(四)實施射擊前檢查 後,喪失了覘視規正的精度(非人為 疏失)。(五)砲彈的散佈面過大。(六) 射擊距離不正確。(七)車身過度傾 斜…來加以檢視問題徵結。可以看出 絕大部分因素存在於「人為」的問 題,以下謹列舉相關訓練整備作法和 要領如後:


一、精實基本操作射擊訓練

- (一) 戰車砲射擊不論是未命中目標 或偏差、散佈,在排除裝備或 彈藥問題之後,「人為」的失 誤就是主要的原因,均顯示基 礎射控的訓練不足,一般較為 常見的情形:
 - ○操作程序錯誤:諸如測距、 感測前置量錯誤…,此等失 誤應在「射控裝置」、「射擊 指揮 | 等基本訓練課程,強 二、精練射控系統校正程序 化個人基本操作能力及熟 練度。

- 二瞄準錯誤:諸如瞄準視差、 瞄準部位偏差…,此等失誤 可藉「頭墊」使瞄準手得到 固定的瞄準位置和姿勢,應 在「射控裝置」、「射擊指揮」 等基本訓練課程,傳授預防 視差和正確的瞄準要領。
- 三操控錯誤:諸如火砲操縱未 注意消除空迴,此一失誤應 在「射控裝置」等基本訓練 課程,強調空迴來源及正確 的火砲操縱要領。
- (二)再者,戰車砲射擊過程包含「選 擇武器」、「感測距離/前置量」 及「視界變換」…等射擊準 備,乘員動作完成時間的長 短,則關係到「反應速度」, 亦即戰車爭取「先制」的基 礎,戰鬥員必須發揮熟練的裝 備操作能力。所以「直覺式與 反射性」的操作,是戰車戰鬥 員對於射控系統操作的根本 要求,因為在戰鬥中緊張的氣 **氛之下**,是沒有時間思考每一 個動作的,只能聚精會神崩緊 神經,按車長下達的射擊口令 快速反應操作。那麼這個能力 就得靠訓練來培養了,在「戰 車射擊教範 | 中即有明訂指揮 口令與乘員動作要領,應在戰 車射擊預習中予以強化。
- 戰車精確性的基礎, 乃建立在精 密的砲膛校正作業程序。正確的 主砲射控系統校準作業程序,前

⁵ 戰車射擊教範(上)冊 第○章第○條。

圖四:射控系統校正流程圖

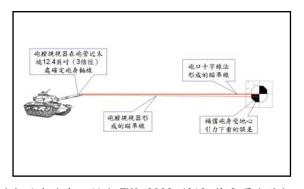
(本圖為作者繪製)

(一) 砲膛覘視規正:

覘視規正主要程序,包含:1. 完成射控準備。2.選擇覘視 點。3.確定砲身軸線。4.砲膛 覘視。5.規正主要瞄準具。6. 規正次要瞄準具。7.裝備射擊 資料。操作時應注意下列要 點,以降低人為操作之失誤, 而影響校準之效果。

○射控準備:

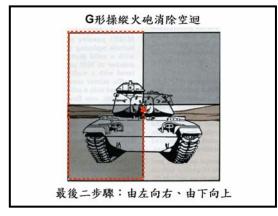
- 1. 白晝鏡選擇適當濾光鏡 片,以防止發生內部視 差。
- 2. 使用人力俯低主砲至最低俯角,再持續旋轉人力高低手柄,直至感覺有強大阻力為止。
- 3. 裝定規視目標實際距離。
- 4. 消除計算機歸零紀錄值,並進入「覘視 (BORESIGHT)」模式。


□選擇覘視點

- 1. 選擇一接近 1200 公尺之 目標做為覘視點,必要時 以測距機測量以避免誤 差。
- 規視目標須具備獨立、明顯及固定、水平、垂直之特性,以避免混淆錯誤與瞄準偏差。

三確定砲身軸線

 使用砲膛覘視器方式來 確定砲膛中心線,以補 償砲身受地心引力下垂 的誤差。

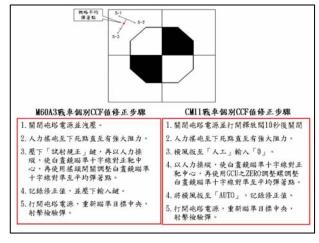

圖五: 砲膛覘視器補償誤差示意圖

(本圖為作者取材自 TM9-3908-4312 第 3 頁自繪)

- 2. 精確安裝錐形固定座白 色刻線對正砲口12點方 位之點記號 (定位 Y 軸),再調整接目鏡對正 砲口 3 點鐘方位之點記 號 (定位 X 軸),以獲得 砲膛正確的中心點。
- 四砲膛覘視
 - 以覘視器瞄準覘時目標時,須注意採取、保持穩固的恣勢,確使瞄準不致發生視差。
 - 引導火砲覘視目標之方向,須注意與射擊手同向(由左至右、由下至上),以防止火砲齒輪迴隙誤差。

圖六:火砲操縱示意圖

- (本圖為作者自繪)
 - **国規正主要瞄準具**
 - 1. 實施視度調整並確定視 度良好,以覘視規正調整 螺分別調整光學瞄準 鏡、熱像鏡瞄準十字線對 正覘視點,注意須與砲膛 覘視點一致。
 - 2. 調整覘視轉螺修正分劃

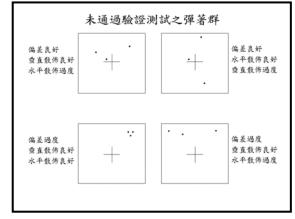

- 中間數值,分別對正指標,以利後續之修正操作。
- 3. 瞄準時(光學式瞄準鏡) 須注意運用頭墊確定貼 額位置來固定瞄準姿 勢,以防止瞄準視差發 生。
- ♂規正次要瞄準具
 - 1. 依射擊彈種選擇適當之 彈種分劃,調整覘視規正 轉螺確實將覘視規正(零 點)十定線,對正覘視目 標並鎖定。
 - 監準時須注意適當調整 頭墊貼額位置來固定瞄 準姿勢,以防止瞄準視差 發生。
- 也裝定射擊資料

 - 2.獲得氣溫、大氣壓力等氣 象資料,分別輸入計算 機,以供解算修正彈道。
 - 納擊彈種程式、批號, 分別輸入計算機,以供解 算修正彈道。
- (二)實彈射擊精度審查測試與 驗證測試
 - ○瞄準手以「人力 G 形」方 式操縱火砲,移動行程應 大於 0.5 密位以上,以防

止齒輪可能之回隙。

- □ 瞄準手之瞄準應力求精確,消除潛在的視差、瞄準點不一致等失誤發生率。
- 電查射擊應確按步驟實施,避免採取「一發一修正」之方式逕行實施偏差修正,如此強迫性將射控歸零的方式,可能存在機械故障未保養,而無法確保命中之精確性。

表二:概略求取新 CCF 值法修正程序表

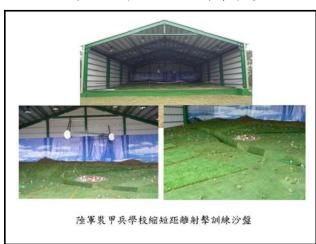

(本圖為作者自繪)

- (三)未通過驗證測試之檢查
 - ○水平散佈面過大時:
 - 1. 適當調整方向齒輪箱,使 間隙減至最小。
 - 檢查射手主要瞄準具之 視差。
 - 3. 檢查射手主要瞄準具之 穩定性。
 - 4. 檢查砲管安裝之緊定狀況。
 - □垂直的散佈面過大時:
 - 1. 檢查在 11 吋固定臂上的 安裝隔片。
 - 檢查射手主要瞄準具與 藕合桿之穩定性。
 - 3. 檢查射手主要瞄準具之 視差
 - 4. 檢查高低機之高低活 塞、活塞軸承及活塞軸環 之間隙情形。
 - 檢查固定彈道驅動器之 座架。
 - 6. 檢查彈道驅動器與砲塔 其他分件之結合是否發

生鬆動現象。

- 7. 檢查彈道驅動器超仰角 箱之正常功能。
- 宣偏差過大時:當散佈面過大時可能造成明顯之偏差,故存面過大時可能造成明顯之偏差,故在檢查偏義形成原因之前,應先找出散佈面過大之原因。另外偏差形成原因偵測困難,且在最後分析時,可能涉及砲管。
 - 1. 檢查高角誤差。
 - 2. 檢查計算機是否失效。
 - 3. 檢查傾角儀之傾角解析 值是否正確。
 - 4. 檢查橫風感測儀功能是 否正常。
 - 5. 檢查火砲是否固定於砲 耳上。
 - 6. 檢查砲耳帽螺釘是否緊 定。
- 四散佈面與偏差之關係:

圖七:未通過驗證測試之彈著群


(本圖為作者取材自TT17-12-1 第7頁 繪製) 三、精實戰車射擊預習訓練

- 1.「戰車射擊預習」訓練內容, 以適應各種戰場景況與射控 狀況,使戰鬥員熟練「戰鬥」 與「射擊」兩層面之射擊技術 需求。其基本項目包含:火砲 操縱訓練、目標搜索、距離判 定、諸元圖射擊訓練、熱像瞄 準鏡目標識別訓練與煙幕運 用訓練等六項。其中以「火砲 操縱訓練與目標搜索」,對個 人「射擊技能」之影響最為直 接,分别在建立快速瞄準主砲 及追蹤目標的能力,及訓練瞄 準手手眼的協調性及目標獲 得、射向賦予…等能力,應參 照相關操典之訓練標準及訓 練要領反覆施訓。
- 2. 另依實際訓練需求及部隊素質,應在駐地專長複訓訓練中,針對「裝/退砲彈、射擊口令下乘員動作要領及射控系統校正…」等個人射擊操作技能,以及「行進間射擊」等組合射擊訓練,方能奠立良好

的射擊基礎。

3. 射擊預習訓練若因駐地幅員 的限制未能落實,應積極規劃 建立替代訓練場地或作法,例 如:(1)縮短距離沙盤。(2) 射擊模擬器操作,以增進訓練 實效。

圖八:縮短距離訓練沙盤


(本圖為作者攝自裝甲兵學校縮短距離訓練場) 四、精研射擊命中誤差因素

五、精實次口徑射擊訓練

次口徑射擊,為進入戰車實彈射擊前之初步射擊訓練,乃以步槍 模擬戰車砲射擊操作,磨練戰車 戰鬥員規正射擊、修正射擊與對 活動目標射擊之能力,使奠立戰 車砲實彈射擊的良好基礎。依據 本文前述次口徑射擊訓練之影 響和事實分析,相關訓練精進作 為及指導方向如下:

- (一)嚴密射擊前武器、裝備之整 備:精是槍架和步槍安裝之緊 固性,避免射擊震動帶來的射 彈散佈,影響射擊成績的統 計、彈著散佈及射手穩定性的 分析判斷。
- (二)建立訓練觀察能量:包括各車 射擊士官、彈著觀察分析士 官,全程觀察射擊手操作程 序、紀錄射擊成績、彈著分 析,以作為射擊技能和穩定 性…等分析和指導之基礎。 見次口徑射擊之問題與原 因,如下圖:

表三:次口徑射擊問題分析汰樣圖

(本圖為作者繪製)

(三)妥善分析與交叉訓練:過濾射 擊穩定性不佳之問題與個人, 開設同時訓練指導改進其缺點 後,再給予重新射擊,重覆此 一模式直到合格之標準。常見 的次口徑射擊問題與同時訓練 規劃,如下表:

習會名稱	射擊問題	同時訓練
-	火砲瞄準超過時限	操縱靶練習
習會	規正射擊不通過	求取新 CCF 值 程序
二羽白會	跟踪瞄準不穩定	追踪瞄準預習
	自動感測前置量操 作不穩定	射擊模擬器

結 語

在面對 21 世紀武器裝備現代化 的威脅日增的時代,吾人絕不可完全 寄望於武器裝備的優異性能,而輕忽 了根本的基礎實務,須知武器裝備戰 門效能的發揮,乃維繫於精實的裝備 保養勤務,以及戰鬥員熟練敏捷的操 作技能之上,尤其戰車砲射擊技術的 養成,更不是一觸可及的!所謂「平 時事情做不好都可以再來一次,唯有 與敵人在戰場上一較高下的機會就 只能有一次」,而這個契機就在於平 時戰備整備中發揮「精益求精、實事 求是」的精神,才能確使戰車「一發 命中、先敵射擊」技術得到發揚,進 而保障遂行戰術任務時的主動與彈 性,而不淪為一個空洞的口號。

參考資料:

- 1. 戰甲車概論。(陸軍戰甲車發展中心,中華民國78年4版)
- 2. FM 17-12-3 M60A3 戰車戰鬥射擊教 範。(陸軍總司令部譯印 83 年 10 月 30 日版)
- 3.105 公厘戰車砲射控系統校正。(陸 軍總司令部 75 年 12 月譯印出版)
- 4. TM 9-258 基本光學與射控器材之 運用。(陸軍後勤司令部82年3月 譯印)
- 5. ST 9-153 彈道學概要。
- 6. TM9-3908-4312 M26 火砲砲膛覘視 器操作手冊。

作者簡介

姓名: 雇員教師 鄭順彰

學歷:陸官78年班、裝校正規班87

期、陸院92年班

經歷:排長、連長、科長、營長、教

官