

大理岩接觸爆炸試驗

與準則驗證

作者簡介

陳祺杰上尉,指職軍官班90-1期、國立臺灣科技大學營建工 程系、國防大學理工學院軍事工程碩士;曾任後勤官、工程 官、教官,現任職於陸軍工兵學校軍事工程組。

提要》》

- 一、爆破教範為國軍爆破作業之重要參考準則,應用範圍廣泛,尤其近年來天 災所引起的落石坍方事件,多委請工兵部隊進行處置,因此準則中有關岩 石爆破的適用性及準確性,直接影響救援任務的遂行。
- 二、岩石爆破主要目的為分解岩石,續以施工機具進行清運,當石塊過大時則 可採用二次爆破方式進行分解,其中以接觸爆炸方法的準備與處理速度最 快,能符合救援的時效性。
- 三、在爆破教範中接觸爆炸的部分,僅提出岩石塊體直徑與炸藥量的關係,並 未詳細說明適用的岩石強度範圍與破壞程度;而美軍TM5-855-1技術手冊 雖提出炸藥量與破壞程度的關係,可以補足爆破教範的不足,然而其適用 性有待求證。
- 四、在眾多岩石種類中,大理岩在強度與取得數量上能滿足本研究之目的,因

此試驗時以大理岩作為試驗材料。而為了控制炸藥量,本研究採用C-4炸藥作為試驗用炸藥。試驗時將不同重量的球形C-4炸藥,放置於試體頂面引爆,藉此觀察試體破壞情形。

五、試驗結果發現,當炸藥量超過50g時,試體除了產生正面成坑外,會有沿 著紋路或平行紋路形成貫穿破裂,或者是背面有大片剝落現象。各炸藥量 預估值均大於試驗值,將預估值乘上折減係數後,可提高預估準確性。

關鍵詞:二次爆破、接觸爆炸、大理岩

前言

歷年來,臺灣飽受天災的侵襲,救災往往受限於道路的搶修速度,尤其是山區落石坍方所造成的交通中斷,如橫貫公路或蘇花公路等,一般的公務機關無法以施工機械或人力排除,必須依賴國軍工兵部隊使用爆破來破壞岩石,俾利遂行強通作業。爆破作業後,對於過大致機具無法進行清運之石塊,常施以二次爆破(Secondary Blasting)」方式予以破壞。除救災外,此種技術亦常見於隧道、礦坑工程或礦場採石作業。二次爆破可再細分數個方式,其中接觸爆炸方式(即直接置炸藥於岩塊表面引爆),所需準備工作最少、速度最快,運用得當效果立現。

現階段,接觸爆炸的相關資料,僅在 1998年的美軍技術手冊TM5-855-1²(以下 簡稱TM手冊)及國軍爆破教範³(以下簡稱爆破教範)中略有提及,其餘文獻付之關如。TM手冊提出TNT炸藥作用下,中等強度岩石正面成坑的預估值,但未詳述背後疤落或破壞的誤差範圍。而爆破教範則列出炸藥量與石塊尺寸的關係,卻未說明破壞程度及適用的塊石種類。由於以上準則僅能概估破壞情形,有鑑於此,本研究透過爆破試驗,驗證準則的準確性與適用性。試驗所採用之岩類,在研究目的、五材採購的合法性、成本、試驗尺寸、對量及均質性的全盤考量下,選用花蓮大理岩作為接觸爆炸試驗試體,其成果可供國軍準則修編與救災應用之參考。

岩石爆破

一、岩石爆破定義

爆破是指利用爆藥爆炸所產生劇烈之

Bhandari, S., Engineering Rock Blasting Operations, Published by A. A. Balkema, Rotterdam, USA, 1997, pp. 274~276

Department of the Army, Fundamental of Protective Design for Conventional Weapons, Technical Manual TM5-855-1, USA, 08, 1998, pp. 4-21 × 8-52.

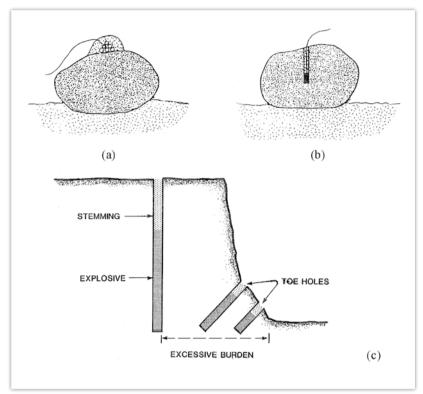
³ 鄭冠豪、高得乾、王幸南,《爆破教範》(桃園:國防部陸軍司令部,2005年3月),頁4-190~4-192。

爆發或高壓膨脹結果,破碎、壓實、疏鬆 和切割物體的作業,最終目的在確保軍事 任務順利達成,因此爆破是一種手段。而 岩石爆破係指利用爆破方法,自岩床取得 工程上所需之石料,或排除某地區之岩石 (落石)。

二、岩石概說

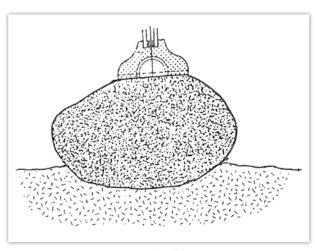
臺灣岩石種類繁多,依其形成與礦物 組成的方式不同,可以分類火成岩(如花 崗岩)、沉積岩(如砂岩)及變質岩(如 大理岩)等三種。本研究所需試驗岩石其 限制條件上,需要較高的平均強度及均質 性,且試體須保持完整。目前臺灣蘊藏量 最多的岩石為砂岩及大理岩,就兩者的強 度比較而言,大理岩的強度高於砂岩,且 變異性較小; 就取得的完整性與均質性而 言,砂岩由於較易受風化作用且質地較 脆,因此大理岩優於砂岩。綜合以上考 量,本研究將採用大理岩作為試驗用岩石 (如圖一)。一般而言,必須先對岩體鑽 心取樣(如圖二),再進行基本力學試驗 才能獲得岩石的強度,由於臺灣大理岩的 相關研究相當豐富,因此本研究將透過文 獻回顧方式來瞭解大理岩的基本性質。

圖 一 大理岩 資料來源:本研究整理


三、二次爆破

岩石爆破後所產生的過大石塊,可使 用二次爆破技術處理至預期尺寸。1997年 Bhandari提出3種主要的方法,即接觸爆 炸(Plaster Shooting)、石塊鑽炸(Block Holing) 及址部爆炸(Toe Blasting)(如 副二)。

接觸爆炸又稱為Mud Capping,爆破 教範稱為土頂法,大陸稱為泥帽工法、糊 炮爆破。作業時,直接將炸藥置於塊石的 表面或凹陷處,或於炸藥上覆以泥、濕 黏土、砂及其他物質,即可進行引爆。 接觸爆炸可使用的炸藥種類很多,而且 不侷限形狀,也可使用錐形裝藥 (Shaped



圖二 抗壓試驗試體 資料來源:本研究整理

圖三 二次爆破(a)接觸爆炸(b) 石塊鑽炸及(c)址 部爆炸

資料來源: Bhandari, S., Engineering Rock Blasting Operations, Published by A.A.Balkema, Rotterdam, USA, 1997, pp. 274-276.

圖四 使用錐形裝藥進行石塊爆破

資料來源: Bhandari, S., Engineering Rock Blasting Operations, Published by A.A.Balkema, Rotterdam, USA, 1997, pp. 274.

Charge) 來破壞石塊(如圖 四)。在同一種炸藥及藥量 下, 圓形石塊由於厚度較大, 比厚度薄、面積大之盤狀石塊 爆破效果差;對於預先承受應 力(如岩層中的圍壓)或外界 力量(如爆炸)的石塊,比自 然裸露的石塊更容易破碎。在 炸藥的選擇上, 高爆速炸藥 引發的應力波與形成的破裂 效果,優於低爆速炸藥。在 岩塊尺寸與炸藥量的關係方 面,爆破教範針對不同的塊 體直徑,建議TNT、第奈米特 (Dynamite) 的炸藥量節圍在 1~12磅之間(如表一)。

石塊鑽炸在爆破教範中稱 為閉塞法,就是對石塊進行鑽 孔埋藥,再以泥或濕土填塞後 引爆。相較於接觸爆炸,具有 炸藥量少及噪音較小等優點, 然準備工作費時為其主要缺

點。在進行石塊鑽炸時,Bhandari建議鑽洞深度為塊石厚度的0.25~0.5倍;當石塊尺寸較大時,則視現況增加鑽孔數量及孔深(0.5~0.9倍厚度),炸藥量可參考爆破教範建議取1/8~1磅之間(如表一)。址部爆炸主要配合控制爆炸,在坡址處進行爆破以便切除多餘岩塊。

除了前列所提方法外,尚有爆破教範 所提之蛇孔法,主要用於爆破部分岩體埋 藏於地面下之塊石。作業時,於石塊下方 鑽孔埋藥,再用濕土或泥土填塞後引爆 (如圖五)。

接觸爆炸作業易肇生危安事件,因此做好安全防護相當重要,2005年李得春及李金龍⁴提出下列實爆作業注意事項:(-)

表一	爆破規範中	岩石二次爆破作業	建議炸藥量
----	-------	----------	-------

爆藥	TNT					第奈米特 (Dynamite)					
塊石直徑(呎)	3/2	2	3	4	5	3/2	2	3	4	5
此 滋旦 (rà)	土頂法	1	3/2	2	7/2	6	2	3	4	7	12
炸藥量(磅)	閉塞法	1/8	1/8	1/4	3/8	1/2	1/4	1/4	1/2	3/4	1

資料來源:鄭冠豪、高得乾、王幸南,《爆破教範》(桃園:國防部陸軍司令部,2005年8月),頁 4-192 •

藥包應儘量放於石塊的中央或凹陷處;仁 覆十層應高於藥包的高度,最好用緻密的 黏土作為覆蓋物; ⑤安全距離應達200m 以上,做好警戒工作,防止飛石傷害;個 爆破效果不佳或石塊太大時,應儘量採用 錐形裝藥方式。

四、接觸爆炸破壞程度評估法

TM手冊中的圖8-44,描述中等強度 岩石 (Medium-Strength Rock, 25~49MPa) 之縮尺爆炸深度與縮尺坑洞深度(或直 徑)的關係(如圖六)。其中,炸藥種類 為TNT,縮尺爆炸深度由爆炸中心到岩石 表面距離除以1/3次方的藥重(m/kg1/3)

華火索或信管 蛇孔法

圖五 蛇孔法

資料來源:鄭冠豪、高得乾、王幸南,《爆破教範》(桃園:國防 部陸軍司令部,2005年3月),頁4-191。


計算獲得。欲使用美軍規範進行評估,必 須先瞭解炸點與岩石表面的關係。當炸點 位於岩石表面上方(接近地面)時,此時 的爆炸行為稱為低空爆炸(Low Airburst),爆炸中心到岩石表面距離以爆炸高度 (HOB, Height of Burst) 表示(如圖七) ;在岩石表面以下則以爆炸深度(DOB, Depth of Burst)表示。假設炸藥的形狀為 球形,當HOB等於炸藥半徑時炸藥底面 與岩石表面接觸,本研究將該型態視同接 觸爆炸(如圖八),依此法預測岩石正面 成坑的直徑與深度。本規節也可用於評估 純混凝土與鋼筋混凝土的破壞程度,適用

> 於抗壓強度節圍在14至35MPa的一般 混凝土。

五、現有大理岩基礎試驗與爆炸試驗 成果

基礎試驗主要目的除了掌握岩石 的基本力學性質外,並據以判定強 度分類, 俾利與規範預估值進行比 較。現階段,已有多位學者對花蓮大 理岩進行過探討。1992年鄺寶山⁵以 傳統的三軸壓力試驗探討圍壓下的力 學行為,並求得在不同圍壓下的降伏 強度、單壓強度、殘餘強度、破壞強

李得春,李金龍,〈井下深孔爆破產生大塊原因及處理〉《有色金屬期刊》(中國),第57卷第5期,出 版社,2005年9月,頁12~13。

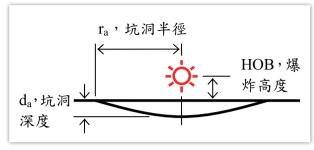
圖六 評估爆炸對混凝土或岩石所產生之坑洞尺寸圖

資料來源: Department of the Army, Fundamental of Protective Design for Conventional Weapons, Technical Manual TM5-855-1, USA, 1998, pp. 8-52.

度、變形模數、柏松比及軸向應變等大理 岩參數。1994年施國欽、李彪⁶等人對花 蓮天祥、和平、崇德及官蘭觀音等地區的 大理岩進行過單壓試驗。1996 年劉全偉⁷將大理岩紋理視為 葉理面,求得與水平面不同夾 角(Ψ)下的彈性模數、柏松 比及張力強度等,發現張力強 度有隨著來角改變的趨勢。 2000年蕭永成8探討溫度對強 度的影響,經實驗得知在同樣 圍壓下溫度升高將造成強度減 弱,攝氏300度以內對尖峰後 應力——應變曲線影響不大。 諸位學者試驗成果整理(如表 二), 並附錄TM手冊中第四 章提供之大理岩單壓強度範 圍一同納入比較。由文獻值 依強度分類,花蓮大理岩介於 中強岩及強岩(Strong Rock, 49~98MPa)之間,且單壓及 張力強度有明顯差異,最大變 異係數高達32%,主要的原因 在於變質過程中,原有岩類成

分含量、環境溫度、壓力的不同,導致變 質後強度有所差異。在爆炸試驗方面,僅 有2006年蘇義松9以鑽孔埋藥方式,探討 了花蓮大理岩應用圓錐形聚能射流與傳統

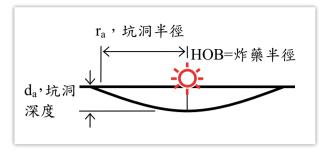
⁵ 鄺寶山,《花蓮大理岩在圍壓下力學行為之研究》(臺北:臺灣大學土木工程學研究所碩士論文,1992 年6月),頁40~41。


施國欽、李彪,〈臺灣地區沉積岩單壓強度初步研究〉《1994年岩盤工程研討會論文集》,1994年,頁 219~228 •

劉全偉,《溫度與壓力對花蓮大理岩力學行為之影響研究》(臺北:臺灣工業技術學院營建工程技術研 究所碩士論文,1996年6月),頁40。

⁸ 蕭永成,《異向性大理岩之力學性質研究》(臺北:臺北科技大學材料及資源工程系研究所碩士論文, 2000年6月),頁41、61。

蘇義松,《聚能射流應用於岩石控制爆破之研究》(臺南:國立成功大學博士論文,2006年6月),頁 3 .


圖七 低空爆炸

資料來源: Department of the Army, Fundamental of Protective Design for Conventional Weapons, Technical Manual TM5-855-1, USA, 1998, pp. 8-49.

控制爆破方法的差異,尚未有接觸爆炸相 關研究。

六、大理岩正面成坑概估成果

由於大理岩強度介於中強岩及強岩之 間,涵蓋了準則適用範圍,因此以TM手 冊推估破壞範圍,雖結果較趨於保守,仍 可作為試驗值的比較參考。透過規範推算 出不同的C-4炸藥量下,正面成坑直徑與

圖八 接觸爆炸

資料來源: 本研究整理

深度如表三。

接觸爆炸試驗規劃

試驗目的在求不同C-4炸藥量下大理 岩正面成坑情形,以驗證準則正確性。試 驗時,同時量測試體距炸源100cm處的爆 壓值,以瞭解爆炸時試體周圍的實際爆 壓,供人員機具位置安全性之參考。爆炸 用試體共有14個,其中9個將以3個確定炸 藥量、每組3個試體進行接觸爆炸,其他

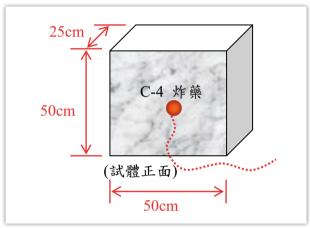
表二 臺灣花蓮大理岩前人基礎試驗成果

項		目	單	單壓強度 (MPa)			(MPa)	柏松比
作		者	鄺寶山	施國欽	TM手冊	劉全偉	蕭永成	鄺寶山
實	驗 組	數	7	16	-	9	18	5
最	大	值	70.05	89.37	75.84	10.24	11.01	0.32
最	小	值	55.31	31.59	56.54	7.13	485	0.29
平	均	值	63.98	66.15	-	9.06	6.85	0.31
變異	具係數(9	%)	7.95	20.23	-	10.82	32.04	9.22

資料來源: 本研究整理

表三 預估不同C-4炸藥量下大理岩正面成坑直徑與深度

	炸藥	藥量		(g)	50	60	65	70	75	100	150
DOB	(以炸藥	等半徑計	算)	(cm)	1.95	2.08	2.13	2.19	2.24	2.46	2.82
坑	洞	直	徑	(cm)	25.6	27.2	28	28.6	29.3	32.3	36.9
坑	洞	深	度	(cm)	4.5	4.7	4.9	5	5.1	5.6	6.4


為測試及預備用試體,配置如圖力。

一、爆炸試驗用試體

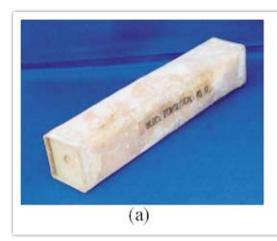
爆炸試驗使用14塊、50×50×25cm 之大理岩試體,編號以M50C4NO1方式表 示,其中M為大理岩(Marble),50C4指 試驗藥量50g的C-4炸藥,NO1為第1個試 體;另外,編號為test開頭則代表測試用 試體。

二、炸藥及引爆裝置

本研究所使用之炸藥為C-4炸藥,為 一種白色柔軟、敏感性低、威力大之高

圖九 C-4炸藥位置圖

資料來源:本研究整理


速爆藥(爆炸速度8530m/s),易塑成各 種形狀。試驗用炸藥,從國軍M5A1藥包 (如圖十)拆解後,依規劃重量及直徑大 小揉成球形炸藥。引爆裝置採用美造J2測 試電雷管(如圖十一),使用時須避免靜 電以防引爆。在未試驗時,須特別注意電 雷管不可與爆藥同置一處,以免發生意 外。

三、爆炸試驗量測儀器

採用美國PCB公司(PCB Piezotronics, Inc.) 出品的137A21及 137A23自由場爆壓計(如圖十二)、鋼 捲尺及游標卡尺進行試驗量測。自由場爆 壓計長40.6cm、外型為一筆狀金屬棒, 感 測器約位於金屬棒1/3處。量測時將尖端 正對爆源,感測器從側向量測到入射壓 Pso (Side-on Overpressure) •

爆壓計使用美國安捷倫科技股份有限 公司 (Agilent Technologies, Inc.) 出品2 通道5012A及4通道5014A示波器進行訊號 擷取,取樣率(Sampling Rate)最高可達 2GHz,本研究設定10MHz進行擷取;示 波器可進行數位儲存(如圖十三)。

四、爆炸試驗用試體架

圖十 C-4炸藥(a)原M5A1藥包(b)拆解揉成100g球型炸藥

美造J2測試電雷管 圖十一 資料來源:本研究整理

圖十二 爆壓計(137A20系列) 資料來源:本研究整理

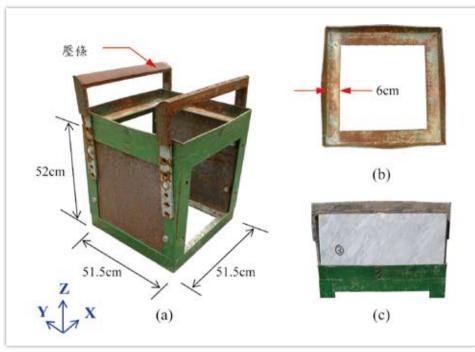
圖十三 示波器(安捷倫5000系列) 資料來源:本研究整理

為了便於觀察試體背面破裂情形,本 研究使用鐵製試體架將試體托高來進行試 驗(如圖十四)。鐵架透過不鏽鋼釘牢固 於地面,大理岩放置後,經調整壓條固定 好,即完成了垂直方向(Z向)束制。

五、試體破壞程度記錄方式

爆炸試驗所形成之坑洞,以平行試體 縱、橫軸方式,使用鋼捲尺及游標卡尺量 測縱、橫向長度及深度(如圖十五),同 時進行描圖紙進行描繪(如圖十六)及照 片拍攝,破壞範圍透過數位化處理,可換 算成等值的坑洞直徑,提供比較參考。另 外,因為大理岩試體不易搬運,對坑洞灌 注矽膠進行翻模作業(如圖十七),方便 後續檢核。

六、實爆試驗場地與設備配置


本研究選定國軍旗山彈藥庫內廢彈燒 爆燬場(如圖十八),進行接觸爆炸試 驗。該場地地處偏僻、腹地廣大,相關火 具控制、爆炸防護等設備均相當完善, 目 由未爆彈處理小組人員負責點火相關事 官,能符合各項試驗需求。自由場爆壓計 架設時與炸藥等高,並指向炸藥中心,感 測器至炸藥中心距離1m,設備配置如圖 十九。

試驗結果

一、試體破壞情形

爆炸試驗一開始以150g炸藥量進行測 試,發現試體循著紋路方向產生貫穿破裂 (如圖廿),遂將炸藥量縮減為100g, 結果相同(如圖廿一)。當炸藥量調降 至50g,試體在維持完整形狀下,僅發生 正面成坑(如圖廿二)現象。因此,以 50g炸藥量作為基準而逐次提升(65g及 75g),發現75g炸藥量下,試體背面有整 片剝落情形(如圖廿三),遂訂定50g、 60g及70g作為試驗炸藥量,每種炸藥量進 行3組試驗。

試驗後發現,除了50g炸藥量可在試 體保持完整的情況下形成正面成坑外,

試體架(a)規格尺寸(b)試體與架子的接觸面(c)大 圖十四 理岩放置情形

藥量提升則容易發生試體背後大片剝落 或劈裂等現象,從大部分破裂的試體可

使用游標卡尺量測坑洞尺寸 圖十五 資料來源:本研究整理

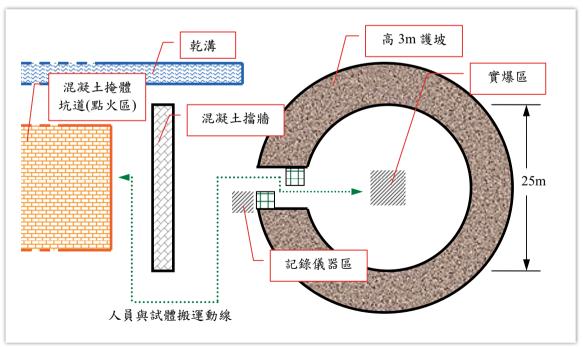
觀察到,破裂的方向 大致與試體的紋路成 平行,如同陳其瑞10 所指出紋路屬於弱 面,因此可能在爆炸 力的作用下導致受拉 開裂。另外,正面成 坑的直徑並沒有隨著 炸藥量提升而有明顯 增加的趨勢,可能的 原因在於試驗的炸藥 量增加幅度不大,或 是能量被貫穿裂縫吸 收,需要後續進一步 的研究探討。各炸藥 量的試驗結果均詳列 於表四。

50g、60g及70g 炸藥量分別形成的平

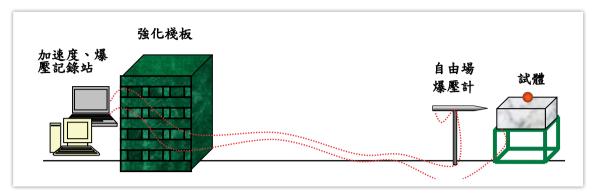
均成坑直徑為16.7、15.8及18cm。其中, 以50g炸藥量的變異性較低,為7.2%。而

使用描圖紙描繪坑洞形狀 圖十六 資料來源:本研究整理

10 陳其瑞,《臺灣的大理石》(臺灣:經濟部中央地質調查所,1996年),頁31。



圖十七 使用矽膠對正面成坑進行翻模 資料來源:本研究整理


50g、60g及70g炸藥量分別形成的深度為 1.1、1.6及1.5cm。其中,以70g炸藥量的 變異性較低,為16%。試驗結果以60g炸 藥量的變異係數最高,達59.9%,原因在 於M60C4NO1試體的強度可能較高,以 致爆炸後坑洞尺寸太小,是故變異係數提 高。變異性分析(如表五)。

以鋼捲尺量測所得之平均直徑與等值 直徑比較,發現差異在-5.17%以內(如表 六),因此可以得知以平行縱、橫軸量測 坑洞直徑方式,即可得到具代表性的數 據,後續將採用等值坑洞百徑進行比較與 驗證。

本研究結果與TM手冊比較下(如表 七),發現正面成坑直徑與深度預估值均 大於試驗值,差異分別在50%、200%以 上(如圖廿四),預估值較為保守(如圖 廿五、廿六)。可能的原因在於TM手冊 的岩類為中強岩,低於大理岩強度,因此 預估值大於試驗值是合理的。另外,將預 估值除上試驗值,可得到不同炸藥量下成 坑直徑與深度的折減係數(如表八),本 研究取其中最大值(即0.65與0.34),作

圖十八 實爆試驗場地(燒爆燬場)配置平面示意圖

圖十九 接觸爆炸量測設備配置立面示意圖

150gC-4炸藥接觸爆炸下大理岩試體破裂情形 圖廿 資料來源:本研究整理

100gC-4炸藥接觸爆炸下大理岩試體破裂情形 圖廿一 資料來源:本研究整理

圖廿二 50gC-4炸藥接觸爆炸下大理岩試 體破裂情形

圖廿三 75gC-4炸藥接觸爆炸下大理岩試 體背面大片剝落情形

資料來源:本研究整理

表四 大理岩接觸爆炸試驗成果記錄表

編號	炸藥量 (g)	横向成坑直徑 (cm)	縱向成坑直徑 (cm)	平均成坑直徑 (cm)	等值成坑直徑 (cm)	坑洞深度 (cm)	開裂情形
test1	150	17	13	15	16.16	1.67	破裂
test2	100	16	15.5	15.75	15.76	1.36	破裂
test3	50	16	17.5	16.75	16.38	0.69	細紋
M65C4NO1	65	14	15.5	14.75	14.74	1.13	完整
M75C5NO1	75	22	17	19.5	18.29	1.69	破裂
M50C4NO1	50	17	20	18.5	17.74	1.215	細紋
M50C4NO2	50	16.5	16.5	16.5	17.51	1.42	裂紋
M50C4NO3	50	11.7	18.5	15.1	14.97	1.17	完整
M60C4NO1	60	6	5	5.5	4.71	0.28	完整
M60C4NO2	60	22.5	20.5	21.5	21.91	2.48	破裂
M60C4NO3	60	19.5	21.5	20.5	18.42	1.91	破裂
M70C4NO1	70	16	19.5	17.75	17.55	1.375	裂紋
M70C4NO2	70	16	15.5	15.75	16.52	1.36	破裂
M70C4NO3	70	21.5	19.5	20.5	19.29	1.89	破裂

資料來源:本研究整理

為統一的折減係數,以避免發生預估值小 於試驗值情形。預估值透過折減,成坑直 徑與深度的差異可降至12%及39%以下, 獲得較準確之結果。

試驗的過程中,爆炸所產生的火球及

破片容易傷及作業人員(如圖廿七),因 此須設定安全距離及落實防護工作,以維 人員及設備安全。

二、爆壓值量測

爆炸試驗使用PCB 137A21及137A23

表五 不同炸藥量下表面成坑平均直徑與深度變異性分析

量	測		項目	平 均	成 坑	直 徑	成	坑 深	度
炸	藥	量	(g)	50	60	70	50	60	70
組		數		4	3	3	4	3	3
最	大	值	(cm)	18.5	21.5	20.5	1.42	2.48	1.89
最	小	值	(cm)	15.1	5.5	15.75	0.69	0.28	1.36
平	均	值	(cm)	16.7	15.8	18.0	1.1	1.6	1.5
標	準	差	(cm)	1.2	7.3	1.9	0.3	0.9	0.2
變	異 係	數	(%)	7.2	46.2	10.8	23.8	59.9	16.0

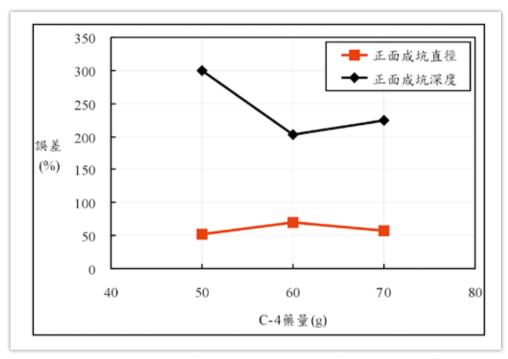
表六 大理岩接觸爆炸下正面成坑平均直徑與等值直徑比較表

炸	藥	量	(g)	50	60	70
平均	坑洞」	直 徑	(cm)	16.7	15.8	18.0
等 值	. 坑洞]	直 徑	(cm)	16.65	15	17.8
差		異	(%)	-0.37	-5.17	-1.18

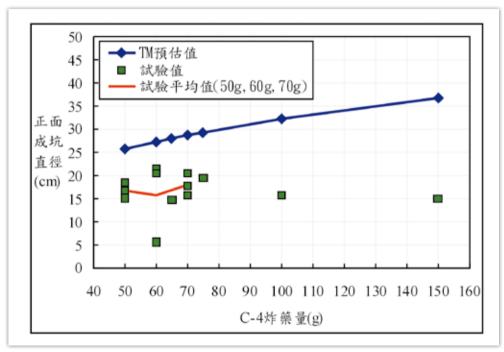
資料來源:本研究整理

表七 大理岩接觸爆炸下正面成坑預估值與試驗結果誤差比較表

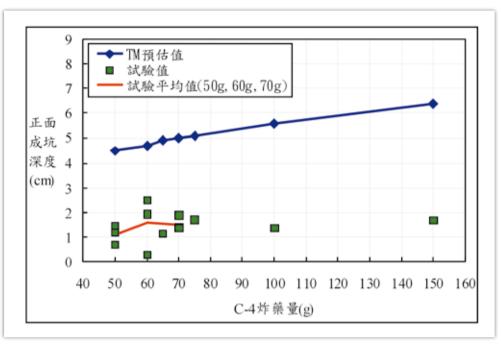
量	測		項目	成	坑 直	直 徑	成	坑 深	度
炸	藥	量	(g)	50	60	70	50	60	70
預	估	值	(cm)	25.6	27.2	28.6	4.5	4.7	5
試	驗	值	(cm)	16.7	15.8	18.0	1.1	1.6	1.5
差		異	(%)	53	72	59	300	202	224


資料來源:本研究整理

自由場爆壓計,在距離爆源100cm處進行量測,各搭配一臺安捷倫示波器(Agilen 5012A、5014A)進行資料擷取,試驗炸藥量調整時,示波器的觸發條件及電壓範圍也要隨之調整。本研究炸藥量較低,因此所產生的爆壓可能接近背景值或是異常值,故部分幾組爆壓值未能擷取到,試驗結果(如表九)。試驗結果發現,爆壓值有隨著炸藥量的增加而有提高的趨勢,


而60g炸藥量的爆壓值變異性最大,為 19.5%,試驗變異情形(如表十)。

另發現本研究試驗之爆壓值,介於TM手冊中自由空氣爆炸(Free-air Burst)及地表面爆炸(Surface Blast)預估值之間,主要的原因在於炸藥引爆時,爆震波自試體正面中央至邊界階段屬於地表面爆炸,超過邊界時則進入自由空氣爆炸,故爆壓值衰減介於兩者之間(如圖廿



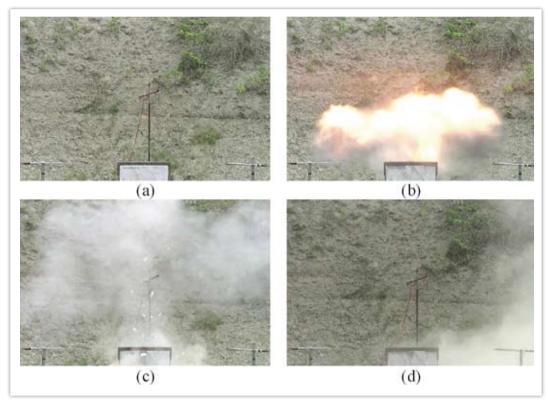
圖廿四 大理岩接觸爆炸下正面坑洞預估值與試驗結果誤差比較圖 資料來源:本研究整理

圖廿五 大理岩在不同炸藥量下正面成坑直徑預估值與試驗值比較情 形

圖廿六 大理岩在不同炸藥量下正面成坑深度預估值與試驗值比較情 形

表八 大理岩接觸爆炸下正面成坑折減後預估值與試驗結果誤差比較表

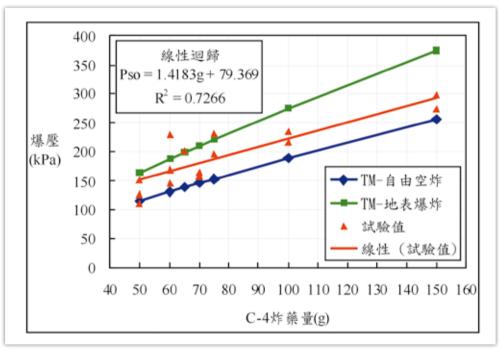
量	測	IJ	1 目	成	坑 直	· 徑	成	坑 深	度 度
炸	藥	量	(g)	50	60	70	50	60	70
折	減 係	數		0.65	0.58	0.63	0.24	0.34	0.30
折	减後預估	值	(cm)	16.7	17.7	18.7	1.5	1.6	1.7
試	驗	值	(cm)	16.7	15.8	18.0	1.1	1.6	1.5
差		異	(%)	0	12	4	39	0	13


資料來源:本研究整理

八)。在預估爆壓時,使用TM手冊可以 得到一個理想範圍。

結 語

當接觸爆炸試驗炸藥量超過50g時, 試體除了形成正面成坑外,會有沿著紋 路或平行紋路形成貫穿破裂,或者是背 面大片剝落的現象,可能原因在於試體 的紋路為弱面,在爆炸力的作用下導致受拉開裂。另外在試驗後,所形成的正面成坑較淺,建議未來的研究中可進一步探討,以瞭解大理岩在爆炸下的破壞機制。當使用TM手冊來評估50×50×25cm之大理岩試體的正面成坑直徑與深度,與試驗值的差異在50%及200%以上;若透過折減計算,直徑與深度的差異可降至12%


圖廿七 大理岩接觸爆炸試驗開始至結束情形

表九 不同炸藥量下接觸爆炸試驗爆壓值(距離爆源100cm)

試體編號	炸藥量 (g)	137A21 (KPa)	137A23 (KPa)
test1	150	297.03	272.51
test2	100	233.02	216.41
test3	50	(未量測到)	124.64
M65C4NO1	65	200.20	(未量測到)
M75C5NO1	75	229.60	195.04
M50C4NO1	50	150.28	109.27
M50C4NO2	50	(未量測到)	(未量測到)
M50C4NO3	50	(未量測到)	(未量測到)
M60C4NO1	60	(未量測到)	144.70
M60C4NO2	60	228.81	(未量測到)
M60C4NO3	60	169.03	(未量測到)
M70C4NO1	70	(未量測到)	158.31
M70C4NO2	70	(未量測到)	163.41
M70C4NO3	70	(未量測到)	157.61

表十 不同炸藥量下爆壓值變異情形比較表

炸	藥	量	(g)	50	60	70
				150.28	228.81	158.31
爆	壓	值	(Kpa)	124.64	169.03	163.41
				109.27	144.70	157.61
平	均	值	(Kpa)	128.1	180.9	159.8
標	準	差	(Kpa)	16.9	35.3	2.6
變	異 係	數	(%)	13.2	19.5	1.6

圖廿八 爆炸試驗爆壓值與TM手冊評估值比較情形

資料來源:本研究整理

及39%以下。試驗中所量測之爆壓值,介於TM手冊自由空氣爆炸與地表面爆炸的爆壓值之間,未來在進行相關試驗時,可據此預估作業人員、儀器所在位置爆壓,以判斷作業的安全性。本次試驗由於時間、天候、場地、設備及人員等因素對試驗影響甚劇,因此每種炸藥量僅

規劃3組試體進行試驗,建議未來的試驗中增加試體組數,以獲得更具有代表性的試驗成果;亦可針對不同強度種類岩石進行試驗,以求得對應的折減係數。

收件:99年9月30日 修正:99年10月4日 接受:99年10月6日