# 挖土機斗齒拆卸方式精進之研析

# 作者/王貴鈴上尉

## 提 要

- 一、工兵部隊現行擁有各種不同型式之挖土機,但各型式之挖土機土斗之斗齒 目前並無任何制式拆卸工具。
- 二、我工兵部隊在救災、疏濬任務執行中,擔任極重要之角色,執行任務時須 配合工兵機械完成任務,其中又以挖土機使用率較高,故挖土機斗齒拆卸 更換的效率實有研究之必要性。
- 三、本研究將針對現行的作法實施檢討,並預期研發一專屬拆卸器,供斗齒拆 卸使用,以提昇保修作業效能。

關鍵字:挖土機、斗齒、拆卸器、裝備性能。

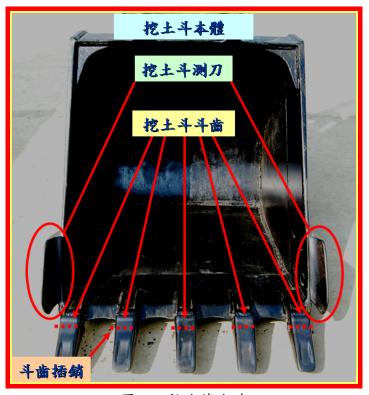
## 前言

現行國軍各工兵部隊皆有各種不同型式之挖土機,然各型式土斗斗齒(耙齒)<sup>[1]</sup>目前並無任何制式拆卸工具,於拆卸、換裝作業時,常因保養人員敲擊固定栓,而造成誤擊導致人員受傷,或因作業空間狹小無法容納沖子及鐵鎚,還必須將外側斗齒拆除後才可拆卸全數斗齒實施更換,且運用沖子及鐵鎚敲擊固定栓更換斗齒時,既費時又費力,為改善此一狀況,故研製「斗齒插銷拆卸器」,藉以達到省時、省力及作業安全之目的。

# 現況窒礙問題與執行概況

## 一、挖土機挖斗介紹:

挖土機挖斗(如圖一)共區分為:挖土斗本體、挖土斗側刀、挖土斗斗齒、挖土斗斗齒插銷四大部份<sup>[2]</sup>,挖土機土斗之側刀及斗齒在施工作業中為最容易磨損之零件,依據各二級廠統計配換率<sup>[3]</sup>斗齒最高為 63%<sup>[4]</sup>,及各型式挖土機撥補狀態表<sup>[5]</sup>,可顯示其為高度消耗品項<sup>[6]</sup>。


註1:陸軍後勤司令部,《CAT 320 挖土機操作及單位保養手冊》,民國 83 年 06 月 30 日,頁 84。

註<sup>2</sup>: 陸軍總司令部,《陸軍卡他皮拉 320DL、312CL、304C、M322D 挖土機操作手冊(第一版)》, 民國 98 年 11 月 16 日,頁 2-58。

註3:配換率=近3年平均耗料數/(料件配賦數\*裝備數)\*100%。

註4:陸軍工兵學校 100 年度部隊輔訪成效評估報告。

註5: 聯勤司令部,《通用主件補給作業手冊》,民國93年10月22日,頁6-8。



圖一 挖土機土斗 資料來源:作者拍攝

#### 二、部隊挖土機斗齒拆卸作業現況:

目前部隊斗齒拆卸<sup>[7]</sup>作業方式區皆為「人力拆卸」(如圖二、三)方式為主, 作業人力為 2 人,約需 15-20 分鐘,且亦造成人員受傷。



圖二 「人力拆卸」圖示 資料來源:作者拍攝



圖三 「人力拆卸」圖示 資料來源:作者拍攝

# (一)人力拆卸優點:

1.器材簡單:人力拆卸使用器材為榔頭及沖子,工具易獲得。

2.器材輕巧:榔頭及沖子[8]之重量輕巧,攜行方便。

3.靈活性高:使用榔頭及沖子拆卸斗齒時可輕易更換角度。

註 $^6$ :聯勤司令部,《通用主件補給作業手冊》,民國 93 年 10 月 22 日,頁 5-10。

註<sup>7</sup>:陸軍後勤司令部,《CAT 320 挖土機操作及單位保養手冊》,民國 83 年 6 月 30 日,頁 85。註<sup>8</sup>:陸軍後勤司令部,《CAT 320 挖土機操作及單位保養手冊》,民國 83 年 6 月 30 日,頁 84。

第 2 頁,共 19 頁

#### (二)人力拆卸缺點:

- 1.拆卸較費時費力,增加保養(修)人員體力負荷。
- 2.作業風險指數高,容易造成人員受傷(如圖四)。
- 3.不適合連續多台裝備拆卸。
- 4.目前尚無標準制式之器材。



圖四 人力拆卸現況 資料來源:作者拍攝

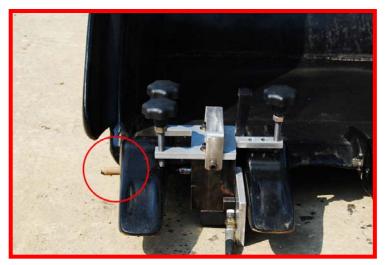
#### 三、研究目的及規劃構想:

#### (一)目的:

挖土機各型式斗齒目前無任何制式拆卸工具,拆卸、換裝作業時常因保養 人員敲擊固定栓時造成誤擊導致受傷,且因空間狹小無法容納沖子及榔頭,還 必須將外側斗齒拆除後才可拆卸全數斗齒實施更換,且更換中費力費時,為改 善此一狀況,故研製「斗齒插銷拆卸器」,藉以達到省時、省力及作業安全之目 的。

另考量在救災、疏濬任務執行中,需與時間賽跑,故斗齒拆卸更換的效率 實有研究之必要性,本文將針對現行的作法實施檢討,並預期研發一專屬拆卸 器,供斗齒拆卸使用,以提昇保修作業效能。

#### (二)構想規劃:

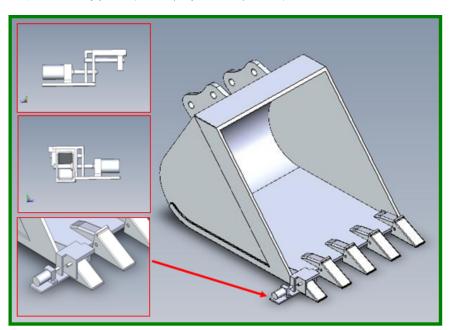

提供部隊二級工兵機電修護[9]人員,能運用型式簡單、操作方便、利於攜行 等小型工具,使部隊於極短時間完成拆卸、更換作業,其應具備之性能摘述如 后:

- 1.可連接裝備本身或其他裝備電瓶作為動力實施斗齒拆卸作業。
- 2. 拆卸過程不須費力及仰賴其他工具即可拆下斗齒插銷。
- 3.僅需單兵一人即可實施作業。

註9:陸軍工兵學校,《100年學校教育計畫》,民國100年1月,頁80。

第 3 頁,共 19 頁

- 4.可縮短拆卸時間,提升作業效率。
- 5.可減少傳統拆卸所造成之危安風險(如圖五)。




圖五 作業中較安全,風險指數較低 資料來源:作者拍攝

#### 四、模組設計:

#### (一) 模組原理(如圖六):

利用工兵機械電瓶之電力來源,驅動斗齒拆卸器液壓連接座上之唧筒,將 挖土機斗齒插銷逼出,實施斗齒拆卸、換裝作業。



圖六 模組設計圖示 資料來源:作者整理

## (二)預想模組性能:

- 1.可連接裝備本身或其他裝備電瓶作為動力實施斗齒拆卸作業。
- 2.拆卸過程不須費力及仰賴其他工具即可拆下斗齒插銷。
- 3.僅需單兵一人即可實施作業。

- 4.可縮短拆卸時間,提升作業效率。
- 5.可減少傳統拆卸所造成之危安風險。

#### (三)模組結構:

## 1.主結構總成[10]:

使用結構鋼製成,表面鍍鉻抗腐蝕、唧筒使用不鏽鋼製成,以液壓油驅動唧筒伸縮作動、沖銷為 SKD-11 工具鋼製成,以真空熱處理方式增加其抗壓性;組裝簡單可由單人完成結構與拆卸作業,主結構寬度可作調整,能安裝於工兵部隊不同型式之挖土機斗齒,各部零件可分解,便於保養維修及更換,單一主件重量不超過 35KG,裝備具有攜行提把設計方便人員運搬及安裝。

- (1)主結構本體(如圖七):本體使用 SS-400 含以上結構鋼等級製成, 表面鍍鉻抗腐蝕。
  - (2) 唧筒(如圖八): 唧筒使用不鏽鋼製成, 以液壓油驅動唧筒伸縮作動。
- (3)沖銷(如圖九):沖銷為 SKD-11 工具鋼,以真空熱處理方式增加抗壓性
  - (4) 電動控制器 (如圖十): 可控制沖銷之方向。



圖七 主結構本體 資料來源:作者拍攝



圖八 唧筒 資料來源:作者拍攝

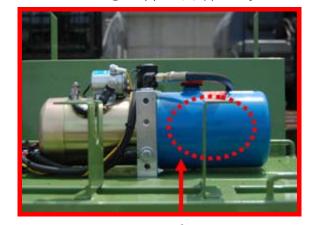
註 $^{10}$ : 盈昶精工事業有限公司,《斗齒插銷拆卸器操作說明 ( 附件 2 )》,民國  $^{100}$  年 6 月 27 日。 第 5 頁,共  $^{19}$  頁



圖九 沖銷 資料來源:作者拍攝



圖十 電動控制器 資料來源:作者拍攝


#### 2.液壓動力總成:

材質使用具有抗腐蝕、質輕、高強度之金屬材料設計製造,直流電動馬達可連接裝備本身的電瓶電力為來啟動,再以馬達驅動液壓泵浦,帶動液壓油箱之液壓油,並藉由油管將動力傳遞至主結構上。單一主件重量不超過35KG,須同樣具有攜行提把設計方便人員運搬及安裝。

- (1)直流電動馬達(如圖十一):直流電馬達藉由電力啟動馬達,可驅動 液壓泵浦。
  - (2)液壓泵浦(如圖十二):液壓泵浦係將液壓油加壓產生動力。
- (3) 液壓油箱(如圖十三): 液壓油箱係儲存液壓油用,使用油料為 R-68 操作油,每次添加量約為 1.6 公升 $^{[11]}$ 。
- (4) 電源連接線(如圖十四): 電源連接線係連接電源用,紅色線處為正極,黑色線處為負極,連接電源須為 DC 12V,並注意正負極接續方式<sup>[12]</sup>。



圖十一 直流電動馬達 資料來源:作者拍攝



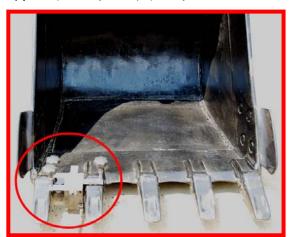
圖十二 液壓泵浦 資料來源:作者拍攝

註 $^{11}$ :盈昶精工事業有限公司,《斗齒插銷拆卸器操作說明》,民國 100 年 6 月 27 日,頁 3 。

註12:同註11。



圖十三 液壓油箱 資料來源:作者拍攝




圖十四 電源連接線 資料來源:作者拍攝

## 精進作法

## 一、裝備性能測試:

- (一)第一次測試:
  - 1.拆卸器使用方式及流程[13]:
    - (1) 取出拆卸器實施架設(如圖十五):



圖十五 拆卸器架設於土斗上 資料來源:作者拍攝

(2)接上電瓶(如圖 16):(注意: 只接一顆電瓶 12V,正負極不可接反)

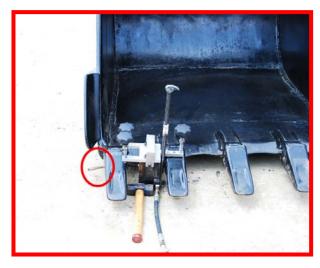
註 $^{13}$ :盈昶精工事業有限公司,《斗齒插銷拆卸器操作說明》,民國 100 年 6 月 27 日,頁 2 。 第 7 頁,共 19 頁



圖十六 電源連接線與電瓶連接 資料來源:作者拍攝



圖十七 架設完成之外觀 資料來源:作者拍攝


# (3) 開始拆卸 (如圖十八-廿一):




圖十八 準備開始拆卸 資料來源:作者拍攝



圖十九 拆卸出一半 資料來源:作者拍攝



圖廿 即將完成拆卸 資料來源:作者拍攝



圖廿一 拆卸完成 資料來源:作者拍攝

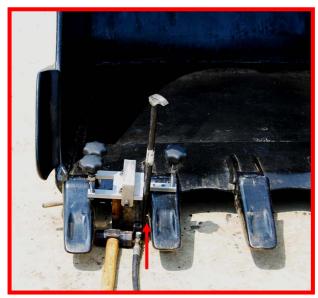
## 2. 斗齒插銷拆卸器執行斗齒插銷拆卸測試 (如表一):

| 表一 | 斗齒插銷拆卸器 | 執行斗齒插 | 5銷拆卸測試一 | · 覽.表 |
|----|---------|-------|---------|-------|
|----|---------|-------|---------|-------|

| 斗齒插銷拆    | 卸器執行斗     | 齒插銷拆卸 | 測試一覽表                                                     |
|----------|-----------|-------|-----------------------------------------------------------|
| 裝備種類     | 裝被型式      | 斗齒數量  | 測試結果                                                      |
| 20 噸級挖土機 | 320DL 挖土機 | 6 支   | 1.裝備電瓶(12<br>伏特)可正常<br>供電。<br>2.土斗斗齒插銷<br>可拆下。            |
| 4 噸級挖土機  | 304 C 挖土機 | 4 支   | 1.裝備電瓶(12<br>伏特)可正常<br>供電。<br>2.土斗斗齒間隙<br>太小,拆卸器<br>無法置入。 |

資料來源:作者整理

## 3. 所見缺失:


(1) 不規則面接觸(如圖廿二、廿三):

主結構本體後方為平面,內側已抵觸,但外側尚有間隙,而斗齒之側方為 不規則面,在相依托抵觸拆卸時,主結構會側滑。



圖廿二 不規則面接觸有間隙造成側滑 資料來源:作者拍攝

第 9 頁, 共 19 頁



圖廿三 暫時先以翹棒實施矯正 資料來源:作者拍攝

## (2) 沖銷回拉彈力不足(如圖廿四):

回拉彈簧彈力不足,導致回拉速度過慢,多次拆卸行程調整時,沖銷不易 以手指轉動,導致沖銷不易旋轉調整行程。

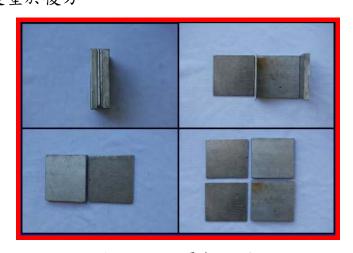


圖廿四 回拉彈簧很慢才能將即筒拉回,沖銷不易旋轉調整行程 資料來源:作者拍攝

(3)沖銷易斷裂(如圖廿五):沖銷頭設計不良,拆卸時導致沖銷頭本體之破壞。

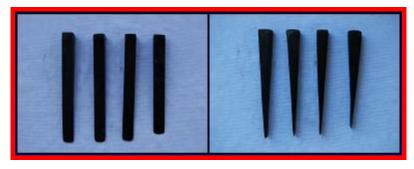


圖廿五 沖銷在拆卸過程中發生斷裂及破損 資料來源:作者拍攝


(4)計算錯誤(如圖廿六):計算時發生誤差,主結構本體無法置入304C 挖土機土斗斗齒之間實施拆卸。



圖廿六 主結構本體設計過大,無法置入 304C 型斗齒之間 資料來源:作者拍攝


#### 4.改進作法

(1)設計鐵板及鐵叉(如圖廿七、廿八):設計不同厚度之鐵板依挖土機 斗齒狀況選擇厚度墊於後方。



圖廿七 不同厚度之鐵板 資料來源:作者拍攝

第 11 頁,共 19 頁



圖廿八 不同長度及角度之鐵叉 資料來源:作者拍攝

- (2)更換回拉彈簧:更換彈力較大之回拉彈簧,或使用特殊工具或其他 方式使沖銷易於旋轉調整。
- (3)修改沖銷頭(如圖廿九):將沖銷頭改成傘狀或菇狀,增加其結構能力。



圖廿九 菇狀之沖銷頭 資料來源:作者拍攝

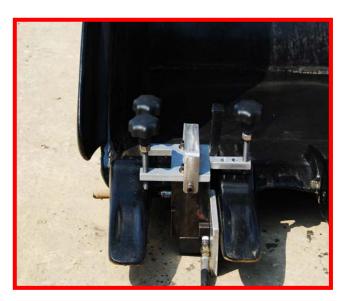
(4)修改主結構本體(如圖卅):重新規劃設計一只新品或再製一只可用之主結構,使本品由一主結構變成二個可替換式之主結構。(注意:箱子也需再製一放置位置)



圖州 修改主結構本體 資料來源:作者拍攝 第 12 頁,共 19 頁

# (二)第二次測試

## 1.缺失改進:


(1)設計不同厚度之鐵板依挖土機斗齒狀況選擇厚度墊於後方(如圖卅 一一卅五)。




圖卅一 架設並準備拆卸 資料來源:作者拍攝



圖卅二 開始拆卸 資料來源:作者拍攝



圖卅三 拆卸至一半 資料來源:作者拍攝



圖卅四 即將拆卸完成 資料來源:作者拍攝



圖卅五 拆卸完成 資料來源:作者拍攝

(2)更換彈力較大之回拉彈簧,或使用特殊工具或其他方式使沖銷易於 旋轉調整(如圖卅六)。



圖卅六 更新回拉彈簧後沖銷較容易旋轉 資料來源:作者拍攝

(3) 將沖銷頭改成傘狀或菇狀,增加其結構能力(如圖卅七)。



圖卅七 沖銷頭已改成菇狀 資料來源:作者拍攝

(4) 重新規劃設計一只新品或再製一只可用之主結構,使本品由一主結構變成二個可替換式之主結構(如圖卅八)。(注意:箱子也需再製一放置位置)



圖卅八 已做調整及切削,使其能拆卸 304C 型挖土機 資料來源:作者拍攝

## 二、研製成效

- (一) 測試結果 (如表二、表三):
  - 1.斗齒插銷拆卸器可由1人運搬、組裝及拆卸簡單迅速。
  - 2.主結構可承受拆卸作業時產生之推拉力量,且不會造成變形損壞。
  - 3.可簡化挖土機斗齒拆卸流程,縮短斗齒更換時間,提升作業效益。
  - 4.可減少作業人數、時間、體力之浪費,並降低人員的拆卸作業之危安風險。

表二 斗齒插銷拆卸器各項功能測試一覽表

| 斗 齒 | 插鎖拆货   | ア 器  | 各   | 項    | 功          | 能     | 測   | 試  | _   | 覽          | 表  |
|-----|--------|------|-----|------|------------|-------|-----|----|-----|------------|----|
| 項次  | 驗證要項   |      |     |      | ž          | 則評為   | 吉果  |    |     |            |    |
| 1   | 主結構本體  | 1.多用 | 途推  | 桿可 E | 自1ノ        | 運搬    | と、結 | 構及 | 拆卸  | 0          |    |
| 2   | 唧筒     | 2.主結 | 構可力 | 承受技  | <b>推進化</b> | 丰業時   | 產生  | 之推 | 拉力  | 量,」        | 且不 |
| 3   | 推銷     |      | 成變  |      |            |       |     |    |     | n          |    |
| 4   | 直流電動馬達 | 3.左列 | 各驗語 | 登安工  | 負經費        | [ 際 測 | 」試, | 均達 | 合格相 | <b>票</b> 準 | 0  |
| 5   | 液壓泵浦   |      |     |      |            |       |     |    |     |            |    |
| 6   | 液壓油箱   |      |     |      |            |       |     |    |     |            |    |

資料來源:作者整理

表三 人工拆卸與斗齒拆卸器各項功能測試結果一覽表

| 人工拆卸      | 與斗齒  | 诉卸器各  | 項功能        | 測 試 結 果     | 一覽表  |  |  |  |  |  |  |
|-----------|------|-------|------------|-------------|------|--|--|--|--|--|--|
| 16 hn + 1 | 測試結果 |       |            |             |      |  |  |  |  |  |  |
| 拆卸方式      | 運搬人力 | 組裝人力  | 器材損壞       | 更換時間        | 危安風險 |  |  |  |  |  |  |
| 人工拆卸      | 1人   | 1-2 人 | 易變形<br>損壞  | 易造成人<br>員受傷 |      |  |  |  |  |  |  |
| 斗齒拆卸器     | 1人   | 1人    | 不易變形<br>損壞 | 5-6 分鐘      | 低風險  |  |  |  |  |  |  |

資料來源:作者整理

## (二)差異比較:

以「320 挖土機」(約 20 噸級)<sup>[14]</sup>及「304 挖土機」(約 4 噸級)<sup>[15]</sup>斗齒插 銷拆卸為測試標的,針對人力拆卸、拆卸器拆卸等二種模式之器材準備、作業 人力、拆卸時間、作業安全與拆卸準確度等項目實施差異比較,比較結果如下 表所述(如表四)。

註  $^{14}$ : 陸軍總司令部,《陸軍卡他皮拉 320DL、312CL、304C、M322D 挖土機操作手册(第一版)》,民國 98 年 11 月 16 日,頁 2-1。

註 $^{15}$ : 陸軍總司令部,《陸軍卡他皮拉 320DL、312CL、304C、M322D 挖土機操作手冊(第一版)》,民國 98 年 11 月 16 日,頁 2-8。

| 挖土機     | 斗                                                       | 齒 拆                     | 卸        | 作業   | 效             | 益    | 差  | 異   | 分                | 析                | 比                | 較         | 表   |
|---------|---------------------------------------------------------|-------------------------|----------|------|---------------|------|----|-----|------------------|------------------|------------------|-----------|-----|
| ( 以     | 2                                                       |                         | 噸        | 級    | 挖             |      | 土  | 機   |                  | 為                | 侈                | J         | )   |
| 項目 人工拆卸 |                                                         |                         |          |      |               | 差異比較 |    |     |                  |                  |                  |           |     |
| 器材準備    | <ol> <li>4. 椰頭</li> <li>2. 衝擊</li> <li>3. 手套</li> </ol> | ·                       |          | 1.拆缶 | 7器組           |      |    | 備   | 歯拆<br>器材<br>,不   | 卸器               | 拆卸<br>少 ,<br>.統拆 | 所需<br>且 易 | 津   |
| 作業人力    |                                                         | 1-2 人                   |          |      | 1人            |      |    | · · | 十齒<br>省人         | 拆卸               | 器拆資源             | 卸,        | 可   |
| 拆卸時間    |                                                         | 手冊規第<br>需 15-20         |          | 5    | -6 分針         | 童    |    | 省約  | 十齒<br>裝備<br>約 10 | 拆卸<br>請拆<br>0-14 |                  | 卸,間可,並    | 每節隨 |
| 作業安全    | 方易手低多                                                   | 统诉作安若装不牛人卸業全連備支。工,中全續可筆 | 員到 較 卸 有 | 卸,高, | <b>当拆卸</b> 安全 | 性手   | 較及 |     | <b>作卸</b>        | 器拆               |                  | 員較        | 还不  |

資料來源:作者整理

## (三)效益分析:

- 1.結構斗齒快速簡單,在拆卸時,可縮短作業準備。
- 2. 斗齒拆卸器拆卸時間短,可提升保修及作業效率。
- 3. 運用斗齒拆卸器拆卸,可減少作業人力及體力負荷,並確保拆卸作業之安

4.可運用在國軍工兵及工程單位大多型式之挖土機。

#### 三、建議

「工欲善其事,必先利其器」,目前工兵部隊挖土機計有 320 型挖土機<sup>[16]</sup>29 部、320DL 型挖土機<sup>[17]</sup>13 部(如圖卅九)、M322D 型挖土機<sup>[18]</sup>3 部(如圖 40)、312CL 型挖土機<sup>[19]</sup>9 部(如圖四十一)、304C 型挖土機 9 部(如圖四十二),共計 63 部<sup>[20]</sup>,然工兵部隊不管於部隊訓練、河川疏濬及救災任務,挖土機皆擔任重要之角色,但其土斗斗齒之更換卻無制式之工具可供使用,建議本案於通過評鑑之後:

#### (一)納入教育訓練:

1.能爭取預算委商製作 26 套,分別撥交學校、各工兵群各營之二級廠及防衛指揮部工兵連使用。

2.納入學校二級保養專長工兵機電修護兵(工兵部隊)、工兵機電修護士(工兵部隊)及儲備工兵領導士官班-機電修護士等3個班隊之課程,並修編相關教案、保養手冊及MR卡,以提升工兵部隊教育訓練、保養及任務執行之成效。

#### (二)納入駐地訓練:

將此斗齒拆卸器納入二級廠單件機工具駐地在職訓練,以提昇單位工兵機 雷修護人員之保修技能。

#### (三)納入基地普測:

將斗齒拆卸器拆裝項目列入基地普測,主要驗證二級廠機電修護人員之維 保技能。

註17:同註2。

註18:同註2。

註19:同註2。

註20:陸軍工兵學校99年度基訓部隊訓練輔訪資料。

註16:同註2。



圖卅九 卡他皮拉 320DL 履带型挖土機

資料來源:陸軍總司令部,《陸軍卡他皮拉 320DL、312CL、304C、M322D 挖土機操作手冊(第一版)》,民國 98年11月16日,頁1-2。



圖四十 卡他皮拉 M322D 輪型挖土機

資料來源:陸軍總司令部,《陸軍卡他皮拉 320DL、312CL、304C、M322D 挖土機操作手冊(第一版)》,民國 98年11月16日,頁1-3。



圖四十一 卡他皮拉 312CL 履帶型挖土機 資料來源:陸軍總司令部,《陸軍卡他皮拉 320DL、312CL、304C、M322D 挖土機操作手冊(第一版)》,民國 98 年 11 月 16 日,頁 P1-2。



圖四十二 卡他皮拉 304C 履帶型挖土機 資料來源:陸軍總司令部,《陸軍卡他皮拉 320DL、312CL、304C、M322D 挖土機操作手冊(第一版)》,民國 98 年 11 月 16 日,頁 1-3。

#### 結 語

本校所研發之斗齒拆卸器經驗證結果,除可利用在工兵現有挖土機實施拆卸外,亦可結合國軍各工程單位之保修拆卸任務,如此即可達到縮短拆卸時間、節約作業兵力及提昇保養(修)作業成效,且目前其他各軍種、民間等工程單位均無設計及運用類此軍品,故確有其獨特之研發效益及運用價值。

# 作者簡介

王貴鈴上尉,陸軍官校正73期(93年班)、工校正規班158期(99年班);曾任排長、隊長、教官,現任職於陸軍工兵學校機械組教官。