國軍現行自走砲性能提升之探討 一以 M109 系列自走砲為例

壹、作者:林正宏 中校

貳、單位:陸軍飛彈砲兵學校射擊組 參、審查委員(依初複審順序排列):

王述敏上校 黄君武上校 羅賢輝上校 張鐘岳上校

肆、審查紀錄:

收件:100年06月09日初審:100年06月10日 複審:100年08月10日 綜審:100年08月11日

伍、內容提要:

- 一、「機動化」及「自動化」為砲兵重要持續發展項目,近年「定位定向」能力 (含 GPS 輔助)成功整合自走砲,可迅速變換陣地、執行射擊任務,大幅 提昇火砲機動力;而火砲乃是火力的重心,火砲由於具備連續發射的能力, 而且能做各種彈性運用,如變換地點、射程的改變、使用各特種彈藥等, 所以火力不僅在過去、現在,甚至未來都可能是主宰戰場的主要元素,二 十一世紀之戰爭型態,已走向區域性與小型化,且隨著軍事科技的發展, 現代戰場必然是一個「火力化戰場」。
- 二、美國 M109 系列自走砲車是西方世界使用最廣泛的自走砲車,截至目前已生產超過了 7000 輛以上,包括我國的 28 個國家內服役,M109 自走砲的車身採用 5083 鋁合金板,承載系統採用傳統式扭力桿,砲塔後方備有艙門供彈藥補給使用,搭配 M109 自走砲使用為相同底盤之 M992 彈藥車,本砲車並經歷一連串性能改良,於 1981 年美軍提出將所有 M109 系列自走砲提升至 M109A5 之相關改良計劃 (HELP),這項計劃用以改善可靠性、持續力、存活率、核生化作戰力等四大性能,M109 系列自走砲目前在我國共有兩種型式,一為 M109A2,另一則為 87 年引進國內的 M109A5,此兩種火砲除少數改良裝備外,在機件結構上幾乎完全相同,故在操作上是以相同的編裝人員來

陸軍砲兵季刊第154期(100年第3季)

實施。

三、鑑於國軍現役 155 公厘「履帶型自走砲」已部署約 30 年之久,在有限之國防預算暨防衛固守之環境,經衡量以「最低預算與落實國防自主」原則下, 未來自走砲的任務將兼具長程火力壓制、戰場阻絕及火力密切支援等特性,故發展重點在於目標偵察、射擊指揮的快速精準、火砲射程、機動力、操作自動化等,其賦予的任務將不只是戰鬥支援,還需能配合多樣的彈藥系統和新式射控、觀測、資訊技術等,這也使自走砲的戰術應用更多元化。

國軍現行自走砲性能提升之探討-以M109系列自走砲為例

作者: 林正宏中校

提要

- 一、「機動化」及「自動化」為砲兵重要持續發展項目,近年自走砲成功整合了「定位定向」(含 GPS 輔助)能力,可迅速變換陣地、執行射擊任務,大幅提昇火砲機動力;而火砲乃是火力的重心,火砲由於俱備連續發射的能力,而且能做各種彈性運用,如變換地點、射程的改變、使用各特種彈藥等,所以火力不僅在過去、現在,甚至未來而言皆是主宰戰場的主要元素,二十一世紀之戰爭型態,已走向區域性與小型化,且隨著軍事科技的發展,現代戰場必然是一個「火力化戰場」。
- 二、美國 M109 系列自走砲車是西方世界使用最廣泛的自走砲車,截至目前已生產超過了 7000 輛以上,包括我國的 28 個國家內服役,M109 自走砲的車身採用 5083 鋁合金板,承載系統採用傳統式扭力桿,砲塔後方備有艙門供彈藥補給使用,搭配 M109 自走砲使用為相同底盤之 M992 彈藥車,本砲車並經歷一連串性能改良,於 1981 年美軍提出將所有 M109 系列自走砲提升至 M109A5 之相關改良計劃 (HELP),這項計劃用以改善可靠性、持續力、存活率、核生化作戰力等四大性能,M109 系列自走砲目前在我國共有兩種型式,一為 M109A2,另一則為 87 年引進國內的 M109A5,此兩種火砲除少數改良裝備外,在機件結構上幾乎完全相同,故在操作上是以相同的編裝人員來實施。
- 三、鑑於國軍現役 155 公厘「履帶型自走砲」已部署約 30 年之久,在有限之國防預算暨防衛固守之政策,經衡量以「最低預算與落實國防自主」原則下,未來自走砲的任務將兼具長程火力壓制、戰場阻絕及火力密切支援等特性,故發展重點在於目標偵察、射擊指揮的快速精準、火砲射程、機動力、操作自動化等,其賦予的任務將不僅是戰鬥支援,還需能配合多樣化的彈藥系統和新式射控、觀測、資訊技術等,這也使自走砲的戰術應用更多元化。

關鍵詞:履帶型自走砲、性能提升

壹、前言

現代戰爭型態已朝小規模、高科技、高技術發展,以致預警時間短,攻擊威力猛,殺傷、破壞力強,損耗數量大,戰鬥節奏快,戰爭甫行發動,即告迅速結束¹,「戰爭成敗取決於開火之前,勝利取決於準備之日」,西方兵聖克勞塞維茲曾說:「戰爭是為屈服敵人,實現自己意志,所使用的暴力行為,戰爭不僅為一種政治行動,實亦為一種政治的工具,惟係以其他手段,繼續政治的對外關係而已」²;中共對台戰略仍傾向動武,而非消極性的恫嚇,判其武力犯台仍不脫離「高技術條件下局部戰爭」與「不對稱作戰」的範疇,其準備打一場「速戰速勝、首戰先勝、奇襲震撼」的現代戰爭,共軍武力犯台行動必然是朝向「損小、效高、快打、速決」為其最高目標,「首戰先勝」、「速戰速決」為其當前的方針³,我軍應打破傳統作戰型態,發揮聯合火力支援效能,以三軍火力為先導,為地面部隊作戰開創勝利機勢,從美軍攻打阿富汗及伊拉克等戰例來看,高科技武器裝備,已成為作戰勝利的必備條件。

二次大戰機械化部隊崛起,牽引式砲兵武器機動力、防護力、戰術性能不相容於戰車部隊,故「機動化」及「自動化」為砲兵重要持續發展項目,因為戰線和戰況都是流動性的,並且會不斷地發生劇烈變化,而提供主要火力支援的火砲,必須擁有更快速的機動性,因此發明了本身具有機動能力的自走砲,近年自走砲成功整合了「定位定向」(含GPS輔助)能力,可迅速變換陣地、執行射擊任務,大幅提昇火砲機動力;所以未來戰爭型態,已走向區域性與小型化,且隨著軍事科技的發展,戰場必然是一個「火力化戰場」,所以火力不僅在過去、現在,甚至未來都可能是主宰戰場的主要元素。

我國未來火砲應朝向「射程遠」、「射速快」、「威力強」、「精度高」、「人員少」之單一口徑方向發展,未來自走砲的任務將兼具長程火力壓制、戰場阻絕及火力密切支援等特性,還需能俱備目標偵察、射擊指揮快速精準、機動快速、操作自動化,結合數位化武器管理技術和數位化戰場管理系統等,使自走砲的戰術應用更多元化;如能適切有效掌握三軍可恃兵、火力,綿密聯合火力支援協調規劃與運用,發揚集中、機動、奇襲之聯合火力,爭取有利時空與機勢,必可以最經濟、有效之火力,開創勝利機勢達到預期之戰果。

註1:王繩果,《陸軍作戰要綱》(桃園:陸軍司令部,民國88年1月1日), 頁1-1。

註2:克勞塞維茲,《戰爭論》(臺北:國防部史政編譯局,1991年7月),頁73。

註3:鍾堅,《共軍犯台能力與作戰方式研究》,(桃園:陸軍89年度第一次軍事學術研討會論文集,民國89年11月2日),頁30-46。

貳、國軍現行 M109 系列自走砲性能簡介:

1963年美國陸軍發展完成 M109 155 公厘自走砲,並由克萊斯勒公司完成量產,美國 M109 系列自走砲車是西方世界使用最廣泛的自走砲車,截至目前已生產超過了 7000 輛以上,並於包括我國的 28 個國家內服役 4。M109 自走砲的車身採用 5083 鋁合金板,承載系統採用傳統式扭力桿,砲塔後方備有艙門供彈藥補給使用,搭配 M109 自走砲使用為相同底盤之 M992 彈藥車,本砲車並經歷一連串性能改良,代號分別為 M109A1 至 M109A4;於 1981 年美軍提出將所有 M109系列自走砲提升至 M109A5 之相關改良計劃 (HELP) 5,這項計劃用以改善可靠性、持續力、存活率、核生化作戰力等四大性能。該提升套件包含 M284155 公厘39 倍徑砲管、乘員核生化防護系統、新型 440 匹馬力引擎、改良型砲管、砲塔迴旋液壓制動系統等,可稱是改良 M109 系列自走砲計畫中最經濟實惠,且能大幅提高戰力的選擇。

M109系列自走砲目前在我國共有兩種型式,一為M109A2,另一型式則為87年引進國內的M109A5,此兩種火砲除少數改良裝備外,在機件結構上幾乎完全相同,故在操作上是以相同的編裝人員來實施的,M109A5型自走砲乃由M109A4型改良而成;就結構上而言M109A2、M109A5並無大幅之改變,但M109A5與其他同系列類型火砲最大之不同點在將M185砲管改良為M284砲管,砲座則由M178改良為M182,使其最大射程達30000公尺(8號裝藥加火箭助推彈),另改良了核生化系統,裝甲防護力、生存力,這些改良提昇了人員的防護安全,並改進反應力及戰場存活力,M-109自走榴彈砲相關性能、諸元如下。:

- 一、全長: M109 A2 長 9.12m; M109 A5 長 9.17m; 高度 3.28m (含機槍)。
- 二、戰鬥重量: M109 A2 重 24.9 噸; M109 A5 重 32.0 噸。
- 三、動力系統為 8V-71T 液冷柴油發動機: M109 A2 具 405 馬力; M109 A5 具 440 馬力。
- 四、最高速率 陸上:56.3km/h;最大行程 349km;浮渡:6.4km/h
- 五、武裝系統:

M109A2:配賦 M-185 155mm /39 倍徑榴彈砲管及 M-2HB 12.7mm 口徑機槍。M109A5:配賦 M-284 155mm /39 倍徑榴彈砲管及 M-2HB 12.7mm 口徑機槍。

六、火砲最大射速 3-6 發/分;火砲最大射程:

M109A2 射程 24km; M-109A5/A6 射程 30km。

註 4: 黃俊麟,《自走砲現況與未來發展之研究》(桃園: 聯合後勤學校,民國 95年6月),頁12。

註5:同註4。

註 6: 李南奕,《美造 M-109A5 式 155 公厘自走砲操作手册》(臺南: 陸軍飛彈砲兵學校, 89 年 7 月), 頁 1-14。

(圖片來源同註6)

M109 A2-A5 155mm 自走砲俯仰角度為+75 度到-3 度,砲塔可以 360 度旋轉,由液壓動力或手動來調整角度,火砲完成放列後,可行 6400 密位之環形射擊,僅需轉動砲塔,而不必變更車身方向,唯在向左或向右之側面射擊時,應將駐鋤收起,以免駐鋤斷裂。自走砲可以搭載 28 枚各型彈藥,可以發射高爆彈、雷射導引的銅斑蛇砲彈、火箭增程彈、彈底吹氣彈、照明彈、煙霧彈,此外,在車長艙頂部有一挺自衛用的 M-2HB 12.7mm 機槍,可進行防空射擊,M109 自走砲的人員編制為 7 人,砲長一員、瞄準手一員、副瞄準手一員、駕駛手二員(砲車駕駛一、彈藥車駕駛一)、砲手二員(第一砲手一發射手、第二砲手一標定手),因 155 砲彈重量大,又是彈頭與推進藥分離的設計,故為了維持高射速,需要較多的人力,此外 M109 自走砲擁有主動式紅外線駕駛燈,可供夜間行進時的照明,配合熱顯像儀或是星光夜視鏡等夜視裝置,夜間駕駛時可不開燈行駛秘暱部隊行蹤。

由於動力前置且大尺寸砲塔靠後,M109自走砲的車身空間十分寬敞,採用底盤較坦克底盤高的設計,但是完全克服了坦克底盤空間相對不足、不方便砲班人員操砲和彈藥儲存空間不足的缺點;M109自走砲在長時間射擊時可以利用尾門從外部供彈,大大提高了持續作戰能力,而且射擊後的空彈藥筒可以經尾門直接拋出車外,改善了車身空間環境,M109自走砲的底盤在設計之初就決定採用5083鋁合金裝甲,減輕了火砲的重量,有利於滿足美軍方便海外部署和可以空運的要求,M109自走砲在拆除部分設備後甚至可以由C-130運輸機運輸。採用鋁合金裝甲也成為了美軍以後裝甲戰鬥車輛的傳統,這種裝甲除了比鋼裝甲減輕了重量外,由於鋁的密度較小,在相同重量下較鋼裝甲厚度較大,從而增強了防護能力,運用其優異的履帶越野性能,可快速運動通過任何困難地形,有效投射所望火力於目標區,並高速機動進入新陣地,持續遂行火力支援,發揮打帶跑戰術,避免敵反火力戰威脅及提升跨區增援作戰效能。

參、國軍現行 M109 系列自走砲性能提升之探討:

因為砲兵係地面火力之重要骨幹,為指揮官左右戰局的重要手段,世界各 國積極籌購研發新型自走砲以提昇戰力,尤以波灣兩次戰爭可以見得,未來自 走砲的任務將兼具長程火力壓制、戰場阻絕及火力密切支援等特性,故我軍發 展重點在於射程遠大、機動性強,具備定位定向、射擊指揮自動化功能,並可 實施全方位射擊之新型自走砲,以有效摧破共軍的犯台企圖,其賦予的任務將 不只是戰鬥支援,還需能配合多樣的彈藥系統和數位化戰場管理系統等,這也 使自走砲的戰術應用更多元化;鑑於國軍現役155公厘「履帶式自走砲」已部 署約30年之久,於有限之國防預算暨防衛固守之政策,經衡量以「最具效能與 落實國防自主 | 的原則下,現個人提出 M109 系列自走砲性能提升之淺見,分述 如下:

一、 提升砲管倍徑:

隨著科技進步和戰爭型態轉變,各國新型自走砲的發展,所需性能及要 求將朝向增加射程的目標邁進,火砲砲管長度愈大,射程愈遠,一次大 戰迄今,各國無不致力提高倍徑,以增加射程,有效支援部隊作戰。 無論是牽引式或自走式火砲,多數國家在1980年代所推出的新型155 公厘火砲多採用39倍徑或45倍徑的砲管7,但目前的發展,先進國家 如美、英、德、法、南非、新加坡、中共已轉移到 52 倍徑的長倍徑砲 管火砲,雖然目前已有若干系統問世,如新加坡製的 AS-2000 是第一種 服役的系統,而德國製 PzH-2000 正式服役後,將是世界上最重型的自 走砲,但由於其精確度遜於現有39/45倍徑火砲,所以就技術上而言, 尚為不完全成熟的產品。

(一)功能簡介:

近年由於砲管冶鍊及方向俯仰伺服機件生製技術的精進,逐漸克服高膛 壓、高磨耗、砲管過重導致轉動俯仰不靈活的研發瓶頸,為簡化自走砲 之後勤維修與通用性,各國也開始逐漸統一大型火砲的口徑,倍徑由39 (6公尺)提昇 52 (8公尺) 倍徑,射程延伸至 40 公里以上⁸; 美軍曾 測試 M109 系列自走砲,以 52 倍徑砲管配合 XM982(石中劍)及模組化拋 射藥射擊,其射程將可達到60公里以上,可在作戰中爭取先制,目前 具有長遠射程 155 公厘履帶式自走砲國家計有英國 AS90、德國 PZH-2000、韓國 K9 及美國 M109A6 等國⁹,長倍徑砲管火砲未來可成為克敵 制勝之主戰裝備。

註7:葉信男,《自動裝填與52倍徑是未來趨勢》(台北:科技新知出版社,民 國 94 年 5 月), 頁 26。

註8:同註7,頁28。

註9:黃俊麟,《自走砲現況與未來發展之研究》(桃園:聯合後勤學校,民國 95年6月),頁12。

(二) 可獲得效能:

我國現行 M109 系列自走砲,其射程僅達到 24 公里,可由軍備局或中科院發展 52 倍徑砲管,將其射程延伸到達 40-60 公里以上,提升效能後可增加火力支援作戰長徑,減少陣地變換次數及時間,形成不同的運用戰術,可更有效支援戰鬥部隊戰鬥,脫離敵軍短射程火砲火力涵蓋範圍;並使砲管能使用共同多重的彈藥以及自動裝填系統,增加火砲在短時間內射速,達成不同作戰型態的任務,形成我軍有利態勢,達成遠程接戰目標。

(39 倍徑火砲,圖片來源同註7)

(52 倍徑火砲,圖片來源同註7)

二、改良自動裝填系統:

因應瞬息萬變的數位化戰場環境,砲兵為達成「快速反應、機動打擊、 有效殲滅」政策指導,未來火砲須具自主功能,配備自動裝填系統、自 動射控系統、彈道計算器、彈藥管理等功能,自動裝填系統已是現今各 國新式自走砲的特色,亦是基本需求設備,有了自動裝填系統,可減短 射擊設備準備時間,提升支援射擊速度。

(一)系統功能簡介:

自走砲加裝自動裝填系統後,無論彈種選擇、砲彈引信設定、砲彈裝填、發射藥裝填全部都是自動化,砲彈發射速度增快,除可有效節省人力,配合砲兵射擊指揮自動化系統相鏈結,可利用不同射角,由同一門火砲連續發射 6 發砲彈以上,實施同時彈著射擊,可達到一個砲兵連射擊火制正面效果,更可給敵人更大的震撼力,例如德國 PZH2000 自走砲 10 即配備砲彈自動裝填系統,1 分鐘可發射 12 發砲彈,彈藥補給時,操作人員打開車體後方彈艙門,將砲彈放在艙門口的定點,砲彈輸送系統就會自動將砲彈運送至彈艙,擺放至定位,射擊時砲彈自動裝填系統就會自動將砲彈運送至彈艙,擺放至定位,射擊時砲彈自動裝填系統就會自行掛彈、推彈、裝填完全不需要人力搬運,發射手只需按電擊發發射鈕,砲彈即可連續發射,達到快速分配、精確摧毀目標之要求,完成作戰任務。

(上圖為掛彈裝置,下圖為推彈裝置,圖片來源同註10)

註 10: 奇摩網站:吳晴秀,《德國新一代自走砲》(pubbb. com、people. com. cn, 100年2月18日) http://www.plusbb.com/redirect.php(100年6月2日)。

(二)系統可獲得效能:

加裝自動裝填系統後所獲得的效益,1分鐘可發射12發砲彈或多發砲彈,由同一門火砲利用不同射角,連續發射砲彈,實施同時彈著射擊,可形成一個砲兵連射擊火制正面效果,大大的節約人事成本及裝備損耗,增加火力涵蓋範圍,加大火制正面,減短射擊設備準備時間,提升支援射擊速度。

三、加裝定位定向系統:

現今先進的國家已發展出新式定位、定向與導航系統,依據砲位與目標諸元自動傳輸到彈道計算機(射擊指揮儀),計算砲目方位角與射角,經由方向與射角伺服控制器作用,自動驅動火砲指向射向並裝定射角完成射擊準備。因應現代戰爭型態需求,例如法國發展出凱薩式自走砲、美軍所發展之M109A6式(武士型)自走砲,本軍新式雷霆2000火箭砲車,即藉「模組化定位定向系統」(Modular Azimuth Position System; MAPS)¹¹,可自動導航、定位、賦予火砲射向、射角與連線射擊指揮儀之功能,提昇反應速度與射擊精度,發揮武器裝備效能之優勢,達成火力支援任務。

(一)系統功能簡介:

定位定向系統可持續提供真北、方格北、俯仰與側滾角,地理座標與 UTM 方格座標、標高;系統可即時整合「慣性導航」、VMS、PLGR 資料,提供 自走砲車定位、導航、姿態(俯仰、側傾角)測定、砲塔方位等資料, 裝備可防爆震、防水、防輻射等功能 12 。

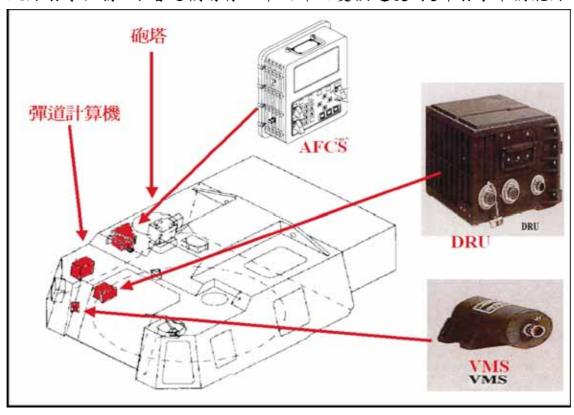
美軍 M109A6MAPS (圖片來源:同註12) 法國凱薩 (圖片來源:呂致中,《輪型自走砲性能分析比較》《砲兵季刊》 (臺南:第140 期,砲兵季刊社,97年8月),頁4-32。)

註11:耿國慶,〈美軍 M109A6 自走砲營測地作業之研究〉《砲兵季刊》,(臺南)第119 期,砲兵季刊社,民國91年11月1日。

註12:耿國慶,《砲兵測地教範》(臺南:陸軍飛彈砲兵學校,97年7月),頁7-89。

定位定向系統 VMS 可透過載具傳動裝置,測量機械結構之 旋轉,並將載具運動資料提供 DRU 運用,故可適應長距離運動,且無須實施「零速更新」(ZUPT)¹³;系統 DRU-H 可獲得 GPS 資料輔助時,將自動提供 MAPS 初始校準與導航更新資料; 系統內建「自我測試」功能(BITE),可於啟動直前自行檢測 系統功能。定位定向系統經「二次波灣戰爭」證實,可為陸地運動載 體之武器、目標獲得與指管系統裝備,運算出定位、定向數據與具備導 航功能,提供精確之射擊以摧毀目標,高度發揮裝備效益。

本軍新式雷霆 2000 火箭砲車 SIGMA-30 定位定向系統: 長:41 公分, 寬 21 公分, 高:22 公分。(圖片來源:同註 13)


註13:耿國慶,《砲兵測地教範》(臺南:陸軍飛彈砲兵學校,97年7月),頁7-89。

第9頁,共15頁

(二)系統可獲得效能:

定位定向系統提供自走砲車快速精確之定位、射向賦予與射擊操作能力,並結合目標獲得機構或射擊指揮所提供之精確目標諸元,可提昇砲兵射擊精度,增進一發命中之機率;具備該系統的自走砲車,從資料讀取至射擊,可於2分鐘之內完成,較傳統自走砲砲兵連(排)10-20分鐘之射擊準備速度,精進了數倍¹⁴,配合射擊指揮儀可將所獲得之數據,迅速計算出射擊目標的射擊諸元,使火砲可立即發揚火力,實具備顯著之效益。

因具備定位與定向能力,故自走砲車對測地之需求甚低,砲兵連無須實施陣地測地,僅由營部連測量班提供 MAPS 作業開始前之「初始校準點」與行駛距離超過 16 英里後之「更新資料點」 15 ,大幅減低對測地之依賴,有利測量班執行其他優先任務。自走砲藉 MAPS 提供之裝備性能,可快速運動 (時速 40 公里以上)與執行射擊任務,並於射擊任務結束或暫停時,迅速變換陣地,以減低遭敵雷達標定之可能性;自走砲兵連 (8 部砲車)可採戰砲排 (4 部砲車)、兩砲一組甚至於單砲方式放列,可儘量利用有利地形加大佔領陣地範圍,仍可執行計畫火力或臨機火力射擊任務,可增進戰場存活率及陣地變換速度,提升射擊準備能力。

美軍 M109A6 式自走砲定位定向系 統 (圖片來源:同註 14)

-

註 14: 耿國慶 ,《砲兵測地教範》(臺南:陸軍飛彈砲兵學校,97年7月),頁 7-89。

註15:同註14。

四、加裝射擊指揮儀系統:

本軍「砲兵射擊指揮儀」整體規劃,係基於「偵測、射擊、評估同步」之現代化作戰理念,考量未來敵情威脅,前瞻戰場環境,結合武器發展,以貫徹「防衛固守」作戰方針。以「戰、技術射擊指揮系統」,上承「目標獲得系統」,下接「武器投射(火砲、火箭)」機制,其運作概以「火協機構」為中樞,先將「目標獲得」情資,交由「戰術射擊指揮系統」遂行火力協調、計畫、分配、管制,繼由「技術射擊指揮系統」換算射擊諸元,下達射擊命令,終迄「效果評估」,連續循環不斷;並藉「戰術區域通信系統」構連,作戰區「指、管、通、情、計、監、偵」(CAISR)體系,使砲兵火力運用達到「快、狠、準、猛」之要求。

(一)系統功能簡介:

「砲兵射擊指揮自動化系統」區分戰術射擊指揮儀、技術射擊指揮儀、 數據輸入器及射令顯示器等四部所組成,由陸軍飛彈砲兵學校自力研發 ¹⁶。具備火力指揮、管制、計畫、目標分配等功能;在系統運用上,能 達到縮短射擊時間、提昇射擊精度及嚴密安全管制作為的具體效益。本 系統硬體採用國內廠商研製之軍規筆記型電腦,符合美國國防部軍事標 準規範(MIT-STD-810F),具防水、防撞、防塵、抗高低溫及電磁波,足 以適應及克服戰場上嚴峻作戰環境。戰術射擊指揮儀配置於各級火力支 援協調組及砲兵指揮所,執行目標處理、火力分配及安全管制;技術射 擊指揮儀配發於砲兵射擊指揮所,遂行射擊指揮作業。數據輸入器配置 於觀測所,由前觀執行目標獲得及射彈修正;射令顯示器配發於砲陣 地,顯示射擊諸元,供砲班將諸元裝入火砲,實施射擊。

品名程式	M230-軍規:	筆記型電腦	V100-軍規	平板型電腦
圖示				
用途	戰術射擊.指揮儀.	技術射擊 指揮 儀	數據輸入器	射令顯示器
配置	各級火力支援協調機構	營(含以下)射擊 指 揮 所	觀測官	陣 地
			執行目標獲得	

(圖片來源:同註16)

註16:張中睿,〈砲兵射擊指揮自動化系統整合運用〉《砲兵季刊》(臺南:第146 期,砲兵季刊社,99年2月),頁9。

(二)系統可獲得效能:

「自動化」乃國軍各項武器系統共同的發展趨勢,本系統發展功能已臻成熟,故配備「技術射擊指揮系統」至各排、連、營層級,部隊應以自動化操作為主,人工作業為備援手段;技術射擊指揮系統可提供野戰砲兵射擊指揮「結合戰術射擊指揮系統」並「以電腦取代人工計算」作業流程,利用電腦程式計算所需之射擊諸元,「以數位化通資傳輸取代語音」,減少作業時間、增加射擊精度,執行射擊目標分配、射擊單位指派、射擊效果掌握及彈藥管理,實施精密檢驗、平高檢、陸山精檢等,配合氣象修正、原級校正等作業,增加射擊精度,執行特別修正、特種彈藥及彈幕射擊功能。

射擊資料建置先完成各砲陣地(含預備陣地)資料建置,可使各砲單獨佔領陣地(系統可同時運算50組陣地諸元)¹⁷,先期完成射向賦予標示,以利戰時迅速完成射擊準備,強化戰鬥支援速度及精度,提升戰場存活率,另由砲長操作技術射擊指揮系統,可減少人工作業計算速度,提升精度、減少通信傳遞時效及錯誤,由火協機制中的戰術射擊指揮儀,直接傳輸目標情報資訊,下達射擊任務至砲車的技術射擊指揮儀,直接賦予任務,將原先一個砲兵營只有3個射擊單位,發揮至24個射擊單位,並藉電腦自動計算出射擊諸元,在短時間內迅速支援戰鬥部隊戰鬥或獨立執行反火力戰,增加了砲兵部隊在戰術運用上的彈性空間。

射擊指揮儀車外操作

射擊指揮儀車內操作(作者拍攝)

註17:張中睿,〈砲兵射擊指揮自動化系統整合運用〉《砲兵季刊》(臺南:第146期,砲兵季刊社,99年2月),頁9。

未來射擊指揮系統更可結合雲端運算功能,現今社會資訊能力已非常 發達,隨身攜帶的手機都已具備電腦計算、無線上網、GPS 衛星定位導航 等功能,再利用民間電信公司結合雲端運算系統,砲兵作戰部隊即能擁有 數位化射控系統,例如前進觀測官攜帶一部手機,將雷觀機測得之目標方 位角、距離、高低角及手機 GPS 定位座標,利用無線上網傳送至電信公司 雲端運算系統;陣地砲車砲長攜帶一部手機,將手機 GPS 定位座標,也利 用無線上網傳送至電信公司雲端運算系統,雲端運算系統即可自行運算 出,陣地砲車對敵軍目標之間的射擊諸元,再利用無線上網傳送至陣地砲 車的手機,陣地砲車即可在觀測官傳送敵軍目標射擊諸元後的幾秒鐘內發 揚火力;另系統可同時運算數萬組目標、陣地諸元,先行完成各砲陣地(含 預備陣地)射擊資料建置,將全作戰區火砲先期完成射向賦予標示,由火 協機制透過雲端運算系統直接傳輸目標情報資訊,下達射擊任務至砲車, 直接賦予任務,原先一個砲兵營只有3個射擊單位,系統可將全作戰區火 砲數量,發揮成數個射擊單位並藉電腦自動計算出射擊諸元,在短時間內 迅速支援戰鬥部隊戰鬥或獨立執行反火力戰,增加了砲兵部隊在戰術運用 上的彈性空間。

雲端運算系統功能的問世,可以說是跨時代的產物,兩部手機加通信費約三萬元台幣,即可取代數十萬美金的射控系統,相較於採購美軍制式配備所需經費,非常之低廉,全中文之介面,教育訓練容易之優點,並充分利用我國強大之資訊設備製造能力,在後勤維修,編制上能充分民間產業結合,彈性以及低廉之後勤需求,達成國軍武器發展自主化之目標。有利戰時迅速完成射擊準備,強化戰鬥支援速度及精度,提升戰場存活率,另系統可減少人工作業計算速度,提升精度、減少通信傳遞時效及錯誤。

肆、結論與建議:

一、結論:

世界各國因應國際情勢遽變及建軍備戰的要求,從過去應付大規模戰爭的兵力,轉變為解決小型區域衝突的快速反應部隊,我國未來火砲應朝向「射程遠」、「射速快」、「威力強」、「精度高」、「人員少」之單一口徑方的發展,而155公厘火砲為多數國家所採用;與我國戰略環境相似者,如以色列、新加坡及韓國,亦致力於此型裝備研發,因此在火力部份,提昇作戰自動化系統,使武力系統作業時間縮短,有效徹底解除軍事上威脅,將資訊作業帶入軍事作戰,成為軍事裝備中重要一環,未來火砲須具備自主功能,配備自動裝填系統、自動射控系統、彈道計算器、衛門等理、定位定向等功能,已是現今各國新式自走砲的特色,亦是基本需求設備;以上武器裝備系統若能如質籌獲,並結合教育訓練、準則、組織編裝精進,經數位通信鏈結,可達成即時目獲、遠程接戰、精準射擊、自動指管及戰場存活率高之要求;並在發展全程不斷經由演習、數時使各級部隊能能獲得最新的情資,並透過戰術區域網際網路,充分發揮數位化的傳輸速度,以達成數位化戰場之要求。

二、建議:

- (一)在有限的國防預算前提,經衡量以「最具效能」的原則,建議陸軍飛彈砲兵學校所研發之砲兵射擊指揮自動化系統及雷霆2000火箭定位定向系統(約20萬美金),整合於國軍現行M109系列自走砲車上,其性能可提升具美軍M109 A6 自走砲功能,提升砲兵部隊戰力。
- (二)就國際發展現勢管式火砲「口徑」趨勢,概以北約組織規格為主流,朝向標準155公厘口徑發展,就武器研製言,多國合作生產單一口徑武器,可降低發展成本及風險,賡續運用現有傳統彈藥,進而研發新一代精準砲彈(如美國和瑞典合作的石中劍砲彈),就聯盟作戰言,口徑標準化有利彈藥、輔助器材的相容及交互支援,建議本軍未來建軍備戰亦能統一火砲規格,與友盟國家於任務所需時共同使用。
- (三)洞察未來戰爭發展趨勢,以現有武器裝備為基礎,積極研發新式裝備系 統與創新有效剋敵之戰術、戰法,方能符合未來建軍備戰需求,建議本 軍針對 M109 系列自走砲,配備自動裝填系統、自動射控系統、定位定 向等功能,委由軍備局或中科院自力研發,換裝現行裝備提高火砲的性 能和精度。

參考資料:

- 註1:王繩果,《陸軍作戰要綱》(桃園:陸軍司令部,民國88年1月1日),頁 1-1。
- 註2:克勞塞維茲,《戰爭論》(臺北:國防部史政編譯局,1991年7月),頁73。
- 註3:鍾堅,《共軍犯台能力與作戰方式研究》,(桃園:陸軍89年度第一次軍事學術研討會論文集,民國89年11月2日),頁30-46。
- 註 4: 黃俊麟,《自走砲現況與未來發展之研究》(桃園: 聯合後勤學校,民國 95年6月),頁12。
- 註 5: 黃俊麟,《自走砲現況與未來發展之研究》(桃園: 聯合後勤學校,民國 95 年 6 月),頁 12。
- 註 6: 李南奕,《美造 M-109A5 式 155 公厘自走砲操作手册》(臺南: 陸軍飛彈砲兵學校, 89 年 7 月), 頁 1-14。
- 註7: 葉信男,《自動裝填與52倍徑是未來趨勢》(台北:科技新知出版社,民國94年5月),頁26。
- 註8:葉信男,《自動裝填與52倍徑是未來趨勢》(台北:科技新知出版社,民國94年5月),頁26。
- 註9:黃俊麟,《自走砲現況與未來發展之研究》(桃園:聯合後勤學校,民國95年6月),頁12。
- 註 10: 奇摩網站: 吳晴秀,《德國新一代自走砲》(pubbb. com、people. com. cn, 100年2月18日) http://www.plusbb.com/redirect.php(100年6月2日)。
- 註11: 耿國慶,〈美軍 M109A6 自走砲營測地作業之研究〉《砲兵季刊》,(臺南)第119期,砲兵季刊社,民國91年11月1日。
- 註 12: 耿國慶 ,《砲兵測地教範》(臺南:陸軍飛彈砲兵學校,97年7月),頁 7-89。
- 註13: 耿國慶,《砲兵測地教範》(臺南:陸軍飛彈砲兵學校,97年7月),頁 7-89。
- 註 14: 耿國慶 ,《砲兵測地教範》(臺南:陸軍飛彈砲兵學校,97年7月),頁 7-89。
- 註 15: 耿國慶,《砲兵測地教範》(臺南:陸軍飛彈砲兵學校,97年7月),頁 7-89。
- 註 16:張中睿,〈砲兵射擊指揮自動化系統整合運用〉《砲兵季刊》(臺南: 第 146 期,砲兵季刊社,99 年 2 月),頁 9。
- 註17:張中睿,〈砲兵射擊指揮自動化系統整合運用〉《砲兵季刊》(臺南: 第146 期,砲兵季刊社,99年2月),頁9。
- 附記:頁13 照片由作者於100 年6月10日申請軍用照像機攝於陸軍飛彈砲兵 學校。