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ABSTRACT 

Short digital signatures are always desirable. They are necessary in situations in which humans 
are asked to manually key in the signature or when working in low-bandwidth communication 
environments. They are also useful in general to reduce the communication environments. We 
propose a short signature scheme based on knapsack and Gap Diffie-Hellman(GDH) groups whose 
security is closely related to the discrete logarithm assumption in the random oracle model. The new 
scheme offers a better security guarantee than existing discrete-logarithm-based signature schemes. 
Furthermore, our scheme upholds all desirable properties of previous ID-Based signature schemes, 
and requires general cryptographic hash functions instead of MapToPoint hash function that is 
inefficient and probabilistic. The new short signature scheme is needed to low-bandwidth 
communication, low-storage and low-computation environments, and particularly applicable to 
smart cards and wireless devices. 
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植基於雙線性曲線對的新短簽章方法 
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摘    要 

短數位簽章方法一直吸引學者們的研究。尤其在資源有限、無法提供大量頻寬的通訊環境

中，當需要簽章時，更能突顯其重要性。我們將提出一套以 GDH 群及背包理論為主的方法，其

安全性與原型一樣等同於離散對數的為數學難題上。我們的研究比現行學者所提的方法，均能

有更安全的保障，亦能保有原短簽章的特性，此外，以一段雜湊函數的運算取代「值對點」轉

換函數，改善效率及提升安全性的問題。我們的方法適用於低耗能、低計算能力、低頻寬的環

境，如智慧卡及無線通訊等。 
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I. INTRODUCTION 
In public key infrastructure, a certificate 

authority (CA) is needed to issue digital 
certificates for users. A certificate binds an 
entity’s identity information with the 
corresponding public key. It has some 
well-know and bothersome side-effects such as 
the need for cross-domain trust and certificate 
management and certificate revocation, which 
requires a large amount of storage and 
computing [1]. In order to avoid the problem 
and the cost of distributing the public keys, 
Shamir [2] firstly introduced the concept of 
ID-based public key cryptosystem in 1984, 
which allows a user to use his identity 
information such as name, Email address, IP 
address or telephone number, et al. as his own 
public key. It means that there is no need for a 
user to keep a public key directory or obtain 
other users’ certificates before communication. 
The first ID-based signature (IBS) scheme was 
proposed by Shamir [2], but the size of 
generated signature is quite large, which has 
2048 bits when one utilizes a 1024-bit RSA 
modulus. In 1988, Guillou and Quisquater [3] 
improved Shamir’s scheme and shortened the 
signature size to 1184 bits when one uses 
1024-bit RSA modulus and 160-bit hash 
function. However, the size of signatures 
generated by the scheme [3] is still too large to 
be applied widely in practice, especially in 
environments with stringent bandwidth 
constraints. 

Short digital signatures are important in 
low-bandwidth communication, low-storage and 
low-computation environments. Short signatures 
are needed when printing a signature on a 
postage stamp, a commerce invoice or a bank 
bill. Short digital signatures are also needed 
when a human is asked to key in signatures 
manually. For instance, product registration 
systems often ask the users to key in a signature 
provided on a CD label. Short signatures are 
particularly applicable to wireless devices such 
as PDAs, cell phones, RFID chips and sensors, 
where battery life is the main limitation. At 
present, many short signatures schemes in 
public key cryptosystem have been proposed 
since Boneh, Lynn and Shacham [4] construct a 
short signature called BLS signature, which is 
just half the size of the signature in DSA (320 

bits) with comparable security. Now, many IBS 
schemes [5, 6, 7, 8, 9, 10, 11, 12, 13] are 
proposed based on bilinear pairings. These 
signatures generated by [5, 6, 7, 8, 9, 10, 11, 12, 
13] are much shorter and simpler than signatures 
from schemes in [2, 3], and have been applied 
widely in cryptography. Recently, Okamoto et 
al. proposed a new and short signature scheme 
at ITCC’05, they also proposed a new signature 
scheme based on their signature scheme [12]. 
They claimed that their schemes were secure 
and efficient, especially for signing phase. 
Zhang et al. presented an attack on Okamoto’s 
short signature scheme in [14]. They showed 
that any one can derive the secret key of the 
singer from two message-signature pairs and so 
can forge signature for any message. A main 
problem of short signature schemes is that they 
only provide implicit authentication, i.e., the 
validity of an authentication is verified only 
after a successful communication [15, 16]. 
Besides the signature length, another problem is 
the loose security related to the underlying hard 
computational problem. Some proposed 
signature schemes require non-standard security 
assumptions [17].  

In 1991, Girault [18] first proposed a 
self-certified public key system to resolve the 
problem of public key verification. A 
self-certified public key system has three 
features: First, the secret key can be determined 
by the user himself/herself or together by the 
user and CA, and does not be known to CA. 
Second, the user can use his/her own secret key 
to verify the authenticity of the self-certified 
public key issued by CA, and thus no extra 
certificate is required. Third, the task of public 
key verification can be further accomplished 
with subsequent cryptographic application (e.g., 
key distribution or signature scheme) in a 
logically single step. Therefore, public key 
verification of the self-certified approach 
provides more efficient in saving the 
communication cost as well as the computation 
effort compared to that of the certificate-based 
and the ID-based approaches by storage-wasting 
and time-consuming drawbacks. 

The Identity Based cryptosystem was first 
proposed to simplify the conventional public 
key cryptosystem, and make management easier 
[2]. If the user is led to connect to a spoofing 
site that appears to be what he/she wants to pay 
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a visit, he/she may have a secure connection to 
an adversary who will work maliciously. Thus, 
identify certification or authentication is 
imperative to act. In public key cryptosystem, 
each user has two keys. One is a private key and 
the other is a public key. In 1997, Saeednia [19] 
successfully combined the merits inhered in 
both the ID-based and the self-certified systems, 
and proposed an ID-based self-certified public 
key system that can be applied to the realization 
of key exchange protocols. However, Wu et al. 
[20] and Kim et al. [21] showed that the original 
version of Saeednia’s ID-based self-certified 
public key system is not secure enough against 
withstanding the impersonation attack, and also 
proposed an improvement to overcome the flaw 
in the original version. In 2003, Saeednia [22] 
indicated an important shortcoming of the 
RSA-based self-certified model proposed by 
Girault [18], which may be exploited by the 
authority to compute user’s secret keys. 
Saeednia further showed that the resulting 
model loses all merits of the original model and 
does no longer meet the primary contribution of 
the self-certified notion, while it is possible to 
make the attack ineffective by taking additional 
precautions. In other words, if the self-certified 
model is constructed based on the security of the 
RSA scheme [23], i.e., relying on the difficulty 
of factoring a large number into its prime factors, 
it will expose the above defect. Tsaur [24] 
expanded Girault’s works to ECC-based 
cryptosystems which are quite suitable for 
electronic transactions. However, the main 
problem investigating into self-certified public 
key schemes was that they only presented an 
implicit authentication, i.e., the validity of a 
self-certified public key is verified only after a 
successful communication. 

Since the concept of public key cryptography 
was invented by Diffie and Hellman in 1976 
[25], a lot of public key cryptographic 
algorithms have been proposed. Most existing 
cryptosystem designs incorporate just one 
cryptographic assumption, such as factoring (FC) 
or discrete logarithm (DLP) or elliptic curve 
discrete logarithm problems (ECDLP). These 
assumptions appear secure today; but it is 
possible that efficient algorithms will be sooner 
or later developed to break one or more of these 
assumptions. Unlike the FC and DLP 
cryptosystems, one of the earliest public key 

cryptosystems is the knapsack cryptosystem and 
the underlying scheme implements the subset 
sum problem. The first knapsack cryptosystem 
was proposed by Merkle and Hellman [26]. 
These have all been analyzed and broken, 
generally through the same cryptographic 
techniques. Some researchers believed that the 
broken knapsack cryptosystems were cracked 
because their construction did not completely 
disguise the easy knapsack, or their densities 
were too low [27]. The main contribution of the 
Merkle-Hellman Knapsack cryptosystem is that 
it demonstrates how an NP-complete problem 
can be used for public-key cryptography. 

Recently bilinear pairings such as the 
Weil/Tate pairings on elliptic curves and 
hyper-elliptic curves have been variously 
applied to create signature schemes in 
cryptography [28]. The central idea is the 
construction of a mapping between two useful 
cryptographic groups which allow for new 
cryptographic schemes based on the reduction 
of one problem in one group to a different group, 
and usually is easier problem than the other 
group. In many research papers, the first of 
these two groups is referred to as a gap group, 
where the decisional Diffie-Helman problem 
(DDHP) is easy (because it reduces to an easy 
problem in the second group), yet the 
computational Diffie-Helman problem (CDHP) 
remains hard. Due to the underlying of the Gap 
Diffie-Hellman (GDH) group structure and the 
base scheme, e.g., the signature size is 
efficiently reduced to 160 bits for equivalent 
security to a 320-bit DSA, the proposed 
construction is simpler and more efficient than 
the existing methods on signature constructions, 
and it has the merits of security in authentication. 
However, besides obtaining simplicity in 
construction and efficiency in performance, the 
signature authenticity, the message integrity, 
and the signature verification has to be further 
assured. Dutta et al. surveyed a great number of 
cryptographic protocols which were based on 
pairings [29]. An open problem is whether we 
can design a new cryptographic protocol that is 
based on Diffie-Hellman problem with pairings 
and Knapsack problem [30].  

The motivation of our paper is based on the 
three points: (1) The Diffie-Hellman related 
assumptions have played an important role in 
designing various cryptographic protocols. 
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Apart from the existing Diffie-Hellman 
assumptions, is it possible to propose new 
Diffie-Hellman assumption that will be built 
upon to design new self-certified short signature 
schemes? (2) Knapsack cryptosystems had ever 
received a great deal of attention in the 
community of cryptography and computational 
complexity in 1970s' and 1980s'. The basic idea 
of the scheme is in transforming hard or 
unfeasible subset sum problems into easy subset 
sum problems, and the subset sum problem has 
been proven to be NP-complete [24]. Most of 
the existing Knapsack cryptosystems were 
broken. An interesting question is: Has the 
Knapsack problem already been falling from 
designing optimistic cryptographic protocols? (3) 
Pairings over elliptic curves have already been 
combined with the Diffie-Hellman and thus 
created a number of Diffie-Hellman 
assumptions, that have been used to design 
cryptographic protocols. Is it possible to design 
a new self-certified short signature scheme of 
Diffie-Hellman assumptions? 

In this paper, we present a self-certified IBS 
scheme (SCIBS) that is proved to be secure in 
the random oracle model. Our scheme can 
uphold all desirable properties of IBS schemes 
in [5, 6, 7, 8, 9, 10, 11, 12, 13]. However, 
besides obtaining simplicity in construction and 
efficiency in performance, the signature 
authenticity, the message integrity, and the 
signature verification has to be further assured. 
To overcome key escrow problems and secure 
channel problems that seem to be inherent to 
identity-based cryptography, we thereby 
propose a new technique for blind signatures. It 
is based on knapsack Diffie-Hellman problems 
with bilinear pairings using elliptic curves and is 
fully self-certified. Also, we give a security 
model, and further provide a security proof in 
random oracle model. The scheme incorporates 
the advantages of self-certified public keys and 
pairings. The remaining sections are organized 
as follows. In the next section we will give a 
brief introduction to some mathematical theory 
related to the following schemes. Section 3 
proposes a SCIBS scheme and gives its security 
proof, and then analyzes its efficiency. 
Conclusion is drawn in the last section. 

 

II. BACKGROUND THEORIES 

We begin by describing the knapsack 
cryptosystem, elliptic curve cryptography (ECC), 
bilinear pairings, short signature and 
self-certified signature scheme. The procedure 
can be described as follows. 

2.1 Knapsack Cryptosystem 

The knapsack cryptosystem is based on the 
knapsack problem: a combinatorial question of 
determining which objects can fit into a 
container, where the knapsack’s weight capacity 
is given and each object has a particular weight. 
The problem is to find a subset of the objects 
that can fit into the knapsack.  

The mathematical description of the 
knapsack cryptosystem is as follows: 

- Underlying Problem:  

Subset Sum Problem (or Knapsack 
Problem) 

- Underlying Mathematical Structure:  

The integers modulo M, where M >  the 
sum of a superincreasing sequence. 

- Parameters: 

Public Key parameters: ),...,( 1 naa  
disguised positive integers 

Private Key parameters: 
),...,( 1 nbb Superincreasing sequence 

Choose M and W with: 

1),(,
1

=> ∑
=

WMbM
n

j
j Compute: 

MWba jj mod≡  
M, W- parameters for 
disguising nbb ,...,1 with a modular 
multiplication and permutation 

- Encryption: 

A message ),...,( 1 nxx  is encoded as: 

∑
=

=
n

j
jjaxs

1

 

- Decryption: 
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McMsWc ≤≤≡ − 0,mod1 , the jb  

are super-increasing easy to solve. 

2.2 Elliptic Curve Cryptography 

Miller [25] and Koblitz [26] first suggested 
the use of elliptic curves for implementing 
public key cryptosystems. A general Elliptic 
curve has the 
form, edxcxxbyaxyy +++=++ 232 , 
where a, b, c, d and e are real numbers. A 
special addition operation is defined over 
elliptic curves, and this with the inclusion of a 
point ∞  called point at infinity. If three points 
are on a line that intersects an elliptic curve, 
then their sum equals the point at infinity ∞ . If 
the characteristic of q is neither two nor three 
(e.g., qK F= where q > 3 is a prime), then an 
elliptic group over the Galois Field ( )qE F  can 
be obtained by 
computing 2 3 mod 0y x ax b q for x q= + + ≤ < . The 
contents a, b are non-negative integers that are 
smaller than the prime number q and satisfy the 
condition 3 24 27 mod 0a b q+ ≠ . Let the 
points A=(x1, y1) and B=(x2, y2) be in the elliptic 
group ( )qE F . The rules for addition over the 
elliptic group ( )qE F  are: 

 P +∞  = ∞  + P = P  
 If x2 = x1 and y2 = -y1, that is 1 1( , )P x y= and 

2 2 1 1( , ) ( , )Q x y x y P= = − = − , then P Q+ = ∞   
 If PQ ≠ , then the sum ),( 33 yxQP =+  is 

given by: 
2

3 1 2 modx x x qλ≡ − −  

3 1 3 1( ) mody x x y qλ≡ − −   
where 2 1 2 1 1 2( ) /( )y y x x If x xλ = − − ≠  

2
1 1 1 2 1(3 ) / 2 , 0or x a y If x x yλ = + = ≠ . 

To double for a point P, it is equivalent to do  
P + P. Similarly, we can calculate 3P = 2P + P 
and so on. One important property is that it is 
very difficult to find an interger s such that sP = 
Q. 

2.3 Bilinear Pairings 

We now describe Bilinear Pairings as 
discussed in [27]. Let G1 be a cyclic additive 
group generated by P, whose order is a prime q, 
and G2 be a cyclic multiplicative group of the 

same order q: a bilinear pairing is a map 
211: GGGe →×  with the following properties: 

- Bilinear:  

For all 1, GQP ∈  
and

ab
q QPeabQPeQabPebQaPeZba ),(),(),(),(,, * ===∈

. 

- Non-degenerate:  

There exists 1GP∈ , such that 1),( ≠PPe . 

- Computable:  

Given 1, GQP ∈ , there is an efficient algorithm 
to compute ),( QPe . 

With such group G1, we can define the 
following hard cryptographic problems: 

- Discrete Logarithm (DL) Problem: 

Given 1', GPP ∈ , find an integer n such that 
'nPP =  whenever such an integer exists. 

- Computational Diffie-Hellman (CDH) 
Problem:  

Given a triple 1),,( GbPaPP ∈  for *, qZba ∈ , 

find the element abP . 

- Decision Diffie-Hellman (DDH) Problem:  

Given a quadruple 1),,,( GcPbPaPP ∈  
for *,, qZcba ∈ , decide whether c = ab (mod q) 
or not. 

- Gap Diffie-Hellman (GDH) Problem:  

A class of problems where the CDH problem 
is hard but DDH problem is easy. 

Groups where the CDH problem is hard but 
the DDH problem is easy are called Gap 
Diffie-Hellman (GDH) groups. Details about 
GDH groups can be found in [35, 36]. 

2.4 Short Signature Scheme 

In [4], Boneh et al.’s gave a simple, 
deterministic signature scheme where the 
signatures are very short. Security is proven 
under the random-oracle model. 
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- Key generation: 

The signer’s secret key is a random number s 
chosen from *

qZ . The public key, sPPpub = , 

an element in 1G , 1}1,0{: GH →∗  is a hash 
function. 

- Signing: 

The signature σ  on message ∗∈ }1,0{m  is 
).()( 1GinmsH  

- Verification: 

Check whether the following equation holds: 
).),((),( pubPmHePe =σ  

2.5 Model of Self-Certified Signatures 

A sophisticated approach, first introduced by 
Girault [18], is called self-certified public key 
(SCPK), which can be regarded as intermediate 
between the identity-based approaches and the 
traditional PKI approaches. In this section, we 
first present a formal definition for self-certified 
signature (SCS) schemes. The two main entities 
involved in the SCS scheme are a certificate 
authority and a client. Then we propose a 
concrete SCS scheme from pairings. The SCS 
scheme consists of four randomized algorithms 
[37]: KeyGenparam, Extract, Sign, and Verify. 
The details are as follows. 

- KeyGenparam: 

The certificate authority CA chooses a 
master-key s  and computes the 
corresponding public key CAP . Each client 

AU  chooses partial private key As  and 
computes the corresponding partial public 
key AY . The actual public key of the user 
consists of public key of CA, partial public 
key and identity of the user together with 
system parameters. 

- Extract: 

CA runs the extract algorithm, which takes as 
input the system parameters, the 
master-key s , the partial public key AY  and 
an arbitrary }{ *1,0∈AID , the infinite set of all 
binary strings, and returns the partial private 

key Ad . The CA sends Ad  securely to the 
client with ( )AACA YIDP ,, over a public channel. 
The actual private key of the client 
is ( )AA ds , , the actual public key 
is ( )AACA YIDP ,, . 

- Sign: 

A client with his actual private key ( )AA ds ,  
uses the sign algorithm to compute signature 
σ  for any message m . 

- Verify: 

Any verifier can validate the signature σ  
by checking the verification equation with 
respect to the actual public key 
( )AACA YIDP ,, . 

These algorithms must satisfy the standard 
consistency constraint, namely when ( )AA ds , is 
the actual private key generated by algorithm 
Extract when it is given the actual public key 
( )AACA YIDP ,, , then }{ *1,0∈∀m  : 

( ) ValidmYIDPVerify AACA =),,,,( σ  where 
)),,(),,,( mdsYIDPSign AAAACA=σ  

 

III. OUR PROPOSED SCHEME 
In this section, we present the ID-Based 

knapsack-type public key short signature 
scheme based on the GDH groups. 

3.1 Definition 

Definition 1 ( Knapsack Diffie-Hellman ). The 
following is the proposed computational 
knapsack Diffie-Hellman (CKDH) problem 
in 1G . 

- Given: 

1, GQP ∈  ( P is a generator), and 
( 1)n tuple+ − ( ),,,...,, 21 HPPP n  and 

),1( niPbP ii ≤≤=  and H tQ= ; where 
+∈Zbi ( +Z denotes the set of all positive 

integers) 
( )1 2, ,..., nb b b and t  are all unknown 

elements. 
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- Output: 

A binary string ( ) { }nnxxxx 1,0,...,, 21 ∈= , which 

satisfies
1

( , ) ( , )
n

i i
i

e x P Q e H P
=

=∑ .  

If there exists ( ) { }nnxxxx 1,0,...,, 21 ∈=  such 

that
1

( , ) ( , )
n

i i
i

e x P Q e H P
=

=∑ , then we call 

( )HPPPQP n ,,...,,,, 21  a knapsack 
Diffie-Hellman tuple. CKDH assumption is 
reasonable, since its computational complexity 
is comparable with the computational 
complexity of the computational Diffie-Hellman 
problem.  
Definition 2 (Decisional Posterior Knapsack 
Diffie-Hellman ). The decisional posterior 
knapsack Diffie-Hellman (DPKDH) problem is 
defined as follows: 

- Given: 

1, GQP ∈  ( P is a generator), and 
( 1)n tuple+ − ( ),,,...,, 21 HPPP n  and 

),1( niPbP ii ≤≤=  and H tQ= ; where 
+∈Zbi ( +Z denotes the set of all positive 

integers), ( )1 2, ,..., nb b b and t  are all 
unknown elements. 

- Output: 

Yes, if there exists an 
( ) { }nnxxxx 1,0,...,, 21 ∈=  such that 

( )HPPPQP n ,,...,,,, 21  is a knapsack 
Diffie-Hellman tuple; Otherwise, output No. 

DPKDH assumption is reasonable as well, 
since the DPKDH problem is computationally 
equivalent to the CKDH problem, while the 
CKDH problem's computational complexity is 
comparable with the computational complexity 
of the computational Diffie-Hellman problem. 

3.2 Description of Our Signature 
Scheme 

The detailed scheme is defined as follows. 

Generate: 

Step 1: The certificate authority CA selects 
two groups 21,GG of order q , an 
admissible bilinear map 

211: GGGe →×  and a random 
generator 1GP∈ . 

Step 2: Choose two cryptographic hash 
functions { } ,1,0: 1

*
1

**
1

* GGGH →××  
{ } qZGGf *

1
*

2
**1,0: →×× . The 

security analysis will view fH ,  as 
random oracles. The system 
parameters are Params 
={ }fHPeGGq ,,,,,, 21 . 

Step 3: The CA picks a random *
qZs∈  as 

its private master-key and sets 
sPPCA =  as its public key. 

Step 4: Each user ( AU ) with a given 
identity }{ *1,0∈AID , picks a random 

*
qA Zs ∈  as its partial private key 

and sets PsY AA =  as its partial 
public key. 

- Extract: 

AU  sends his ( )AA YID , securely to the CA, 
after authenticating himself to CA. CA 
computes *

1),,( GYIDPHH AACAA ∈= and 
sets the partial private key AA sHd = , 
where s  is the master key of CA. Then 
CA chooses a random integer *

qZr∈  and 
computes  

rPW = , 

AA rYdV += .  
Finally CA sends ( )VW , to AU  over a 
public channel. Registration must be in 
person or using some form of secure 
authenticated communication. AU  first 
recovers Ad  by 
computing WsVd AA −= . Then 

AU verifies Ad by checking the following 
equations: 

),,( AACAA YIDPHH =  
),(),( CAAA PHePde =  

Here Ad  is the secret certificate of the 
CA’s public key CAP , the partial public 
key AY  and the identifier AID  of AU . 
Thus AU  obtains his actual private 
key ( )AA ds , . Hence, the certificate of the 
actual public key is used as the private key 
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for signing. 

- Signing:  

Assume Alice and Bob are the two users who 
join the signature interactively. Alice selects a 
sequence

( )
1

1 2
1

, ,..., , ( . ., )
i

n i j
j

B b P b P b P i e b b
−

=

= > ∑ , and 

transfer B  into a pseudorandom 
sequence ( )1 2, ,..., nA a P a P a P=  by the 
following modulo transformation: 

,mod qsba Aii ×= with
1

n
ii

q b
=

> ∑ . Signing 

the message m , computes )(mh=λ , here 
*: {0,1} qh Z→  is a hash function, and picks 

up a random binary set ( )1 2, ,..., nx x x x=  

then computes the 'ix s  whose 
corresponding bit is 1: 

∑
=

=
n

i
ii PbxU

1
1 ,  

∑
=

=
n

i
ii PaxU

1
2 ,λ  

Alice computes  
),,( AliceAliceCAAlice YIDPHH =   

),( 2 PUerAlice =  
),,( AliceAliceAlice Hrff λ=  

AliceAliceAliceAliceAlice dfHfUV 2
2 ++=  

Then Alice sends the signature 
),,(),,,,( 21 mUUandVfYIDP AliceAliceAliceAliceCA

 to the Bob. 

- Verification:  

Bob checks whether the following equation 
holds: 

),,( AliceAliceCAAlice YIDPHH =′   
),(),( 2

CAAliceAliceAliceAlice PffYHePVer +−=′

 
Finally, Bob checks these equations 

),,(
?

AliceAliceAlice Hrff ′′= λ , 

),(),( 21 PUeYUe Alice =λ  
Consistency: Because 

),(

))(,(

),)((),(

),(),(

2

2

2
2

2
2

CAAliceAliceAliceAliceAlice

AliceAliceAliceAliceAlice
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By convention, the output is verified as true 
if it accepts the self-certified signature and 
false otherwise. 

 

IV. EVALUATION OF OUR 
SCHEME 

In this section, we will first provide the 
security evaluation and analysis for the CKDH 
problem. The security of our signature scheme relies 
on the hardness of the Computational CKDH 
problem. Relations of knapsack Diffie-Hellman 
assumptions, we will proof the relations 
between the subset sum problem and the 
proposed knapsack Diffie-Hellman problems. 
We also prove the relations between the 
various Diffie-Hellman problems including 
CDH, DDH, CKDH and DPKDH in 1G . 
Following that, we will analyze the various 
issues of security in the short signature 
protocols. In order to analyze the security of 
our blind scheme, we propose four challenged 
questions of attack to analyze the security. 

- Security consideration of bilinear map  

A bilinear pairing function 211: GGGe →× , 
given four elements 1 2 3 1, , ,P c P c P c P G∈ , 

compute 1 2 3( , ) ,c c ce P P  where 1 2 3, ,c c c are 

randomly chosen from *
qZ . An algorithm is 

said to solve the CDH problem with an 
advantage of ε  

if .]),(),,,([ 321321 ε≥= cccPPePcPcPcPArP  

The probability Pr is taken over the coin 
tosses of algorithm A [16]. The CDH problem 
is hard which means that there is no 
polynomial time algorithm to solve the CDH 
problem with non-negligible probability. 
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Proof. First, suppose CDH can be solved in time 
t  with probability at least ε . We give an 
algorithm to show that the map is not 

),( εt -secure. Let 1,, GVUP ∈  where 
both PVU ≠, and 1),( ≠VUe . We wish to 
find 1GH ∈  such that ),(),( VHeUPe = .  
Since G1 is cyclic of prime order q there exists 
an *

qZa∈  such that aVU = . Let aPH = . 

Then H 
satisfies

).,(),(),(),(),( UPeaVPeVPeVaPeVHe a ====  
Therefore, aPH = , which is the solution to the 
CDH problem ),,( UVP , is the required H. 
Hence, if the map is ),( εt -secure then CDH is 

),( εt -hard. Conversely, suppose there is a 
t -time algorithm that given random ),,( UVP  
outputs 1GH ∈  such that ),(),( VHeUPe =  
with probability at leastε . We show how to 
solve CDH. Let ),,( UVP  be a random instance 
of the CDH problem, where 1≠V . 
Write aVU =  for some *

qZa∈ . Let H be such 

that ),(),( VHeUPe = . Then 
),(),(),(),( VaPeaVPeUPeVHe ===  and 

hence 1),/( =VaPHe . Since PV ≠  it follows 
that aPH = , since otherwise the map e would 
be degenerate. Hence, if CDH is ),( εt -hard 
then the map is ),( εt -secure. 

- Security consideration of CKDH 

Under the condition that the discrete logarithm 
problem is hard in 1G and 2G , the CKDH 
problem is computationally equivalent to the 
computational version of subset sum (SS) 
problem. 

Proof. As the setting of Definition 3.1 in 
Section 3, we can draw the following equivalent 
relation: 

),(),(
1

PHeQPxe
n

i
ii =∑

=

 

),(),( 1 PsQeQPe
n

i
iibx
=

∑
=  

sbx
PQeQPe

n

i
ii

),(),( 1 =
∑
=  

s
bx

QPeQPe
n

i
ii

),(),( 1 =
∑
=  

Therefore,∑
=

=
n

i
ii sbx

1

. This is the general subset 

sum problem. 

- Security consideration of DPKDH 

The DPKDH problem is computationally 
equivalent to the CKDH problem. 

Proof. If there is a polynomial time 
algorithm Ω  which can solve the CKDH 
problem, then there is a polynomial time 
algorithm Ω′  which can solve the DPKDH 
problem. In fact, given an instance of DPKDH 
problem ( ) Ω′,,,...,,,, 21 sQPPPQP n  works as 
follows: 
(1) Take this instance as the input of the 

oracle Ω , then Ω  will return a solution 
( )1 2, ,..., nx x x x=  (provided that such x 

exists) in polynomial time. 

(2) Compute 1
1

GPxA
n

i
ii ∈= ∑

=

 in polynomial 

time. 

(3) Check whether ),(),(
1

PsQeQPxe
n

i
ii =∑

=

. 

If it holds, then output 'yes'; otherwise, no. 
(4) Given any instance of the DPKDH problem 

in 1G , Ω′  can success as above the steps 
(1)-(3) in polynomial time. 
If there is a polynomial time algorithm Ω  

which can solve the DPKDH problem, then 
there is a polynomial time algorithm Ω′  which 
can solve the CKDH problem. In fact, given an 
instance of CKDH 
problem ( ) Ω′,,,...,,,, 21 sQPPPQP n  works as 
follows: 
(1) Take this instance as the input of the oracle 

Ω , then Ω  will check whether there 
exists an ( )1 2, ,..., nx x x x=  (provided that such 

x exists) such that ),(),(
1

PsQeQPxe
n

i
ii =∑

=

 

in polynomial time. 
(2) If such x  exists, then output "yes"; 

otherwise, "no". 
(3) Output that x  in step (1). Therefore, x  is 

a solution to the 
instance ( )sQPPPQP n ,,...,,,, 21  of CKDH. 
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- Security consideration of our protocol 

Under the condition that ECDL problems are 
hard in 1G and 2G , the CDH, CKDH and 
DPKDH problem is computationally equivalent 
to the computational version of subset sum 
problem.  
Proof. As the setting of definition in 
Verification, we can draw the following 
equivalent relation:  
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==

= ∑
n
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iiAlice bxs
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Therefore ∑
=

n

i
iibx

1
, this is a subset problem.   

In this scheme, an adversary tries to reveal the 
message from the public key for any user. First, 
any adversary must solve the ECDLP problem 
given by AliceY  to determine Alices . Second, 
the adversary must solve the NPC problem to 
determine the message from ),( 21 UU . Given that 

),( 21 UU are publicly known information, 
deriving Alices  is unfeasible. 

- Security under impersonation attack 

An impersonation-attack characteristic is that any 
attacker can, without stealing the identities, 
easily masquerade as a legitimate user at any 
time.  
Proof. Alice selects a 
sequence ),...,,( 21 PbPbPbB n=  and transfer B  
into a pseudorandom 
sequence ( )1 2, ,..., nA a P a P a P= and picks up a 
random binary set ( )1 2, ,..., nx x x x=  then 

computes the 'ix s  whose corresponding bit 

is 1: ∑
=

=
n

i
ii PbxU

1
1 , ∑

=

=
n

i
ii PaxU

1
2 λ . Signing the 

message m , Alice sends the signature 
),,( 21 mUU  to the Bob.. Accordingly, an 

adversary can play the role of eAlicU ′  to forge 

eAlicID ′ . However, before the attacker chooses 

the binary vector x′ and secret keys ( )AA ds ′′ , , 
to obtain the verification is required. As 
mentioned above, the attacker must again solve 
the Knapsack and Bilinear pairing problems. 

- Security under man-in-the-middle attack 

When AliceU sends 
),,,,( AliceAliceAliceAliceCA VfYIDP  to BobU , an 

adversary can intercept the datum from the 
public channels, and then play the role of 

AliceU  to cheat BobU  or other users 
by ),,,,( AliceAliceAliceAliceCA VfYIDP . 
Proof. The attacker does not pass the 

verification of ),,(
?

AliceAliceAlice Hrff ′′= λ , 
and ),(),( 21 PUeYUe Alice =λ . Nevertheless, we know 
that obtaining ( )AA ds ,  from 

Alicef  is equal 
of computing the Knapsack and Bilinear 
pairing assumptions. 

- Security consideration of the malicious CA 
attack 

An intruder might try to impersonate CA by 
determining a relationship from the public 
message for ( )VW , . 

Proof. We say that a self-certified scheme is 
presently counterfeited against adaptive chosen 
message attack if no polynomial bounded 
adversary A has a non-negligible advantage 
against the challenger in the following game: 
The challenger takes the security 
parameters ),( ′′ ids and runs the generate 
algorithm. It gives the adversary the resulting 
system parameters and a public key CAP  of 
the CA. If an attacker attempts to carry out an 
attack by revealing the private key ),( ′′ ids from 
the public key of the ( )VW , , then he or she 
can play the role of ),( CAIDi  to forge. In case 
of that, the attacker must solve the CKDH 
problem given by ( )VW ,  to determine ),( ′′ ids  

 



中正嶺學報 第三十九卷 第二期 民國 99.11  
JOURNAL OF C.C.I.T., VOL.39, NO.2, NOV., 2010 

 83

VI. EFFICIENCY 
ECC delivers the highest strength per bit of 

any known public-key system because of the 
difficulty of the hard problem upon which it is 
based. This greater difficulty of the hard 
problem - the elliptic curve discrete logarithm 
problem (ECDLP) - means that smaller key 
sizes yield equivalent levels of security. In 
practice, the size of the element in group 1G  
can be reduced by a factor of 2 using 
compression techniques. So, like BLS scheme 
[4], our signature scheme is a short IBS scheme. 
If we choose a group and the bilinear map from 
elliptic curves [4], which results in a group of 
160 bits size, signatures generated by our 
scheme is 160 bits length which is half–size 
compared to the proposed IBS schemes [5, 6, 7, 
8, 9, 10, 11]. A comparison between our IBS 
scheme with other schemes is listed in Table 1.  

 VI. CONCLUSIONS 
We have proposed a secure and robust short 

signature scheme using self-certified public keys 
from pairings, which combines the best aspects 
of identity-based (implicit certification) and 
public key signatures (no key escrow). The 
users can choose their secret information 
independently. The actual public key consists of 
the partial public key chosen by the user and the 
public key of the certificate authority explicitly. 
The scheme was proven as secure as the short 
signature scheme in random oracle model. In 
addition, it is best to compare systems based on 
the best knowledge currently available, and only 
then consider less tangible factors, like guessing 
the likelihood of new developments in 
mathematics. The dilemma for the cryptosystem 
designer is that a trapdoor is easily discovered if 
the knapsack density is high. This letter 
proposed a new short signature design that fully 
exploits the difficulty of the knapsack and GDH 
problem with a difficult-to-discover trapdoor. 
The proposed schemes have three notable 
advantages: (1) the scheme does not need an 
on-line CA to verify a blind signature and the 
validity of public key; (2) when verifying the 
validity of public key, it does not need to spend 
extra much time to verify the signature in the 
digital certificate used in the certificate-based 

public key cryptosystem; (3) security depends 
on the computational complexity of multiple 
assumptions. 
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Table 1. Efficiency comparisons 
Scheme  BLS[4] CLW[11] YCK[15] The proposal 
Signing method Deterministic Deterministic Deterministic Probabilistic 
IBS NO YES YES YES 
self-certified 
approach 

NO NO NO YES 

Signing algorithm Diffie-Hellman Diffie-Hellman Diffie-Hellman Knapsack Diffie-Hellman 
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