自由級濱海作戰艦作戰構想及模組介紹

An Introduction to Littoral Battle Ships of Freedom Class

海軍上尉 陳柏勳

提 要:

- 一、第一艘濱海戰鬥艦自由號已於2008年11月8日成軍,象徵著美國海軍由「遠洋進攻」轉向「以海制陸」的戰略轉型。而濱海作戰艦正是用以執行濱海作戰任務的最佳選擇。
- 二、濱海作戰艦的主要任務包括反水面作戰、反潛作戰、水雷反制作戰 與支援特種作戰,另外尚可執行警戒、滲透、封鎖、登艦檢查等低 強度作戰任務。
- 三、濱海作戰艦使用模組化的概念,藉由搭配不同的任務模組來執行不同的任務,可以在短時間內進行模組的更換,對於任務的執行將更為有效率。
- 四、濱海戰鬥艦大幅採用自動化技術與無人載具做為偵蒐器,有效降低操作人員數量,藉以滿足大量部署的目標,預計未來將成為美國海軍水面艦隊不可或缺的要角之一。

關鍵詞:濱海戰鬥艦、模組化

壹、前言

第一艘濱海作戰艦(Littoral Battle Ships, LCS)自由號(LCS-1, Freedom)已於2008年11月8日正式成軍,這象徵著美國海軍作戰思維的重大轉變,亦即未來的戰場將逐漸由遠海轉變為近海,甚至是濱海地區(Littoral Area)。這主要的原因係1990年代蘇聯的解體,使得作戰環境與主要敵人都已大為改變,綜觀自1990年代迄今,美海軍

艦艇在戰鬥中的重大損失共計有5艘,全部都發生在近海水域。其中3艘遭水雷損傷,1艘被攻船飛彈擊中,還有1艘係遭自殺快艇所襲擊。這些不對稱的損失使得美國海軍必須重新思考海上作戰的方式,特別是在這些濱海地區。

配備神盾系統與標準飛彈的巡洋艦與驅 逐艦或許可有效地壓制敵方的空中威脅,但 是對於複雜的濱海地區可說是力有未逮;在 環境複雜的濱海地區攻船飛彈、水雷甚至自

洛馬集團的LCS1外觀

資料來源: Lockheed Martin Corporation(http://www.lockheedmartin.com/)

殺快艇在內的不對稱武器都嚴重威脅著艦艇 的安全;在近海地區水面目標繁雜,難以識 別,加上複雜的電磁波、水文環境,極為容 易受到攻擊; 此外其他諸如警戒、滲透、封 鎖、登艦檢查等低強度作戰任務,都需要一 種具備高機動性、高性能, 造價相對較為低 廉的輕型艦艇來執行這些任務,如此才能適 應美海軍由「遠洋進攻」向「以海制陸」的 戰略轉變。而LCS正是被設計來執行上述任 務的最佳艦艇。

貳、計畫起源

美國海軍在2004年提出濱海作戰艦的相 關作戰需求,而後經過一連串的評定與驗證 後,最後由洛馬集團與通用動力集團分別獲 得合約進行生產。由於LCS的設計概念不同 於以往,許多作戰需求的想定都和傳統大型 水面艦艇不同,故採用先導生產的方式來製 造LCS;在2004年12月,美國海軍與洛馬公 司簽訂LCS1(即為自由級)的建造合約,價值 為2.2億美元。2005年10月,美國海軍與通

通用集團的CLS2外觀

資料來源: General Dynamics Corporation(http://www. gd.com/)

用動力公司簽訂了LCS2(即為獨立級)的建造 合約,價值為2.23億美元,這2艘都算是LCS 先期的實驗艦。接著美海軍在2006年6月與 洛馬公司簽訂LCS3的建造合約,價值為1.98 億美元。同年12月,美海軍與通用動力公司 簽訂LCS4的建造合約,價值為2.08億美元。

LCS1自由號於2005年6月2日安放龍骨, 2006年9月23日下水,經過一系列的海上測 試與訓練後,於2008年9月18交付美國海軍 ,同年11月18日正式成軍;而LCS2也在2009 年度完成海試後交付美國海軍提供測試,並 在2010年1月16日正式成軍。未來美國海軍 預計將採購多達55艘濱海作戰艦,以取代派 里級巡防艦執行近海作戰任務(如圖一、圖 二)。

參、設計思想

LCS主要的作戰任務就是要能支配沿海 地區的海權優勢,並因應各種正規與非正 規性的武器威脅,故LCS本身須具備高度的 靈敏性與自衛武力, 人員需求量應盡可能地

圖三 LCS的高度自動化,以及大量使用各種水面/水下無人載具,能有效降低人員工作負擔,提升作戰效率

資料來源:US NAVY(http://www.navy.mil/swf/index.asp)、Lockheed Martin Corporation(http://www.lockheedmartin.com/)、General Dynamics Corporation(http://www.gd.com/)

減至最小,才能降低操作成本,以符合大量部署的目標;任務特性上,LCS專司反水雷作戰、反潛作戰、反水面作戰與支援特種作戰,故使用模組化配置(Modularization),以求最大的任務執行效率;再者由於自身載台噸位的限制,造成偵蒐能力有限,必須透過鏈傳及各式無人載具來偵測敵情,提供指揮官更加即時與正確的戰場資訊,這些就是LCS的設計構想。

目前LCS有2種構型,即自由級與獨立級,目前自由級艦已於2008年11月成軍,本文主要僅就自由級濱海作戰艦(以下簡稱

LCS1)(如圖三)的性能、特色、作戰效能與 相關作戰模組做介紹。

肆、艦艇諸元與特色

自由號(Freedom, LCS1)全長378.3呎(約115.3公尺),最大寬度57.4呎(約17.5公尺),最大吃水深度13.5呎(約4.13公尺),滿載排水量約3000噸;輪機動力系統採用燃氣渦輪機與柴油主機相互搭配(COGAD),使用2部Rolls-Royce的MT30燃氣渦輪引擎(單具引擎最大輸出功率可達36MW)與2部Colt-Pielstick的柴油引擎來帶動4具Rolls-Royce的

噴水推進器(Water-Jet Propulsion),強大 的動力使得超過3,000噸的自由級艦最高速 度可達45節,操作性能比起許多快艇毫不遜 色;且具備高度的自動化程度,使得全艦所 需的操作人員降至45人,並可支援特戰小組 駐艦,總計乘員可達75員。若以航速18節, 其最大航程可達3.600浬。

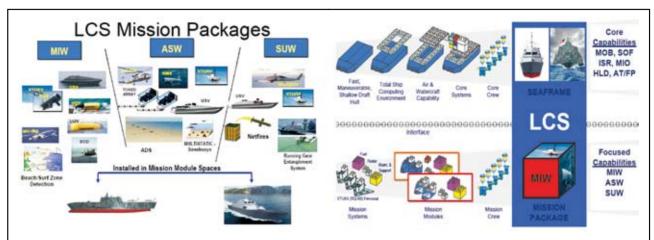
LCS1因設計理念的關係,使得該型艦具 有許多不同於其他艦艇的特色,試簡述於下:

一、具備高度匿蹤性

LCS1在船體設計上,不同於LCS2的三體 船身,採用了單船體設計,雖然甲板總面積 不如LCS2,但是結構簡單而堅固也是其優點 之一。全艦主要結構採用全鋼材製造,上層 結構物考量提高船舶穩定度和降低重量仍採 用鋁合金做為材料,但重要部位考量防火和 保護能力仍採用鋼材,此外為了降低雷達截 面積亦使用相當程度的複合材料。該艦外觀 設計採用船舷內傾以降低雷達反射截面積, 並採用全封閉式上層建築; 主桅杆設計亦經 過大幅簡化,全艦外觀極為平整,連左舷小 艇吊放區都有金屬網加以掩蔽。透過先進的 匿蹤設計,使得3,000噸左右的船體其雷達 截面積約略同一般漁船大小而已,其煙囪排 氣管亦經過特殊設計,透過上層結構的遮蔽 ,能有效減低排氣造成的熱訊號源。

二、高度自動化與具備靈敏操作性能

LCS1噸位雖超過3,000噸以上,但具備 極優異的運動性能,且吃水深度淺(約4公尺),可以自由活動於淺水水域中;LCS1可在 全速(45節)的情況下,在8個船身長度(約 1000碼)即可完成360度的迴旋;在30節的



圖四 LCS1於海上執行測試之圖片 資料來源: US NAVY(http://www.navy.mil/swf/index.asp)

速度下,迴轉180度也只需要3個船身(約380 碼)即可完成;並在相同的距離內,於2分鐘 內即可由靜止加速至30節以上。由於採用噴 水推進器,無須考慮吃水深淺或暗藏水中的 漁網、漂浮物對於螺槳葉片所造成的影響, 使得LCS1在淺水區域所展現操作效能更是今 人感到滿意(如圖四)。而LCS1的戰鬥管理系 統使用開放式架構(Open Frame Architecture),以滿足各型偵蒐設備的加改裝配置 ,加上艦艇的高度自動化使得全艦編制人數 僅需45人,更能滿足大量部署的目標。

三、強大的籌載能力搭配各式先進偵蒐 器

LCS1除了具有良好的匿蹤性與操作性 能外,艦上尚配備先進的感測器(Sensors) 和戰術資料鏈(Tactical Links)。LCS主要 執行的任務包括反水面作戰(ASW)、反潛作 戰(SUW)與水雷反制作戰(MIW)與支援特種作 戰任務。透過搭配眾多不同功能的模組即 可順利地執行各種任務,此即為任務裝備模 組化,就如同積木一般,將不同功能的模組

圖五 LCS1的各種任務模組;透過模組化的方式,滿足各種作戰需求

資料來源:NAVSEA(http://www.navsea.navy.mil/default.aspx)LCS主要製造廠商

圖六 寬大的飛行甲板,適合操作CH-53或是CV-22等中大型直升機

資料來源: US NAVY(http://www.navy.mil/swf/index.asp)

圖七 各式水面/水下載具或是特戰小組可由艦艉艉門/舷邊側門施放或回收

資料來源: US NAVY(http://www.navy.mil/swf/index.asp)

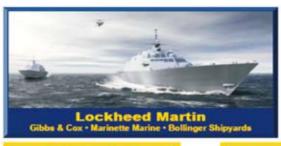
(Mission Packages),依任務目的不同而進行換裝。此外LCS1亦可以廣泛地支援各種非軍事用途,包括打擊走私、緝毒、巡邏偵察等任務。LCS1所搭配的任務模組(如圖五)所示。

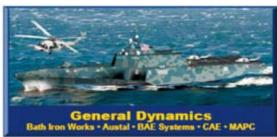
LCS1具有相當大的酬載能力,包括2架MH-60R多功能直升機執行反潛、特戰任務,或是1架MH-60R與3架多功能無人飛行載具(MQ-8B),另外尚包含無人水面(USV)與水下載具(UUV)。為了有效運用各種偵蒐器,LCS1有面積相當大的飛行甲板用以操作直升機與無人載具,除了MH-60R或UTAUV外,亦有能力操作CV-22等中、大型直升機執行任務(如圖六、圖七)。而飛行甲板下方為各式水面/水下偵蒐載具的施放/儲放空間。

伍、自由級艦的武器偵蒐系統與 配置

LCSI配設一具3D長程對空雷達、水面搜索雷達、以及一具光學/紅外線的指揮儀,可導引火砲攻擊中/近程目標。艦體聲納提供水下目標的偵測。LCSI的武裝包括一門57公厘快砲,搭配可程式化的近發引信彈藥,用以對付中小型快速目標的來襲;一門公羊近迫防禦系統,提供本身對來襲飛彈的自我防護;垂直飛彈發射系統,未來將換裝新發展的NLOSLS系統,以加強對岸基目標的打擊火力(如圖八)。

LCS1採用最新的整合艦橋系統(Integrated Bridge System, IBS),配合自動 化技術,藉以降低艦艇操作人員負擔與數 量;並採用了新式戰場資訊管理系統(COM-

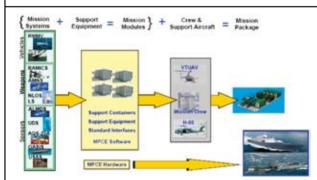



圖八 LCS1的各型偵蒐器與武裝配置 資料來源: Lockheed Martin Corporation(http://www.lockheedmartin.com/)

BATSS-21)。COMBATSS-21採開放式的架構,可以有效整合艦艇值蒐器與戰術資料鏈所提供的戰場資訊。此外亦具備模組化的特性,使得未來在加改裝新式值蒐器時僅需修改相關軟體,即可融入艦艇本身的戰鬥系統之中,目前不僅已獲美國海軍採用,美國海岸巡防隊深水計畫所建造的艦艇亦使用此系統,以利艦艇未來的改裝與性能提升,開放式戰鬥系統架構目前儼然已成為世界的發展主流。

陸、自由級艦的酬載模組介紹

LCS1主要任務係執行反潛作戰、反水雷作戰、反水面作戰與支援特種任務作戰。綜觀LCS計畫在成本、任務轉換特性上的考量,LCS1大幅地採用模組化的觀念,使用大量的無人載具做為艦艇自身的偵蒐器,整合於開放式戰鬥系統架構下,故在相同載台上,便可以快速轉換艦艇的功能;亦即一艘原執行哨戒任務的LCS1返港後僅需更改其搭載的模組,即可迅速轉換再次出港,執行反水雷任務或是支援特種作戰(如圖九、圖十),這些在作戰任務調配或是後勤維修補給上都具



111

圖九 LCS的各型任務模組與組成

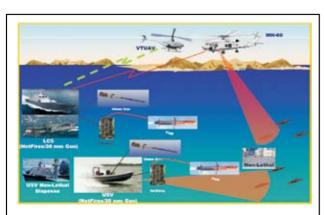
資料來源: NAVSEA(http://www.navsea.navy.mil/default.aspx)LCS主要製造廠商

LCS引進模組化概念,可依任務不 同,快速地進行任務模組分配

資料來源:NAVSEA(http://www.navsea.navy.mil/default. aspx)LCS主要製造廠商

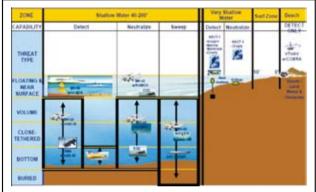
反潛作戰示意圖

資料來源: NAVSEA(http://www.navsea.navy.mil/default. aspx)LCS主要製造廠商


有相當的彈性。

依據不同的任務特性,使用不同的模組 ,如此彈性有效率的作戰方式,可說是LCS 計畫中最大的特點。大量地使用無人載具作 為偵蒐儀器,除可降低人員傷亡的可能性外 ,更可使任務執行更有效率。目前RQ-8M及

RMS均已正式服役於艦隊之中,作為LCS作戰 的重要耳目。以下針對LCS1的各種作戰模式 與相關使用載具功能做簡單地描述說明:


一、反潛作戰

LCS在反潛作戰中主要任務係建構反潛 阻柵,阻止敵潛艦進入我方海域。此模組內

圖十二 反水面作戰示意圖

資料來源:NAVSEA(http://www.navsea.navy.mil/default.aspx)LCS主要製造廠商

圖十三 反水面作戰示意圖

資料來源:NAVSEA(http://www.navsea.navy.mil/default. aspx)LCS主要製造廠商

主要配置了包括多功能的MH-60R反潛型直升機(可搭載聲納、聲標或以魚雷對目標實施攻擊)、無人空中載具VTUAV(RQ-8M,實施資料鏈傳)(如圖十一)、無人水面載具(USV搭配拖曳聲納)、無人水下載具(RMS/AQS-20聲納、AUVs)搭配LCS的艦體聲納與魚雷執行反潛偵蒐與作戰任務。

二、反水面作戰

反水面作戰主要想定是能攻擊或躲避來 自水面艦艇的攻擊(如圖十二),特別是高速 且密集來犯的自殺小艇。此模組主要架構包 括MH-60R、RQ-8M(可執行偵蒐任務,並搭載地獄火飛彈、機砲與火箭彈實施攻擊),無人水面載具(USV執行偵蒐任務)搭配LCS自身的火砲與艦對艦飛彈對目標實施攻擊。

三、反水雷作戰

反制水雷作戰模組主要目的係能偵測、 識別、標定並清除水雷(如圖十三),此模組 包括了MH-60R直升機(可搭載新研發的水雷 識別莢艙)、無人水面載具(USV)、WLD-1遙 控獵雷系統(RMS)與無人水下載具(BPAUV、 REMUS),可在近海淺水區有效地偵測、識別 並掃除水雷。

四、協助特種作戰

LCS1除了上述作戰功能之外,亦能提供 特種作戰任務的支援,且艦艉與右舷水線附 近均設有開口,以便特種作戰人員的釋放與 回收。此外LCS的吃水淺、高隱蔽性與強大 攻擊火力的特色,對於特種作戰執行均有相 當大的幫助。

柒、結語

隨著LCS1及LCS2的成軍,代表著美國海軍正逐漸進行其兵力結構的調整;透過LCS來遂行沿海地區任務,藉以達成沿海地區的控制,保障美國海軍在濱海區域的安全介入,從而確保主要戰鬥力量用於執行以海向陸的目標。

就以近年來麻六甲海峽與索馬利亞海域 海盜猖狂之際,令各國政府頭疼不已時,此 時若有一定數量的LCS在此服勤,那麼該型 艦的高度機動性與任務彈性必定相當適合在 附近的海域進行偵察、護航與海盜打擊任務

作戰研究

。而LCS無論在造艦科技、人員編裝與作戰 想定都與以往大不相同,故想必在初期測試 或執勤時,將勢必須要相當時間來進行訓練 與驗證。

<參考資料>

美國海軍

- 1. US NAVY (http://www.navy.mil/
 swf/index.asp)
 - 2. NAVSEA (http://www.navsea.navy.

mil/default.aspx)LCS主要製造廠商

- 3. Lockheed Martin Corporation (http://www.lockheedmartin.com/)
- 4. General Dynamics Corporation (http://www.gd.com/)

作者簡介:

陳柏勳上尉,海軍官校93年班,國立成功 大學系統所機電控制組碩士,現就讀於國 防大學國防語言中心。

老軍艦的故事

中基軍艦 LST-206

中基艦原名為美海軍LST-1017,美國在二次大戰後為協助我國建立海軍依中美租借法案,於民國35年12月14日在青島移交我國,首任艦長為馮啟聰,隸屬海軍總部,民國37年登陸艦隊部成立後改隸該部指揮,民國42年2月登陸艦隊部成立52戰隊,該艦即撥交其指揮。同年5月又改隸53戰隊指揮,至民國50年整編為艦隊指揮部登二艦隊部61戰隊,到了民國73年又整編為登二艦隊部244戰隊。

