ISSN2221-8319

從瑞典肩射型反裝甲火箭彈成功經驗研析我國未來發展方向

作者簡介:

夏天生中校,第一士官學校常士班 36 期,陸軍官校專科 11 期,步校正規班 316 期,中山大學大陸研究所碩士;曾任班長、排長、連長、步校中隊長、教官,現任職於步校反裝甲小組教官

提要:

- 一、瑞典雖為北歐小國,卻深自瞭解,「保持中立」不能僅以一紙國際宣 示就能保有國家安全,必須以繁榮的經濟發展與自身堅實的國防武力 方能威嚇敵人野心。
- 二、瑞典生產的反裝甲火箭彈,其優異性能經戰場實戰考驗,先後出口超過30餘國。面對各國競爭,該國能突破挑戰建立獨特品牌,成為箇中佼佼者實屬不易。
- 三、裝甲防護技術不斷提升與改進,反裝甲飛彈價格昂貴。若自行研製亦 必須面對高單價,且獲得期程難以掌握等限制因素,故如何有效建立 部隊反裝甲能量,瑞典成功經驗應能提供吾人另一思考面向。

關鍵詞:卡爾古斯塔夫系列、拋棄式火箭彈、國防自主

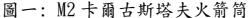
壹、前言

瑞典為一北歐小國,面對多國林立的歐洲大陸,該國深自瞭解「保持中立」不能僅以一紙國際宣示就能保有國家安全,必須以繁榮的經濟發展與堅實國防武力,方能嚇阻敵人野心。因此,該國自始即保有高水準軍事工藝技術,積極發展各項軍備以建立強大軍事實力。¹ 大體言之,瑞典軍隊所使用重要軍備,多出自主性研發。如空軍 JAS 主力戰機、² 陸軍主力戰車 Strv-103 以及單兵反裝甲火箭彈,性能深獲世界各國好評。尤其單兵反裝甲武器研製,無需擁有高度軍事工藝技術即能產製。這亦是該型武器於軍火市場上,不乏各式品項以供需求者選擇。面對各國競爭,瑞典能突破挑戰建立獨特品牌,成為箇中佼佼者實有諸多成功因素支撐。故本文研究目的,主在透過分析瑞典當前發展概況與成功經驗,進而試圖獲得另一思考面向,提供我國建立部隊反裝甲戰力之參考。

貳、瑞典反裝甲火箭彈發展現況

對於多數國家而言,論及火箭彈首屈一指的代表,即為俄製火箭發射器(Rocket-propelled Grenade RPG)。究其主要原因,實受惠冷戰時期華沙公約集團內各國多使用俄製裝備,在無選擇性與造價低廉等因素,造就RPG成為生產數量及使用國家最多的單兵反裝甲武器。相對華沙公約集團,西方國家則呈現百家爭鳴之勢。例如,德國的「鐵拳」、英國「LAW80」、以及以色列「B—300」均堪稱經典。面對各國挑戰,瑞典所生產的反裝甲武器,卻能打破西方各國籓籬,先後出口超過30餘國,成為僅次於RPG系列的反裝甲火箭彈,其成就深獲世人肯定。簡要言之,該國產品含括「重複使用」及「射擊後拋棄」二大主流,僅就沿革與性能分析如下:

一、M2 卡爾古斯塔夫火箭筒


探究瑞典反裝甲火箭彈發展緣起,必須追溯至第二次世界大戰結束後,總結戰場經驗開始發展符合自身需求的反裝甲武器。不同於其他西方國家較偏愛「射擊後拋棄」型,該國反而較傾向選擇 RPG 模式。1948 年 FFV 軍備公司,首次研製成功 M2「卡爾古斯塔夫」火箭筒(如圖一)。該系統全長約1.3公尺、重量14.2公斤、彈藥初速310公尺/秒。射擊彈種包含穿甲彈、高爆榴彈、煙幕彈等。穿甲彈有效射程400公尺、穿甲厚度約40公分。高爆榴彈配合多用途引信與預鑄850顆鋼珠,可對1300公尺內重

 $^{^1}$ 瑞典於 1814 年起決定「中立政策」,兩次世界大戰中與冷戰時期,該國均維持一貫政策。直至 1995 年為要加入歐盟,方宣佈放棄維繫 200 多年的中立主義。資料來源:〈瑞典〉,中華百科: http://wikiyou. tw %E7%91%9E%E5%85%B8/ 2 JAS-39 系列戰機是瑞典空軍的代表作,該機型屬於第四代戰機。 2008 年 4 月 23 日性能更為優異的 JAS-39NG 正式問世、立刻引起各國高度關注。

^{1. 〈}瑞典 JAS39 獅鷲式戰機〉, 青年日報, http://www.youth.com.tw/db/epaper/es001005/eb0548.htm

^{2.} 中華民國空軍軍事新聞網, http://air.mnd.gov.tw/Publish.aspx?cnid=1732&p=38829&Level=1

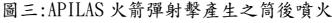
要目標形成破壞及殺傷。儘管 M2 達 14.2 公斤,惟在筒面設計上加裝護板、肩托、握把及兩腳架等有效強化射擊穩定度。同時為確保操作人員安全,保險裝置設計除保險卡筍和壓板外,並增加擊發阻鐵保險。此一設計特性幾乎成為卡爾古斯塔夫的特色,即便延伸產品—AT-4 火箭彈,亦強調雙重保險的重要性。

維基百科, http://zh.wikipedia.org/wik

1970年代冷戰氛圍達到最高點,東、西兩大集團透過「代理人」遂行戰爭手段展現影響力,³各類先進武器紛紛出籠。FFV 軍備公司運用較先進的 FFV556 光學瞄準具裝配於 M2,定名為 M2-550 改良式火箭筒。該瞄準具內含測距與前置計算儀,測距距離達 1000 公尺。裝配先進瞄準具後, M2 有效射程增加至 700 公尺。在射程增加後,整體發射系統重量亦同步加重至 18 公斤。儘管如此,該火箭仍能銷售美國等 20 餘國。英、阿福島戰爭中,英國海軍運用 M2-550 擊落阿根廷直升機,使其聲名大噪。⁴

二、M3卡爾古斯塔夫火箭筒(如圖二)

戰場實戰經驗是驗證武器的最佳時機與場所。冷戰時期可謂賦予各類 軍備發展的重要契機,裝甲防護技術在此條件下日益進步,複合裝甲、反 圖二:M3卡爾古斯塔夫火箭筒及配賦之彈藥


³ 該時期尤以 1973 年第四次中東戰爭、1980 至 1988 年兩伊戰爭最具代表性。

 $^{^4}$ 1 . 名劍、趙智立、等著,《先進單兵武器發展史》(台北市:通寶文化有限公司,2009 年 12 月),頁 11 至 13

^{2.} 維基百科: http://zh.wikipedia.org/wiki/%E5%8D%A1%E7%88%BE%C2%B7%E5%8F%A4%E6%96%AF%E5%A1%94%E5%.

中華網 http://club.china.com/data/thread/12171906/2734/81/06/0_1.html

應裝甲等先進裝甲材質大量運用,火箭彈研發技術正式進入第三代。⁵其中口徑 112 公厘、有效射程 500 公尺、穿甲厚度 72 公分的法製 APILAS 火箭彈可謂最具代表性。只是威力強大必須承擔重量過重、射擊時筒後噴火過大等窒礙因素(如圖三),使全重 10 公斤且無射擊支撐輔助的 APILAS,顯然已失去「輕型反裝甲武器」的意義。同時在「反裝甲飛彈化」的發展趨勢,造就更多射程介於 500 至 2000 公尺間之近、中程反裝甲飛彈,如龍式、沙蛇、掠奪者飛彈等。面對火箭彈重型化與飛彈輕量後的雙重挑戰,瑞典並未放棄自己的風格,仍相信卡爾古斯塔夫的價值。

研究小組整理自實彈射擊訓練

考量 90 年代地面部隊所須面對的戰場環境日益艱鉅,瑞典企圖建構出能發揮近距離反戰車與多面向步兵火力支援武器,遂於 1984 年在 M2 技術基礎上,發展出 M3 卡爾古斯塔夫箭火筒。不同於前者, M3 增加提把便於戰鬥間攜行,新式光學瞄準具加上夜視鏡,更能符合全天候作戰要求。同時受益材料科學進步,M3 大量採用碳纖維複合材料,使重量由 14.2 公斤降至 9.5 公斤(如圖四)。為了提升火箭筒的戰場價值,世界各國在設計重圖四:M3 火箭筒具備操作簡單之特性

^{51.} 黃守銓,下榮宣著,《世界軍武發展史.輕兵器篇》(台北縣:世潮出版有限公司,2004年,2004年3月),頁 2502. 步兵學校反裝甲小組授課資料

龍騰網:http://www.wwgc.cc/luntan/viewthread.php?tid=64226

複式裝填系列時,相當重視射擊彈藥的多樣性(如表一),瑞典自然瞭解此一重要趨勢。因此,M3 除保有射擊 M2 既有彈藥能力外,更能射擊口徑 132 公厘之 FFV 597 翼穩超口徑穿甲彈,該彈藥有效射程 250 公尺,可有效擊穿 90 公分均質鋼板足應付現代先進主力戰車。⁶整體言之,其自身射擊用之彈藥,大多仍保以 84 公厘口徑為主。(如表二)更值得一提的是, FFV 公司同時在衍生型彈藥如 AT-4 火箭彈,亦採用與 M3 相同的生產技術,有效降低生產成本與便利後勤補給。⁷

表一

<u> </u>							
世界各國主要重複式火箭筒性能分析							
武器型式	口徑 (公厘)	重量 (公斤)	觀瞄系統	有效射程 (公尺)	穿甲厚度 (公分)	配賦彈種	
瑞典 M3 卡爾 古斯塔夫	84	9.5	光學瞄準 理射 期 期 進 八 間 半 八 間 半 八 に に に に に に に に に に に に に	活動:300 固定:700	FFV597: 90	穿甲彈、雙效能 彈、防衛彈、高爆 榴彈、照明彈、煙 幕彈	
蘇聯 RPG16 型 火箭筒	58	10.3	光學瞄準具 機械瞄準具 微光瞄準具 夜視瞄準具	500	37. 5	同口徑穿甲彈、85 公厘穿甲彈	
中共 69 式 火箭筒	40	5. 6	機械瞄準具 夜視瞄準具	500	40	同口徑穿甲彈、85 公厘穿甲彈	
德國鐵拳3型	60	_	光學瞄準具夜視瞄準具	活動:300 固定:700	70-90	90、110、125 公厘 穿甲彈、110 公厘 雙效能彈、碎甲 彈、煙幕彈等	
以色列 B300 火箭筒	80	8	光學瞄準具 測距儀 星光夜視鏡	400	60-80	穿甲彈、練續爆破 彈、照明彈	
美國巨蟒火 箭筒	83	13. 6	數位熱影像 彈道解算 機械式瞄準 雷射測距儀	500	65	穿甲彈、雙效能彈 、高爆榴彈	

資料來源:

- 1. 明劍、趙智立、楊溫利著,《先進單單兵武器發展史》(台北市:通寶文化,2009年12月)
- 2. 〈卡爾、古斯塔夫武器系統〉互動百科:http://www.hudong.com/wiki hudong
- 3. 〈二十一世紀輕武器〉http://www.lantianyu.net/pdf19/ts055038_2.thm
- 4. 馬汀. 道格提著,《界武器大觀—輕型經典武器圖鑑》(台北:明天國際圖書,2008年12月)

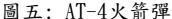
⁶同註 4, 頁 13 至 18

⁷ 步兵學校反裝甲小組授課資料

ISSN2221-8319

- 5. 黄守銓, 卞榮宣著, 《世界軍武發展史. 輕兵器篇》(台北縣: 世潮出版有限公司, 2004年3月)
- 6. 國防部譯,《城鎮戰彙編》,(台北:國防部史政編譯室,2008年9月)
- 7. 雷神公司商情簡報
- 8. 作者自行整理

表二:


<u> </u>							
M3 卡爾古斯塔夫火箭筒射擊各類 84 公厘彈藥性能分析							
彈藥形式	重量 (公斤)	初速 (公尺/秒)	有效射程 (公尺)	性能概述			
551 型 高爆穿甲彈	全重:3.2 彈種:2.4	255	700	1. 備炸距離:5-15 公尺。 2. 穿甲厚度:35 公分均質鋼板。			
751 型 高爆穿甲彈	全重:3.8 彈種:2.9	210	600	1. 彈藥備炸距離:20-40 公尺。 2. 穿甲厚度:50 公分均質鋼板。			
502 型 雙效能彈	全重:3.3 彈種:2.5	230	活動:300 静止:500	1. 備炸距離:15-40 公尺。 2. 穿甲厚度:50 公分均質鋼板。 3. 主要為應付城鎮作戰環境所 面對之輕型戰甲車、建築物、 野戰工事及地面人員。			
ADM401型 近距離防衛彈	全重:2.7 彈種:1.8	300	100	該彈藥在其內部預置約1000枚 箭型彈頭,發射內部高壓氣體將 其彈藥呈錐型狀釋放,在有效射 程內每平方公尺內將產生5-10 枚箭型彈,以殺傷來犯之敵。			
441D 型高爆 榴彈	全重:3.1 彈種:2.3	240	1250	1. 備炸距離:20-70 公尺。 2. 引信設置方式:空炸或瞬發。 3. 該彈藥在其內部預置約 800 顆鋼珠,彈藥爆炸後鋼珠將 以霧狀形式散開殺傷人員。			
545C 型 照明彈	全重:3.1 彈種:2.1	260	2100	1. 發光強度:約 650000 燭光。 2. 照明範圍:直徑 400-500 公尺 3. 照明時間:約 30 秒。			
469C 型 煙幕彈	全重:3.1 彈種:2.2	240	1300	主要在執行煙幕遮障效果。			

資料來源:

- 1. 明劍、趙智立、楊溫利著,《先進單單兵武器發展史》(台北市:通寶文化,2009年12月),頁21至21
- 2. 龍騰網:http://www.wwgc.cc/luntan/viewthread.php?tid=64226
- 3. 研究小組整理

三、AT-4CS 火箭彈

考量世界各國需求面向不同,針對習慣使用筒彈一體使用後拋棄式的國家,瑞典奠基 M3研發技術基礎,1984年推出AT-4火箭彈。該彈藥口徑84公厘、全重6.7公斤、有效射程300公尺,內裝約 450公克錐形裝藥使其具備40公分穿甲效能。(如圖五)相對M72系列採前、後筒設計概念,AT-4採一體成型模式,使操作者無需先完成用、收筒即可完成射擊準備。為確保射擊安全,該彈藥沿用古斯塔夫多重保險機制,設置保險針保險、拉柄保險及前方保險;除非三種保險均已開啟,否則將無法擊發。1987美軍正式向瑞典進行採購與配賦作業,並命名為M136.AT-4火箭彈,1994年本軍向美採購獲得,8進一步提昇基層部隊反裝甲戰力。

研究小組教學資料

傳統火箭彈為求能達無後座力效果,射擊時運用「作用反作用力」戴維斯原理,將相對的能量導引至後方。射擊時除會產生高音爆外,特徵顯著的筒後噴火極易暴露射擊位置與危害友軍。射擊陣地更無法選定狹小空間,戰場生存不易。AT-4為改善前述限制因素,於彈體後端加裝以海水為主體的封閉層,運用能量吸收方式,在拋射藥快速燃燒並向後噴火時,同時引爆塩水封閉層產生霧狀體降低壓力波,大幅縮短筒後噴火距離,使射手面對險峻的城鎮作戰環境,能遂行封閉空間射擊。同時增加夜視鏡組裝功能,進一步強化夜戰能力。經改改良後之AT-4CS(Confined Space),將更能適應現代戰爭型態。⁹

四、機械人-57型

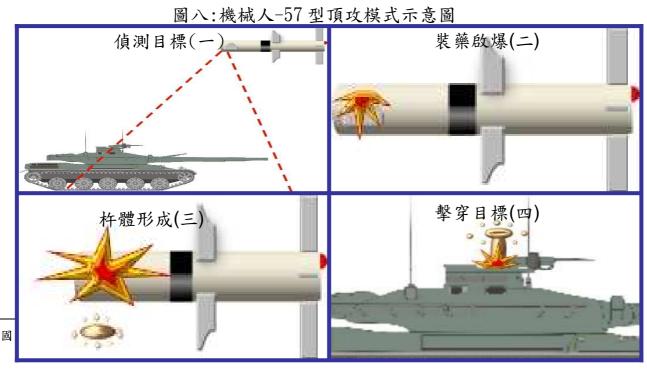
隨著裝甲材質日益精進,傳統所謂「反戰車」(Anti-tank)單一概念,逐漸改變為以反裝甲(Anti-armor)為重點,同時附加反制堅固工事、城鎮家屋與人員殺傷等多樣用途。為了適應現代戰爭,原專為飛彈設計的資訊化觀瞄系統,積極建置於火箭彈本身。透過精密的觀瞄系統,著實有效增

⁸ 陸軍總司令部印領,《近程反裝甲火箭-AT-4 操作手冊》(桃園:陸軍總司令部,2000 年 11 月)頁 1-1 至 2-2

⁹ 〈AT-4〉,維基百科: http://zh.wikipedia.org/wiki/gd/wiki/AT4

加射程與精度,強化步兵整體作戰效益。如美國雷神公司為以 SMAW II 為基礎,進一步改良該武器各項系統,定名為巨蟒反裝甲火箭筒(Serpent Modular Assault Weapon),滿足了美軍陸戰隊作戰需求(如圖六), 巨蟒即具備射控資訊化、彈藥多用途化、作戰全天候化先進功能。

目前第三代反裝甲飛彈,正積極運用「頂攻」射擊模式以有效摧毀目標。而「頂攻」即是由瑞典比爾(BILL)反戰車飛彈首開先河。為能符合「室內射擊」與「頂攻」性能需求,該國特將比爾飛彈與AT-4CS優異性能加以整合,成功研發下一代輕型反裝甲武器—「機械人-57型」(Robot 57)(如圖七)。10該火箭彈口徑115公厘、全重約11公斤、有效射程600公尺。圖六:美軍新一代巨蟒反裝甲火箭筒 圖七:瑞典新一代火箭彈—機械人-57


雷神公司商情簡報

飛揚軍事:

http://www.fyjs.cn/bbs/read.php?tid=173455

與傳統火箭彈「直攻」方式不同,其飛行路徑將維持於目標上方約1公尺,當彈體飛越目標上方後,內部引信自動引爆主裝藥,開口向下之藥型罩將形成高速、高壓、高密度金屬杵體,擊穿戰甲車頂部摧毀目標(如圖八)。

資料來源:研究小組自行繪製

叁、對我國之啟發

依據前文分析,瑞典對於步兵肩射型反裝甲武器研製之能成功,主要歸功於整合國家資源、開發精密軍事工藝技術與戰場實務驗證。正如許多先進國發展模式,瑞典在該型武器發展,同時擁有裝備輕量化、射控系統半自動化、彈藥功能多樣化等現代條件。我國多年前即具備火箭彈製造技術。然若要符合第三代條件,則仍有下列諸項不足之處:

第一,穿甲厚度 20-30 公分,無法有效擊穿中共裝配先進裝甲材質之戰甲 車輛。

第二,有效射程300公尺,接戰距離過短易遭敵火威脅。

第三,傳統「硬式發射」模式,無法於狹小、隱密空間射擊,嚴重威脅射 手安全。

第四,無夜間瞄準裝置,缺乏全天候作戰能力。

第五,彈藥功能單一性,戰場選項不足。

面對中共武力威嚇,我國若要積極整備本軍部隊反裝甲之戰力,瑞典等西方國家之經驗,應能給予以下之啟發。

一、積極強化部隊反裝甲之戰力

中共以裝甲部隊為地面部隊戰力建立核心,是眾所皆知的軍事戰略作為。其次台灣本島雖四面環海,在未來的戰爭中,可預見地面作戰依然為勝負之關鍵。尤其共軍多年來積極強化兩棲機械化部隊火力與作戰強度(如表三),甚而在「多層雙超」的登陸作戰思維指導下,空降十五軍亦編配輕型戰甲車,企圖在未來的台海戰爭中掌握優勢作為。質言之,無論是第一線守備或打擊部隊,皆可能面對敵戰甲車輛。若敵突入我城鎮地區,則更要面對異常艱困的戰場環境。以此觀之,台澎防衛作戰全期,必須集中整合現有如66火箭彈等近程部隊反裝甲戰力,於敵可能登陸之地區,配合陸航、砲兵重砲等各型遠程火力,制壓及打亂其作戰編組。待目標出現於300公尺以內,拖式與標槍飛彈以機動支援運用之方式對敵實施摧毀射擊,形成有效的反裝甲作戰縱深。

表三

中共現役主力戰車(步兵戰鬥車)基本資料分析表							
名稱	重量	武器口徑 (公厘)	裝甲材質	最高速率 (公里/時)	備註		
59式系列	35噸	100	均質	50	履帶型		
63 A 式	22噸	105	複合	28 (水上)	履帶型		
69式系列	36. 7噸	100	均質鋼板	50	履帶型		
79式	36.8噸	105	均質鋼板	50	履帶型		
80/88C式	38噸	105	反應、複合	57	履帶型		
85Ⅱ式	39.5噸	105	複合	57	履帶型		
85Ⅲ式	42.5噸	125	反應、複合	65	履帶型		
98式	51噸	125	反應、複合	60	履帶型		
90系列	16噸	25機砲	反應、複合	60	輪型		
92式系列 (WZ55)	16噸	30機砲	反應、複合	85 7 (水上)	輪型		
93式	11~15噸	50機槍	反應、複合	70 8 (水上)	輪型		
86B式	13. 3噸	30機砲	複合	65 7 (水上)	輪型		

資料來源:

- 1.魏宗志,共軍坦克發展之研究,裝甲兵學術月刊,2008年10月
- 2.鄧坤誠,〈共軍登陸作戰主力—兩棲機械化步兵師簡介與我精進作為〉,陸軍學術雙月刊,96年4月號,第43卷,第492期
- 3.劉建宏〈共軍輪型戰甲車發展現況研究探討〉,裝甲兵季刊,2010年6月3號
- 4.研究小組自行整理

其次,肩射型反裝甲武器有賴軍事工藝技術日益精進,除能射擊戰甲車外,各類工事掩體、密集散兵、多人操作武器,甚至低飛滯空飛行載具更已納入射擊範圍。¹¹ 性能多元化的反裝甲武器,將更能保證部隊能應付多方挑戰,掌握戰場優勢作為。尤其價格與飛彈相比尤為低廉,更能在有

^{11 1993} 年 10 月美軍於索馬利亞的「摩加迪休戰鬥」中,遭到當地民兵以 RPG-7 火箭彈擊落 2 架黑鷹直昇機,並擊傷 另外 2 架及數量悍馬車。鄧坤誠,〈共軍登陸作戰主力—兩棲機械化步兵師簡介與我精進作為〉,《陸軍學術雙月刊》, (桃園),第 47 卷,第 516 期,100 年 4 月,頁 71 至 72

限的國防資源發揮最大效能。因此,基於「打、裝、編、訓」之建軍理念, 與面對未來戰場環境的挑戰,本軍應針對 500 公尺以上 2000 公尺以內射 程建置反裝甲武器。配合現有反裝甲飛彈,建構出如美軍營級部隊,以飛 彈系統為核心之高效能部隊反裝甲戰力(如表四)。

表四

•						
美軍營級部隊反裝甲戰力建置能力分析表						
武器類別	有效射程 (公尺)	穿甲厚度 (公分)	編配單位			
SMAW火箭彈	500	60	班(陸戰隊)			
AT-4 CS火箭彈	300	40-70	班			
M-72系列火箭彈	300	30	班			
拖式飛彈	3. 750	102.5(拖2A)	1. 依單位特性配賦連(排)級2. 營級具有拖飛排編制			
標槍飛彈	2000	72	排			
掠奪者飛彈	700	60	排			
備考:卡爾古斯塔夫系列美軍專為特種部隊設置。						

資料來源:

- 1.HEADQUARTERS DEPARTMENT OF THE ARMY, FM 3-21.91(FM 7-91), DECEMBER 2002《美軍反裝甲教則》。
- 2.研究小組自行整理。

二、有效建立裝備自主研發能量

歐盟各國平均約85%軍備採購,指名採購國內生產裝備。主要目的不僅是為了保護國內就業機會、促進投資意願,更要確保供應鏈無虞與保護重要關鍵技術。¹² 國防工業之研發成果亦會影響如電子、資訊、通信、奈米等尖端技術。民間產業更能透過技術移轉,強化產業升級提昇競爭力。職是之故,各國莫不積極提升國防自主性。瑞典獨立自主的軍備研製機制,創造出許多享譽盛名的軍事裝備。該國三軍部隊所使用武器,絕大多數為其自製品,或在其技術基礎上整合他國資源所發展。我國自然認知此一重要性,2000年公佈之國防法第20條中明訂:「行政院所屬各機關應依國防政策,結合民間力量,發展國防科技工業,獲得武器裝備,以自製為優先,向外採購時,應落實技術轉移,達成獨立自主之國防建設。」新式武

¹² 歐盟地區每年的國防交易額約550億歐元,提供近30餘萬人就業機會。李育慈譯,<歐洲國防工業提升競爭力策略>《國防譯粹》(台北),第36卷第9期,國防部史政編譯局,2009年9月,頁81

器裝備研發,亦本「先求有、在求好、在求更好」政策指導。¹³ 其目的即希望透過國家資源,主導整體軍備發展達成國防自主目標。2011 年即研製 1 萬 2 千餘項,產值 328 億餘元。¹⁴

然自主研發經常必須面對需求量少、研發成本提升致使單價過高等限制因素,進而無法形成全縱深的反裝甲體系。我國自當著重關鍵技術研究,並改良現行裝備為重點。除積極提升 66 火箭彈性能外,亦應參考瑞典發展經驗,整合無座力砲與火箭彈的功能。例如,傳統火箭發射管多以光膛方式設計,射程自然受到壓縮,若運用膛線性能即能強化有效射程。我國早期亦曾自主研發膛線式無座力砲;如射程 900 公尺、穿甲厚度 10 公分的 75 公厘無座力砲。有效射程 1096 公尺、穿甲厚度 50 公分的 106 公厘無座力砲,皆曾是本軍主要部隊反裝甲武器。在有效配合作戰需求、國家資源適宜分配與市場開發等積極作為,定能建立自主研改能量進而達成國防自主之目標。

三、積極發展第三代反裝甲火箭

1980年代初期裝甲防護技術不斷提升與改進,復因地面戰場裝甲車輛運用日益增加,若僅依賴數量少且價格昂貴的反裝甲飛彈,將無法滿足反裝甲戰鬥需求。因此各國加速研發第三代反裝甲火箭彈(如附表五),其整體包含以下特點:

(一)穿甲能力增加:第二代反裝甲火箭彈穿甲厚度均在20-30公分之間,無法有效剋制現今戰甲車輛。因此透過加大彈頭直徑、改良引信作用模式及優化藥型罩設計提升穿甲厚度。例如:卡爾古斯塔夫射擊 135公厘超口徑彈藥,穿甲厚度將達90公分。德製鐵拳3型使用之MK118高爆穿甲彈,在彈藥前端加裝探針式的延遲引信,當彈藥撞擊如裝甲車等密度較高的硬質目標能瞬間啟爆;若目標是野戰工事或建築物等軟性目標,彈藥則能透過延遲裝置,於進入目標內部後再行啟爆提高破壞效能。俄製RPG-29改良傳統單錐藥型罩改採雙錐或多錐藥型罩,同時運用冷擠壓¹⁵ 或旋壓成型工藝技術¹⁶,改善金屬噴流的連續性與質量,穿甲厚度可達70公分以上,可應付反應式或複合式等現代裝甲。

(二)增大有效射程:新一代火箭彈運用光學瞄準具、雷射測具等取代傳統簡易的機械瞄準具。甚至加裝小型的光電射控系統,不僅提高命中率,並配合適量的拋射藥量將有效射程增加至600公尺以上。如中共PF-98營用型反裝甲火箭,其有效射程可達800公尺。

¹³ 國防部,《中華民國壹百年國防報告書》(台北:國防部,2011年7月),頁150

¹⁴ 同註 13,頁 153 至 154

¹⁵ 陳國光〈彈藥製造工藝學〉《第四章彈體毛坯冷擠壓》,北京理工大學出版社,2004年10月,頁137

¹⁶ 王儒策,《第六章彈藥裝藥技術》, 北京, 2002 年 12 月, 頁 216-217

(三)提升戰場存活力: 傳統火箭彈射擊的筒後噴火,往往造成廣面積能量釋放,造成明顯的射擊特徵,暴露射手位置及無法在小空間(如碉堡、建築物等)射擊。高達 700度以上的高溫,更有傷及友軍的顧慮。如何改良前述限制因素,則需重新選擇新型發射裝置。如運用反衝重物技術¹⁷或使用少量推進裝藥方式等,¹⁸以降低射擊特徵,提升射手戰場存活率。例如鐵拳3型、Wasp-58)及AT-4(CS)等火箭彈則能在有條件之密閉、狹小空間使用。

(四)多功能、多用途:經過多年的戰爭經驗,許多國家已體認出多用途火箭彈是有其必要性。卡爾古斯塔夫系列配賦之各型彈藥,即針對現代戰爭步兵必須面對更多樣的目標,所銳意發展之成果。其他如美製SMAW火箭發射器、以色列B-300、南非FT-5、中共PF98營、連用型反裝甲火箭與俄製RPG-29,亦在此需求面上朝多功能、多用途,以滿足多元化的任務。表五

世界各國第三代反裝甲(發射器)性能諸元分析概要表								
品名	全重(公斤)	口徑 (公厘)	有效射程 (公尺)	穿甲厚度 (公分)	夜戰 能力	使用 方式	產製國家	彈藥類別
AT-4CS	6. 7	84	400	40-70	\circ	使用後拋棄	瑞典	1.穿甲彈 2.高爆榴彈
APILAS	10	112	500	72	\bigcirc	使用後拋棄	法國	穿甲彈
LAW80	9	94	500	70	X	使用後拋棄	英國	1.穿甲彈 2.高爆榴彈 3.溫壓彈
WASP	3	165	300	33	X	使用後拋棄	法國	穿甲彈
FT5	11.3	100	400	65	\circ	重複使用	南非	1.穿甲彈 2.高爆榴彈
鐵拳3	12	110	400-600	70-90	\bigcirc	重複使用	德國	1.穿甲彈 2.高爆榴彈
SMAW	7. 4	83	500	60-90	\bigcirc	重複使用	美國	1.穿甲彈 2.高爆榴彈
B300	8	82	400	60-80	\bigcirc	重複使用	以色列	1.穿甲彈 2.高爆榴彈
RPG-29	10	40	300	65	\circ	重複使用	俄羅斯	1.穿甲彈 2.高爆榴彈
PF-89	3. 7	80	300	60	X	重複使用	中共	1.穿甲彈 2.高爆榴彈
PF-98	13.8	120	800	80	0	重複使用	中共	1.穿甲彈

¹⁷ 反衝重物技術,利用後拋的附加物來平衡向前運動的彈丸,如 AT-4(CS)C 筒後方有鹽水用來中和火燄。廖英輝〈步兵的即時火力支援—肩射反裝甲武力武器〉,全球防衛雜誌,1991年4月,80期,頁53

¹⁸ 同註 5, 頁 258

2.多用途榴彈

資料來源:

- 1.黎春林〈單兵筒式武器〉《國產狙擊手的空間》
- 2.http://www.lantianyu.net/pdf19/ts055038_2.thm《二十一世紀輕武器》
- 3. 馬汀. 道格提<世界武器大觀—輕型經典武器圖鑑>,明天國際圖書有限公司,台北,2008年12月
- 4. 黄守銓, 卞榮宣〈世界軍武發展史. 輕兵器篇〉《裝甲車輛的近程剋星-火箭筒》, 2004年3月
- 5.景繼生〈圖說槍·輕武器〉,文經出版社有限公司,2009年3月,第1版
- 6. 互動百科, 軍事:http://www.hudong.com/wiki hudong
- 7.作者自行整理

四、裝備性能多樣滿足作戰需求

瑞典在研製過程中,裝備性能的多樣性,實為建立優質品牌的重要關鍵。儘管諸多國家均採用「拋棄式」彈藥,該國卻依然能堅持務實態度不斷的改良,並透過嚴格的戰場驗證,進一步提升裝備性能,使卡爾古斯塔夫能行銷 30 餘國。不僅重複式火箭筒建立起優質商譽,AT-4 系列在拋棄式系列亦有舉足輕重之地位。甚至在新一代火箭彈發展上,超越其他西方國家。瑞典在反裝甲武器的領域中,積極開拓多樣性裝備,客戶依據需求選擇所要商品完備火力效能。考量共軍地面武力配賦大量的戰甲車輛,未來我陸上作戰環境,將要有面對敵戰車威脅之心理準備。不論在灘際、城鎮、山地等地形作戰,應以優先打擊敵裝甲部隊為首要。因此建構完整的部隊反裝甲火力,有效運用地形、障礙設置與反裝甲武器相配合,乘敵立足未穩之際,一舉擊滅來犯之敵,以利我爾後作戰發展。

儘管我國在裝備自主研發有其主、客觀限制因素,然並不代表無研發實力。例如吾人經常認為;66 火箭彈已無法符合現行戰爭。但正如美軍必須應付恐怖主義挑戰時,對於潛藏於洞穴、掩體、建築物內之敵,重型武器反而無法發揮所長,而必須重新啟用 M72 型 66 公厘火箭彈,¹⁹ 我國對該型彈藥與傳統無座力砲皆有自主研製能力。國內學者曾祥穎亦指出,面對國防預算必然削減的事實面,各國部隊出現新舊裝備並存的現象將不足以為奇。如何提升現役裝備功能,整合新舊世代武器之間的差異延長服役年限,期能肆應未來戰爭需要,是現代建軍備戰相當重要的課題。²⁰ 戰場狀況變化萬端,自非幾項武器就能有所決定性改變,必須合理運用各項效能,針對不同目標選擇至當武器,以符合經濟效益與部隊現實需求。

肆、結語:

21 世紀的軍事衝突表現出戰爭環境的多變性。無論是以城鎮戰為主的 伊拉克戰爭,亦或是逼使美軍不得不進入崇山峻嶺的阿富汗戰爭,除使大 規模的武裝部隊無法施展外,殺傷力強的高精密火力亦受到運用限制,步

¹⁹ 國防部,《城鎮戰彙編》(台北:史政編譯室,2008年9月)頁194

²⁰ 曾祥穎,《第五次軍事事務革命》(台北市:麥田:城邦文化,2003年12月),頁148

兵肩射型反裝甲武器卻在此際發揮「不對稱作戰」效益。面對共軍地面機械化部隊,不論在火力、防護力、機動力等各項效能均有所精進,對於我之防衛作戰形成重大壓力。因此,如何在既有的軍事技術基礎與有限的國防資源,強化地面防衛部隊反裝甲戰力,配合既有之戰場經營作為,方能對敵行有效打擊作為,進而掌握戰場主動性確保國土安全。

姓名:夏天生

服務單位:步兵訓練指揮部暨步兵學校總教官室兵器組反裝甲小組

職稱:中校教官

學歷:第一士校常士班 36 期,陸軍官校專科 11 期,步校正規班 316 期, 中山大學大陸研究所碩士

經歷:任班長、排長、連長、步校中隊長、教官,現任職於步校反裝甲小 組教官

主要專長:步兵反裝甲武器教學與操作

聯絡地址:高雄市鼓山區篤敬路 35 號 17 樓之 2

聯絡電話:07-5539532 0913-323638