●作者/呂友煌中尉

中共坦克動力系統發展研析

提要:

- 一、中共坦克的發展從早期擴獲→研改→自行研製,目前已發展到第三代,其 主力坦克性能與我國相比己產生嚴重世代差距。
- 二、藉由中共動力系統發展的走向,與世界各國主力戰車的動力水準做一比較, 進而研析敵我雙方優缺點所在,提出建言以做為未來建軍備戰之參考。

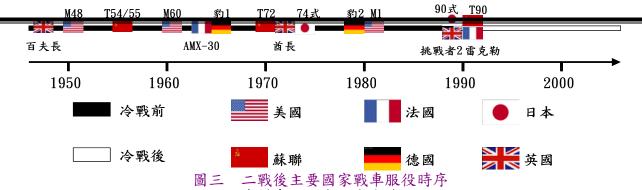
前言:

一、研究動機:

由 共於60週年建國大閱兵時,向 世界展示了許多新型自製武器 及装備,此次亮相受閱的裝備全由中 國自主研製及生產,其中更有高達 9 成是首次露面,充份反映中國科技進 步和技術創新的最新成果。其中最引 起筆者注意的就是以數位迷彩塗裝 經過天安門廣場的主戰坦克-99 式坦 克,深入論壇搜尋的結果,中國 99 總師祝榆生更在中央電視台《大家》 節目中,明白表示出只有美國的 M1A2、德國的豹二和中國的 99 式才 是真正的王者,其他根本不值的一 提。此一談話引起中外軍事迷廣泛的 討論,有鑑於此筆者特針對中共裝甲 部隊坦克動力演進歷程深入研析,藉 以了解共軍坦克動力發展及未來趨 勢,以作為我國策進方案之參考。

圖一 中共 60 週年國慶閱兵-99 式坦克 資料來源: http://blog.xuite.net/ leehsienchung/blog/27433170

二、研究目的:


對我國陸軍而言,中共自製起-II M 超出我國主力車種是早從 85-II M 坦克出現後便存在的問題,從 1990 年代末期超 第一 1990 年代末期超 1990 年代 98/99 式 1990 年代 98/99 式 1990 第二 1990 年代 98/99 式 1990 第二 200 第二

三、研究方法:

本文採用文獻分析法,參考國內 外相關期刊及網路論文等相關資 料,並以具代表性資料作為研究分析

圖二 85-II M 式坦克 資料來源:維基百科 http://zh.wikipedia.org/zh-tw/File

資料來源:本研究自繪

之樣本,將所蒐集來資料及相關文獻 予以分析歸納,了解世界各國戰車動 力發展趨勢,並針對共軍坦克動力發 展歷程等相關資料作深入之探討與 比較,進而推論未來發展之技術重點 及對我軍建軍備戰之建言。

四、研究限制:

中共對軍事事務報導及管制仍相 當嚴密,特別針對其主力坦克之發展 皆為最高機密,公開的資料非常有 限,故僅能運用國內外公開的文獻資 料、期刊、論文及媒體報導等資料窺 得部份, 並將蒐集來的資料作客觀之 討論及分析,為其限制所在。

情報摘要:

一、近六十年來戰車動力發展歷程1:

二次世界大戰後的60年迄今,國 外相繼發展了四代戰車,其相對應的 動力裝置亦有了大幅度的改觀,50 年代時期第一代戰車的動力裝置已 經開始由汽油引擎轉向柴油引擎。60 年代初,考量到戰車實際性能需求, 引擎幾乎己全部柴油機化。80 年代至 90 年代初,美、德、法、日、英等強 權相繼為其戰車研制了 735~1100kw 高功率的引擎,其中型式更包括了燃

氣渦輪引擎、四行程增壓柴油引擎及 二行程超高增壓柴油引擎等,以作為 其主力戰車動力系統。

90 年代轉用柴油引擎以來,隨著 渦輪增壓技術的逐步發展,戰車引擎 技術有了長足的進步,其中最具代表 性的引擎即屬德國 MTU(Motoren-und Turbinen-Union) 公司所生產的 MT 880 系列。MT 880 系列主要分為兩 種:採用 V 型 8 汽缸設計的 MT 881, 以及採用 V 型 12 汽缸的 MT 883, 雨 者又各自分為早期的 Ka-500 以及使 用整合油路燃油噴射系統的 Ka-501 型,MT 881 Ka-501 可作為各國 M60 系列戰車改良時的選用套件,每分鐘 3000rpm 時可輸出 1200 匹馬力的最 大功率;而 MT 883 則更被稱為歐洲 動力包件核心(Euro Power Pack, 簡 稱 EPP),先後被阿拉伯聯合大公國向 法國購買的雷克勒 UAE 外銷型、美國 M1A2 外銷型(引擎由 MTU 授權美國

MT 883 Ka-500 柴油引擎 資料來源:維基百科 http://zh.wikipedia.org/zh-tw/File

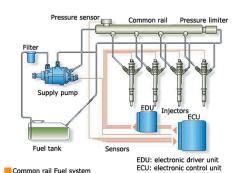
¹張均享,《三十年來主力坦克動力發展趨勢》,「國 外坦克],99年第10期

項目	第一代 1950~1960	第二代 1960~1980	第三代 1980~1990	未來四代 1990~今
功率(kw/h)	426~510	485~552	735~1100	1100
馬力(hp)	580~690	660~750	1000~1500	1500
熱效率(kw/L)	11~16.5	16. 5~28. 2	15~51.4	40~67
推重比(hp/ton)	8.8~11.7	9. 7~15. 4	14~20	20 以上
燃油消耗率(g/KW・h)	275 以上	225~310	210~288	195~235
平均無故障時間(MTBF)	200 以上	300~500	500~600	600 以上

表一:近六十年動力機發展性能

資料來源: http://www.army-guide.com/eng/products.php

GDLS 生產,改稱為 GD 883)、英國挑戰者 2E、以色列馳車 MK-4(配備美國生產的 GD 883),以及南韓的 XK-2主力戰車原型車(量產型改用 MTU 授權南韓斗山重工生產的 MT 883 Ka-500)所採用。


現今柴油發動機技術更加全面, 諸如可變幾何渦輪增壓器(VGT)、高 壓共軌直噴技術(CDI)、電子控制等 技術的成熟,使運用柴油動力機戰車的動力性能更進一步提高。

二、各國主力戰車之引擎介紹2:

目前世界上各個國家主力戰車中,公認比較先進的戰車有美國的「M1」系列、德國的「豹二」、法國的「雷克勒」、日本的「90 式」、類的「挑戰者 2」等,這些戰車的引擎代表了當今國際主力戰車的動力水準。

圖五 可變幾何渦輪增壓器 資料來源:福特汽車公司

圖六 高壓共軌直噴技術 資料來源:福特汽車公司

圖七 美國 M1A2 戰車 資料來源:http://www.army-guide .com/eng/products.php


(一)美國M1A2 戰車³

(AGT-1500 燃氣渦輪引擎):

M1A2 並非使用一般戰車慣用的柴油引擎,而是一具萊康明

²劉福水. 張幽彤,《國外主戰坦克動力的現狀發展 趨勢與技術分析》,[兵工學報], 1999(06)

³許皓鈞,《世界前五大戰車》- www. pdffactory. com

圖八 AGT-1500 燃氣渦輪引擎 資料來源:http://www.army-guide .com/eng/products.php

(Lycoming)生產的 AGT-1500 燃氣渦輪引擎,其運用熱交換器使熱空氣再生循環、三軌並由微電子控制、燃油消耗率 280 g/KW·h,最大出力達 1500 匹馬力,使得重達 69 噸的 M1A2 擁有21.7馬力/噸的推重 比,與 AGT-1500 燃氣渦輪引擎匹配的是艾力森(A11 ison)X-1100-3B 自動變速箱,有4個前進檔與2個後退檔,不僅擁有66.7 km/hr 的時速,加速度與越野機動力也是上一代主力戰車無可比擬。

燃氣渦輪引擎的優點為能使 用多種燃油,且體積小重量輕,推重 比較大,因此無論加速度、肅靜性都 是柴油引擎望塵莫及,啟動也比柴油 引擎快且容易,特別是在寒冷氣候中 尤為明顯;缺點則為耗油量與熱訊號 大於柴油引擎,且造價及維修費用也 相對比較高。

AGT-1500 燃氣渦輪是 1970 年代的產物,在 M1 上的表現雖然日益成熟,但問題亦頗多,因此美國陸軍透過兩階段的計畫來改良 M1 的動力系統:第一階段是由 PM/AMC 工業公司對 AGT-1500 進行徹底的翻修改良稱為 PROSE,將 AGT-1500 原有的舊式組件全部由最新產品替代,可提升性能並降低後勤維修成本,可靠度增加

圖九 LV100-5 燃氣渦輪引擎 資料來源:http://www.army-guide .com/eng/products.php

30%。第二階段則是為 M1 換裝一具全新的發動機,選用美國漢緯動力 (Honeywell)與通用電機(GE)新開發的 LV100-5 燃氣渦輪引擎,LV100-5 的最大功率為 1540 匹馬力,相較於 AGT-1500 具有體積重量更小、加速更快、更安靜、更省油、更可靠、維修更便利且不冒黑煙等優點。

圖十 德國豹二戰車 資料來源:http://www.army-guide .com/eng/products.php

(二)德國豹二戰車

(MB 873 Ka-501 柴油引擎): 豹二的引擎為德製 MB 873 Ka-501 水冷渦輪增壓 V12 柴油引

圖十一 MB 873 Ka-501 柴油引擎 資料來源:http://www.army-guide .com/eng/products.php

擎,轉速 2600rpm 時可輸出 1500 匹的最大馬力,推重比 25.5 馬力/噸,擁有一流的機動性能,從靜止加速到 32km/hr 只需 7 秒。豹二使用一提 HSWL 354 自動變速箱,採用液靜行星 齒輪,有 4 個前進檔與 2 個後退檔 % 約二的引擎、變速箱以及相關冷卻裝置都整合成單一矩形動力包件,故更 操作業極為簡便,整個動力系統吊裝/更換作業能在 15 分鐘內完成。

圖十二 法國雷克勒戰車 資料來源:http://www.army-guide .com/eng/products.php

(三)法國雷克勒戰車

(V8X-1500 超高壓柴油引擎): 雷克勒使用一具體積小、重量 輕、易啟動、熱訊號低、功率高且不 冒黑煙的新型 V8X-1500 為 V 型 8 汽 缸水冷渦輪增壓柴油引擎,由 SAGEM 的電子控制系統監控,搭配先進 ESM-500 自動變速箱,在每分鐘 2500rpm 時可達最大 1500 匹馬力輸 出功率,推重比高達 28 馬力/頓,燃

圖十三 V8X-1500 超高增壓柴油引擎 資料來源:http://www.army-guide .com/eng/products.php

油消耗率 231 g/KW·h,極速達 71km/hr,平均越野速度為 50km/hr, 由靜止加速至 32km/hr 只需要 5 秒m 配備 Suralmo 頂桿高壓渦輪增壓器 統,以可變旁通氣門與輔助燃燒室 接,能大幅提升進氣效率 雷克勒 煙 整選 超過一般渦輪增壓器,使雷克勒 但 系統的表現接近燃氣渦輪引擎 簡化後 動維修作業,雷克勒的動力系統相關 組件均結合成一個緊凑的矩型包 件,這讓動力包件的更換與維修作業 變得更為便利迅速。

圖十四 日本 90 式戰車 資料來源:http://www.army-guide .com/eng/products.php

(四)日本 90 式戰車

(10ZG32WT V10 柴油引擎):

90 式採用一具三菱 10ZG32WT 二行程渦輪增壓柴油引擎,搭配三菱 MT-1500 自動變速箱,最大輸出功率 達 1500 匹馬力,設有四個前進檔、 兩個後退檔。因為引擎為二行程設

圖十五 10ZG32WT V10 柴油引擎前身 10ZF22WT 10 汽缸二行程柴油引擎 資料來源:日本三菱重工歷史資料庫

圖十六 英國挑戰者 2 坦克 資料來源:http://www.army-guide .com/eng/products.php

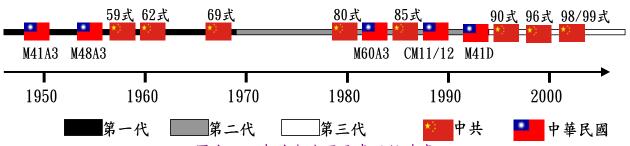
(五)英國挑戰者2戰車4

(CV12-1200TCA 柴油引擎):

挑 戰 者 2 使 用 一 具 CV12-1200TCA 柴油引擎,與 TN54 自動變速箱搭配,擁有六個前進檔與二個後退檔,輸出功率為 1500 匹馬力,使得挑戰者的戰鬥重量雖然重達 65 噸,但推重比仍有 23.1 馬力/噸,最高路速 72km/hr,機動性能與 M1A2、豹二相當。挑戰者 2 裝配數位動力控

圖十七 CV12-1200TCA 柴油引擎 資料來源:http://www.army-guide .com/eng/products.php

制單元(DASCU),使得動力系統的可靠度提升。DASCU 採用兩具微處理器,能隨時監控引擎、傳動裝置和相關裝置的運作狀況,故障發生時則能迅速進行自我診斷。


在1998年推出改良版-挑戰者 2E,是出口型的戰車,動力系統則換 裝德國 MTU 的 MB-883 柴油渦輪引擎 和 Renk 的 HSWL-295TM 自動變速箱, 馬力從 1200 匹提升至 1500 匹,續航 力由 450km 增至 550km。

綜觀國外目前第三代主力戰車的引擎動力,其功率介於 735 kW~1100 kW,絕大多數主力戰車動力輸出皆為 1500 匹馬力,無論是四行程水冷柴油引擎、氣冷柴油引擎、燃氣渦輪引擎,還是水平對臥二行程及超高增壓柴油引擎,都可達到此一標準。但不同的機型都有其特殊的弱點:

- 1、四行程水冷及氣冷柴油引擎,具有單位體積功率小、整體散熱量較高等缺點。
- 2、超高增壓柴油引擎具有熱負荷和機械負荷均很高缺點。
- 3、燃氣渦輪引擎則為油耗高, 且對空氣濾清系統的要求因進氣量 大而變的相當高。

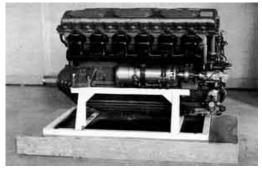
⁴軍武狂人夢

http://mbox.hchs.hc.edu.tw/~military/index2.htm

圖十八 中共與我國戰車服役時序 資料來源:本研究自繪

圖二十 中共 69 式坦克 資料來源:http://www.army-guide .com/eng/products.php

4、水平對臥二級程引擎為熱效 率低、振動大等。


國外現行主戰坦克所具有的特點是:

- 1、功率大、推重比高。
- 2、渦輪增壓部份廣泛採用廢氣 渦輪增壓及中段冷却技術。
- 3、部份引擎採用了電子控制技術,如美國的 ATG-1500 燃氣渦輪引擎和法國的 V8X-1500 超高增壓柴油引擎即是。

4、動力機各系統模組化,促使

圖十九 V-54 柴油引擎 資料來源:http://www.army-guide .com/eng/products.php 後勤維保部份更為簡便。

圖二十一 12150L-7 柴油引擎 資料來源:http://www.army-guide .com/eng/products.php

共坦克動力發展

、中

趨勢5:

(一)第一代坦克:

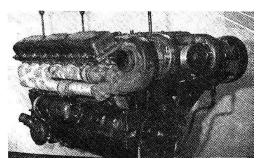
中共的坦克動力始於 1950 年代引進前蘇聯 T-54 戰車的 V-54 柴油引擎的生產線,生產 59 系列坦克,採用 12150 型柴油引擎,輸出馬力達520 匹,為中共第一代主力坦克,後續又陸續推出 69、79 系列坦克。

69 式坦克是中共第一代自行研製的坦克,69 式安裝一具12150L-7四行程 V型 12 汽缸水冷柴油引擎,改良自 59 式的 12150 型,功率由 520匹馬力提高至 580 匹馬力,推重比15.8 馬力/頓,最大道路速度約50km/hr。

(二)第二代坦克:

1970 年代以來由於中共對軍 事自主的野心,導致其新一代坦克的

⁵蘭長羽、孫旭著,《世界軍武發展史坦克篇》,世 潮出版,2003


發展概分為三個路線,第一個路線是617 所-北方工業公司前身,從1974年研發的80系列坦克,爾後逐步研改定型成為88式,且由80系列車型又衍生出先進的85系列及終極版96

圖二十二 中共 80 式坦克 資料來源:http://www.army-guide .com/eng/products.php

式坦克,此階段採用 12150ZL 柴油引擎,輸出馬力以可達 730 匹,為中共所謂的「第二代主力坦克」。

第二代坦克的代表主要為 80 系列,其動力 6統 使用中共自製的 12150ZL 12 汽缸 V 型排列渦輪增壓柴油引擎,此引擎改良自 69 式戰車使用的 12150-7BW 柴油引擎,以渦輪增壓取代原本的機械增壓,最大馬力由原本的 580 匹增至 730 匹,耗油率減少 6%,並使得 80 式的推重比較 69

圖二十三 12150ZL 柴油引擎 資料來源:http://www.army-guide .com/eng/products.php

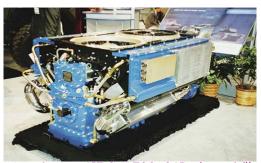
式的 15.8 馬力/頓大幅提昇至 19.2 馬力/頓,最大道路速度約 57km/hr,續航距離 430km。

(三)第三代坦克:

第二個路線是北方工業公司模 仿蘇聯 T-72 戰車而衍生的 90 式 /MBT-2000 車系,於 1990 年代初期正 式推出,後來外銷至巴基斯坦成為哈 利德戰車,此車型徹底跳脫了 80 式

圖二十四 中共 90-II 式坦克 資料來源:http://www.army-guide .com/eng/products.php

系列的血緣,可視為全新的坦克,也 將中共坦克帶入第三代。


圖二十五 CV12-1200 TCA 柴油引擎 資料來源:http://www.army-guide .com/eng/products.php

以90式坦克來說,其系列至少曾測試過三種不同的動力包件,其一動力包件是英國帕金斯引擎公司的 CV12-1200 TCA 12V 柴油引擎,此種引擎先前曾用於英製挑戰者-1/2 主力戰車,最大功率為 1200 匹馬力。第二種是烏克蘭 Malyshev 廠製造的 6TD-2 氣冷柴油引擎,最大功率 1200 匹馬力。第三種動力包件是美國 AVDS-1790-9AR 柴油引擎與 LSG3000 自動變速箱的組合,最大功率亦為

1200 匹馬力。

圖二十六 6TD-2 柴油引擎 資料來源:http://www.army-guide .com/eng/products.php

圖二十七 AVDS 1790 9AR 柴油引擎 資料來源:http://www.army-guide .com/eng/products.php

第三個路線⁶其實才是中共發展下一代主力坦克的真正意圖,從德國引進豹二的先進技術,並加上既有的基礎,繼而研發更新一代的主力坦克;而這條路線後續造就出 98/99 系列坦克,採用 150HP柴油引擎,引擎動力大幅提昇至 1200 匹及 1500 匹馬力,這就是中共所謂的「第三代主力

圖二十八 中共 99 式坦克 資料來源:http://www.army-guide .com/eng/products.php

坦克」。

98/99 式坦克引擎引進德國MB-871 Ka-501 V-8 柴油引擎,研改後稱為150HB引擎,兩者的結構與細節極為相似,為 V 型 8 缸雙渦輪增壓中冷式柴油引擎,額定轉速2200rpm,最高轉速為2450rpm,最大輸出功率為1200 匹馬力,並採用了先進的電子控制高壓共軌噴射技

圖二十九 150HB 柴油引擎 資料來源:http://www.army-guide .com/eng/products.php

術,效率更高且更環保。

然而隨著 99 式⁷不斷的改良, 特别是防護力上面不斷加强,使的升級版-99G式坦克重量逐漸向 55 噸級 別靠攏,1200 匹馬力引擎限制住員員, 進一步的性能提升,為此研究人上員 原有 150HB-1200 匹引擎基礎上 層有 150HB-1200 匹引擎基礎上 灣壓器進行了強化,而且結構 率達到了 1500 匹馬力,面且結構 率達到了世界各國主力戰 為緊凑,更接近了世界各國主力 動力水準,推重比達 27.7 馬力/ 頓,則試後最大趙野時速也來到約 80km/hr,最大越野時速也來到約 60km/hr,由靜止加速至 32km/hr約 11 秒。

60年以來,經過仿制、自行研 制階段,在引擎方面的技術水準已有 重大的突破,使得中共正逐漸縮小和

⁶馮耀南,《淺談國內外坦克動力發展趨勢》,[期刊 論文]—科技情報開發與經濟,2005年第15期

⁷袁常卿·梁鐵熊,《未來坦克裝甲車輛技術的發展 趨勢》,[期刊論文]—機械管理開發,2007,(1)

世界先進戰車動力系統的差距。 研究分析:

一、敵我相關事項之比較:

AVDS 系列引擎於 1959 年問世, 是美國第一次專為戰車研製的軍用 引擎。該引擎由 AV-1790 汽油引擎和 AVI-1790 噴射式汽油引擎演變而

圖三十 AV-1790-5B 汽油引擎 資料來源:http://www.army-guide .com/eng/products.php

來。其設計原則為:

- (一)降低燃油消耗率以增大戰車 行駛哩程,提高車輛機動性。
- (二)採用氣冷式冷却系統以提高 引擎對自然環境的適應性,並取消水 冷冷却系統以減小發動機的體積和 重量。
 - (三)减低故障率,提高維護性。

1960 年該引擎取代 AVI-1790 噴射式汽油引擎,用在同年定型並生產的 M60 戰車和 M48A3 戰車上,往後

圖三十一 AVI-1790-8 噴射汽油引擎 資料來源:http://www.army-guide .com/eng/products.php

成為 M60 系列戰車的制式動力。

AVDS-1790 引擎是一種 4 行程、12 缸 V 型排列、氣冷渦輪增壓柴油引擎,是美國「專機專用」戰車發動機發展方針下的產物。自 1959 年迄今為了滿足不同型式的戰車設計需要,已經發展到 10 多種機型,在1959~1980 年的 21 年中,共生產了該發動機约 22,000 台,單價約為

圖三十二 中華民國 CM11 中型戰車 資料來源:http://www.army-guide .com/eng/products.php

75,000 美元。

目前我國服役中的主力戰車 CM11 及 M60A3 戰車,採用的型式為 AVDS-1790-2C 柴油引 擎,其型號標示 意義為:

A:冷却方式→空氣冷却

V:汽缸排列方式→12缸V型排列

D:選用燃料→柴油引擎

S: 進氣方式→廢氣驅動渦輪增壓

1790:總排氣量(立方吋)

圖三十三 AVDS-1790-2C 柴油引擎 資料來源:車輛組資料庫

2C:發電機→交流油冷式發電機

 時,可輸出最大 750 匹馬力,推重比為 15 馬力/噸。

就相對敵情部份,我國主力戰 車與中共主力坦克存在著世代的差 異,所運用的技術層次亦差距頗大, 在加上我國戰車主要各系統並非自 主研發,因此拿 99G 式坦克與我 是研發,因此拿 99G 式坦克與我 以在敵我相關分析部份,將中共第三 代最新主力坦克與目前西方主力戰 車動力系統實施比較,相信所得出來 的數據定更有參考價值存在。

_	台灣	中共	美國	德國	法國	日本	英國
項目	CM11	99G	M1A2	豹二	雷克勒	90式	挑戰者 2E
動力機型式		HP150 四行 程柴油引 擎	AGT-1500 燃氣渦輪 引擎	MB 873 Ka-501 四 行程柴油 引擎	SCAM V8X-1500 柴油引擎	10ZG32WT 二行程柴 油機	MB-883 四 行程柴油 引擎
製造公司	GDLS	北方工業 公司	Lycoming	MTU	UNI Diesel	三菱重工	MTU
冷却方式	氣冷、液冷	氣冷、液冷	氣冷、液冷	氣冷、液冷	氣冷、液冷	氣冷、液冷	氣冷、液冷
增壓方式	渦輪增壓	渦輪増壓	燃氣渦輪	渦輪增壓	超高增壓	渦輪增壓	渦輪增壓
汽缸數	12V	8V	燃氣渦輪	12V	8V	12V	12V
功率 (kw/h)	552	1103	1103	1103	1103	1103	1103
馬力 (hp)	750	1500	1500	1500	1500	1500	1500
最高轉速 (rpm)	2640	2450	3000	2600	2500	2400	2600
燃油消耗率 (g/KW・h)	250	244	280	220	215	300	220
油箱容量 (L)	1455	2460	1907	1200	1300	1100	1797
巡行里程 (km)	480	600	498	470	550	340	550
推重比 (hp/ton)	15	25. 9	21. 7	25. 5	28	30	23. 1
極速 (km/hr)	48	80	66. 7	70	71	70	72
0~32km/hr (秒)	15	11	7. 2	7	5	5	8

表二:中共主力坦克與先進國家主力戰車性能對照表 資料來源:本研究整理

二、優(劣)點或特(弱)點之分析8:

依表二所示,目前中共 99G 坦克 所使用的動力機構為 1500 匹馬力的 柴油引擎,輸出功率部份和各國不相 上下,且在整體設計部份將車身重 有所減輕,促使機動性能大幅動 高,但加速性部份由於傳動系統採用 較落後的雙側行星齒輪傳動,導致推 重 比與各 國 相 差 不 大 , 但 在 0~32km/hr 加速中,世界各國平均值 在 5~8 秒可達成,而 99G 坦克則需 11 秒才能達成。

燃油經濟性方面,世界先進引擎 燃油消耗率平均值 220g/kw·h 以下, 而中共則有 10%以上的差距,巡航哩 程及極速在加掛油箱後,巡航哩程最 高可達 600km、極速可達 80km/hr, 都明顯高出各國許多,同時在可靠性 及維護成本方面亦都表現不俗。

三、對我之影響:

⁸張軍鋒·祝延軍·陳哲強,《坦克的 诞生、演化及 其发展趋势》,[未來與發展],2008,29(2) 署與腳步,並沒有因為兩岸關係稍緩 而放慢腳步,反而更要積極的從事建 軍備戰的工作。以目前我國陸軍裝甲 部隊的戰力而言,與中共相形之下已 嚴重傾斜,因此在經費等狀況許可 下,建構新一代裝甲部隊戰力的確有 其必要性。

剋制對策及對建軍備戰之建 言:

一、世界各國趨勢⁹:

圖三十四 美國 M1A2SEP 主力戰車 資料來源:http://www.army-guide .com/eng/products.php

目前運用於主力戰車的動力系統,絕大多數都是配置柴油動力裝置,在111個國家中,幾乎所有裝甲部隊都存有柴油動力裝置的戰車,只有9個國家的裝甲部隊中存有燃氣渦輪引擎,燃氣渦輪引擎在戰車上並沒

⁹郭正祥,《柴油機坦克與燃氣輪機坦克優劣剖析》, [國外坦克],2010,(1)

有得到廣泛的推廣。有關 2003-2012 年間世界戰車製造業和戰車市場發展的 25 項規劃中,與燃氣渦輪引擎 有關的規劃只有二個,就足以證明這 種觀點。因此燃氣渦輪引擎的發展前 景相對有限,且柴油引擎由於技術層 面不斷提昇,相信在未來運用在戰車 方面的優勢還會更進一步擴大。

二、燃氣渦輪引擎與柴油引擎特點比 較¹⁰:

(一)結構、重量及體積:

燃氣渦輪引擎結構簡單,總零件數比柴油機少30%,運動件只有柴油機的1/5,軸承數是柴油機的1/3,密封件和齒輪數是柴油機的一半。以M1戰車為例,該燃氣渦輪引擎的重量約爲豹二坦克引擎的一半,但本體尺寸小而與之匹配的空氣濾清器尺寸較大,因此燃氣渦輪引擎整體上體積小的優越性不明顯。

(二)造價、維修費用及維修方便 性:

 附件的修理和更換通常無需拆卸動 力機,這部份比柴油引擎更有利維修 作業執行。

(三)冷起動性能:

燃氣渦輪引擎摩擦件少,起動力矩較小,可以使用功率較小的起動馬達,在-31℃的低溫下不需預熱即可起動;而豹二戰車 MB-873 柴油引擎在-18℃條件下需要預熱才能起動。

(四)負荷反應:

燃氣渦輪引擎從怠轉達到全功率運轉的時間短,只要燃料穩定的供應,以 AGT-1500 為例,只需 2.5 秒引擎很快就可達到工作溫度輸出全功率,因而可提高戰車的加速性,而柴油引擎則需要好幾倍的時間。

(五)扭矩特性:

燃氣渦輪引擎的扭矩隨動力渦 輪的轉速降低而增大,因此與柴油引 擎相比較,反而可提供更良好的越野 性能。同時因扭矩系數大,故可以簡 化傳動裝置,減少傳動裝置的散熱量 和提高傳動效率。

(六)燃料選擇:

燃氣渦輪引擎常用的燃料是 1 號、2 號柴油和 4 號、5 號噴氣機燃料,急需時亦可使用汽油、煤油、天 然氣等等,如需改變燃料,只需根據 燃料的比重轉動駕駛室中的刻度 盤,操作很方便;而柴油引擎燃料僅 限於柴油。

(七)排煙量、運轉音量:

燃氣渦輪引擎相較於柴油引擎,其排煙量小、振動小、噪音量低, 這些特點可以減少戰車在戰場上被

¹⁰任繼文.張然治.郭海濱,《整體推進系統—坦克動力發展趨勢》,[軍用發動機],2001,(1)

發現而遭到攻擊的可能性,從而提高 戰車的生存力。

(八)燃油消耗率:

燃氣渦輪引擎的燃油消耗率高,實際運轉結果通常是一般柴油引擎的1.5倍,因此造成其巡航里程相對較短,後續需花費較高的燃料訓練成本,經濟性較差,同時戰時後勤油料補給的頻率會更加頻繁。

三、比較分析:

從整體後勤全壽期的觀點來看, 買一部戰車的費用包含了採購成本及 轉成本、後續維持成本及狀購 成本等等。筆著認為美國為軍力 國,其後勤條件優渥,因此其主力 動條件優渥,因此其主力 重選用燃氣渦輪引擎當其動力系統 看似問題不大,但我國在後勤條件及 軍事經費有限制的狀況下,選用燃氣 渦輪引擎或許就不太適合。

在選項方面,或許可以考慮 MTU 公司研制 880 系列中的第三代發動機—MT883。MTU 880 系列是德國 MTU 公司在 1960 年代中期開始獨自投資開發的新一代發動機,主要是針對下一世代的主力戰車與裝甲車所設計,首重於提高可靠度、降低體積重量、提高燃油使用效率,並使引擎在高溫環境下操作能力有所提升,排氣

圖三十五 MT 883 Ka-500 柴油引擎(EPP) 資料來源:http://www.army-guide . com/eng/products.php

方面也符合新的歐洲環保規範,而不是一昧的把提升功率當作第一要務。為了強化緊致性,MTU 880 系列將汽缸活塞直徑/行程由上一代 MTU 870 系列的 170/175mm 減為 144/140mm。MTU 880 系列第一個成員,是 1979 年問世的 MT 883 V12 柴油引擎,功率 1500 馬力,主要針對 50 噸以上的主力戰車;與當時最緊凑的戰車動力包件相較,MT 883 動力機與整個傳動裝置的體積大幅減少了 35%。

在性能部份 MT 883 Ka-500 在每分鐘 2700 轉時可輸出 1500 匹馬力的最大功率,耗油量為 300g/hph,最大排氣量 1.2 Bosch;而 MT 883 Ka-501在每分鐘 3000 轉時可輸出 1650 匹最大馬力,耗油量降至 295g/hph,最大排氣量更遽減為 0.3 Bosch,足見整合油路燃油噴射系統的功效。 MT 883的最高檔終極版本為 MT 883 Ka-524,已經被美國新一代 EFV 兩棲遠征戰車 (AAAV)採用,每分鐘 3300轉時可輸出 1200 匹(地面行駛時驅動履帶)/2740 匹(水面航行時驅動水噴射推進器)的最大馬力。

值得一提的是美軍曾在 M1A2 戰車外銷版上,換裝過 MT 883 柴油引擎,換裝結果車體長度減少了 95cm, 耗油量更比原本的 AGT-1500 燃氣渦輪引擎減低一半,整體評價相當不錯。

項目	M1A2 (AGT-1500 引擎)	M1A2 (EPP 引擎)
極速(km/hr)	67	72
0~32km/hr(秒)	7. 2	5. 5
迴轉半徑(m)	11.4	10.8
油耗(升/百公里)	383	195

表三:M1A2 換裝 EPP 引擎性能測試差異表 資料來源:本研究整理

結論:

隨著科技日新月異的發展,各國 主力戰車在動力系統上的技術層面 定會不斷提高,綜觀以上所示,推論 出以下戰車動力系統演進趨勢的原 則及特點,希望可提供我國在選擇下 一代主力戰車時,針對動力系統最佳 化的考量切入點,以確保我新一代裝 甲部隊之優質戰力。

- 一、合理有效利用戰車動力艙空間, 儘可能縮短其動力機尺寸,以求設計 出車身高度較低的戰車,減低其中彈 面積。
- 二、追求動力系统最小尺寸、最大輸出功率及減少功率在傳遞過程中損失。
- 三、動力系統朝向性能更佳、散熱更好、反應更快、油耗更低的方向前 進。

四、設計出動力裝置、傳動裝置和各輔助系統的結構、佈局能相互協調,實現最佳整體性能的動力機。

五、提高動力系統的經濟性、可靠性 及可維修性,以確保整體後勤維持更 加容易。

作 者 簡 介

呂友煌中尉,指職軍官九 二年班、國防管理學院後 勤管理正規班 55 期,曾 任排長、兵工官、教官, 現任職於機步 298 旅機 步一營兵工官