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ABSTRACT

With the rapid growth of internet application, malware has become one of the major threats to
information security. Traditionally, anti-virus products use signature matching to detect malware, but
the drawback is that they can not detect new and unknown malware. Recent studies showed that the
use of machine learning can successfully detect new and unknown malware, but the limitation of this
technique is its high false rate. The performance of machine learning is influenced by two main factors:
(1) the features used to represent the instances; and (2) the algorithm used to generate classifier. In this
paper, we improved the accuracy of machine learning from these two factors. On the one hand we
combined features extracted from both content-based and behavior-based analyses to represent the
instances; on the other hand, we used classifier ensembles to replace individual classifier. Based on
our methodology, a hybrid-classifier was implemented to classify unknown executables as either
malicious or benign. Experimental results show that the methods proposed in this paper can improve
the accuracy of malware detection effectively.
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I. INTRODUCTION

Traditionally, anti-virus products use
sighature matching to detect malware. They
create a unique pattern tag for each malware so
that its future executables can be correctly
classified. The drawback is that they can not
detect new and unknown malware. Recent
studies [1-7] showed that the use of machine
learning can successfully detect new and
unknown malware, but the limitation of this
technique is its high false rate. Therefore, how
to improve the accuracy of machine learning
becomes the critical issue in using machine
learning for malware detection in practical
applications. The performance of machine
learning is influenced by two main factors: (1)
the features used to represent the instances; and
(2) the algorithm used to generate classifier. In
this paper, we plan to improve the accuracy of
machine learning from these two factors.

First, for the features used to represent the
instances, Schultz et al. [1] proposed three
kinds of features: Dynamic Link Library (DLL)
| Application Programming Interface (API)
function calls used, strings, and byte sequences
(i.e. Binary N-grams). For each executable, the
authors constructed binary feature vectors based
on the presence or absence of each to represent
the executable. Subsequent researchers [8-12]
chose one of them as feature of executables in
using machine learning to detect malware.
Recently, Masud et al. [13, 14] proposed a
combination of three different kinds of features
to achieve high accuracy in detecting malicious
executables. They are binary N-grams,
assembly instruction sequences, and DLL/API
function calls. Besides choosing the features
proposed by Schultz et al. [1], some researchers
also tried to modify Schultz’s features for
malware detection. In [15], Reddy et al.
proposed using variable length N-grams to
replace fixed length N-grams. They believed
that fixed length N-grams cannot capture
meaningful sequences of different lengths. In
[16], Ye et al. proposed “interpretable strings”
to replace simple printable strings. Ye et al.
suggested  that  printable  string, like
“3d%3dtgyhjij”, should not be extracted as
features, since it can’t be interpreted. In [17],
Shafig et al. extracted 189 features based on the
structural information of PE files. Besides the
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73 DLLs referred to in executables, they
extracted 116 statically computable features
such as number of sections, size of the stack
and the heap, etc. The aforementioned features
are all classified as content-based features.
Content-based features primarily target at the
structural information of an executable. The
advantage is that such information can be
extracted from the content of an executable
without really executing it. But the shortcoming
is that they often fail to reveal system
interaction information. For example, using
‘KERNEL32.dll /CopyFile’ DLL/API to copy
an .exe file to a system directory is likely to be
malicious, while copy a .txt file to user’s
directory is thought to be benign.

In order to resolve the shortcoming of
content-based features, recent studies have
proposed using behavior-based features for
detecting malware. Liu [18] listed 35 host
behaviors (such as create files, set auto run etc.)
to detect malicious executables. Liu et al. [19]
selected 8 behaviors shared by many malware
(such as registry modification etc.) as
behavioral features. Hu et al. [6] proposed a
malicious detecting method using 35 run-time
behavioral features, such as hiding windows,
hooking keyboard etc. The idea is to provide an
executable with the environment where it can
be executed realistically, so that the executable
can then be classified as either malicious or not
according to what it does. The limitation of
using behavior-based features for malware
detection is that the decision model can work
well only if all behaviors can be clearly
observed. It may not observe random or
environment specific behaviors. Moreover,
modern malware will often try and evade
detection by hiding its malicious behaviors.

In this paper, we plan to combine
content-based and behavior-based features for
the purpose of complementary results. As most
executables nowadays target at Microsoft
Windows platform and exploit the DLL/API to
access system resources such as files, the
registry, processes, and networking information
etc. We chose DLL/API function calls as
content-based feature of an executable. The
reason behind the use of DLL/API is that the
presence or absence of an informative API is
related to the presence or absence of a certain
action in the code of an executable. Another



reason is that the domain of DLL/API is limited
compared with binary N-grams and strings. For
example, there are only thousands of DLL/APISs,
but the domain of N-grams is 2732
(4,294,927,296) for N=4. Such a huge domain
of features will produce problems in memory
storage and execution time. For behavior-based
features, 12 primary behaviors commonly seen
in malicious executables were chosen through
group discussion. Section Il provides detailed
descriptions of these behaviors.

Secondly, for the algorithm used to
generate classifier, several machine learning
algorithms have been investigated for the
malware detection. They are Support Vector
Machine (SVM) [4,20,21,22], Decision Tree
(DT) [2,5], Artificial Neural Networks (ANN)
[24-25], Naive Bayes (NB) [1,5], and k Nearest
Neighbors (kNNs) [3,23] etc. Experimental
results of above literature show that the
classifiers generated by these popular
algorithms perform passably. To improve the
performance, the solution is to combine
different classifiers just like the old saying: two
heads is better than one. This is particularly true
when the heads are diverse. Combing the
predictions of different classifiers to achieve a
better performance than any of the base
classifiers involved in the combination is an
approach used in various fields. Recent studies
have proved that individual base learning
methods can be replaced by ensemble learning
methods to improve the accuracy of malware
detection. Kolter [3] tested an ensemble
learning method called Boosted to boost SVM,
Naive Bayes and decision tree, the experimental
results showed that Boosted decision tree
outperforms individual base learning methods.
Menahem et al. [26] proposed a multi-inducer
ensemble method that combines five different
base learning methods (Decision Tree, Naive
Bayes, kNNs, VFI and OneR) to improve
malware detection. Besides the aforementioned
ensemble learning methods, popular ensemble
learning methods such as bagging, voting,
stacking, and grading all have been successfully
used in several applications [27-30]. In this

paper, the performance of these popular
methods was compared using dataset.
Meanwhile, we propose a new ensemble

learning method called SVM-AR, it combines
SVM and association rules [31] based on
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hierarchical taxonomies. The motivation for
using the hierarchical taxonomies is to classify
unknown executables in two steps for
improving the accuracy of malware detection.
In the first step, the executables were roughly
divided into malicious and benign group by a
hyper-plane determined by SVM algorithm.
After that the false predictions were filtered out
by applying association rules induced from the
behavioral patterns of executables. One can
think of the hyper-plane as a global optimal cut,
while the association rules are local optimal
filters. Experimental results show that
SVM-AR outperforms all popular ensemble
learning methods.

The rest of this paper is organized as
follows: Section Il briefly describes a number
of popular classification algorithms examined
in this study. Section 111 describes our machine
learning method for improving malware
detection. The experimental results are
presented and discussed in section IV. Section
V is the conclusions.

I1. RELATED CLASSIFICATION
ALGORITHMS

In this section, a number of classification
algorithms examined in this research are briefly
described as follows:

2.1 Individual Learning Algorithms

NB: Naive Bayes [1] is a probabilistic
method. Given an unknown testing instance, it
uses Eq.(1) to compute posterior probability of
each class and then the class with the highest
value is its prediction.

C =argmax P(C)ITP(F,|C,) 1)
G J

Where P(C;) is the probability of class i,
P(F;|C) is the conditional probability of each
feature value given the class i.

SVM: SVM [32] is based on the structural
risk minimization principle from the statistical
learning theory. It is particularly suitable for
solving binary classification problems. SVM
can identify an optimal separating hyper-plane
between two classes in a high dimension feature
space. The optimal hyper-plane is subject to the
constraint as:
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Where w is normal to the hyper-plane, &;
is error for the i-th instance. C is a parameter to
represent the tradeoff between maximizing the
margin and minimizing the training error. The
concept of SVM is shown in Fig.1.

C‘/ Optimal Hyperplane
\\ . .

-Elw

0]

Fig.1. SVM optimal hyperplane.

kNNs: kKNNs [33] is the simplest learning
method. To classify an unknown testing
instance, it finds the k-nearest neighbors from
training instances and then returns the plurality
vote of their class labels of these k-nearest
neighbors as its prediction.

DT: A decision tree [34] is a rooted tree
with internal and leaf nodes. The internal nodes
correspond to features and leaf nodes
correspond to class labels. It builds a tree by
selecting the feature that best divides the

training instances into proper classes in learning.

For testing, it uses the features and their values
of an instance to traverse the tree from the root
to a leaf, and then outputs the class label of the
leaf as its prediction.

OneR: OneR [35] is a very simple
classification model; it uses the minimume-error
feature (attribute) for prediction.

2.2 Ensemble Learning Algorithms

In this paper we examined several
well-known ensemble algorithms used in
various fields. They are briefly described as
follows:

Bagging: The bagging method [27]
produces a number of imaginary training sets
first. Each imaginary training set is generated
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by randomly drawing N instances, where N is
the size of the original training set. It is possible
that some instances are drawn multiple times
while other are left out. After that, each
homogeneous individual classifier is generated
with a different imaginary training set. The
weight of each individual classifier is equal, so
the final prediction is determined according to
plurality vote.

Boosting: The boosting method [27]
produces a set of weighted homogeneous
classifiers by iteratively learning a classifier
from a weighted dataset, evaluating it, and then
reweighting each instance in the dataset based
on whether the prediction for the instance is
correct or not. In every iteratively learning, it
pays more attention to those instances with
false predictions in the last iteration. For testing,
it uses the set of homogeneous classifiers and
their weights to predict the class with the
highest weight.

\oting: It is the most intuitional method to

combine  heterogonous  classifiers.  Each
base-level classifier casts a vote for its
prediction, and then combines classifiers

according to the plurality vote.

Stacking: The Stacking method [28] uses
two levels to combine heterogonous classifiers.
In level-0, each heterogonous base-classifier
predicts the probabilities for every class. And
then it combines the different predictions of
each base-classifier and class value into one
vector for every training instance to form the
meta-training set. This meta-training set is used
to generate a meta-classifier in level-1. For
testing, the base classifiers are first conducted
for the probabilities of every class on the test
instance. These form a meta-sample for the
meta-classifier which predicts the final class.

Grading: The Grading method [29] learns
a meta-level classifier for each heterogonous
base-level classifier. The meta-level classifier is
used to predict whether the base-level classifier
is to be trusted. Only the base-level classifiers
that are predicted to be trustworthy are selected
and then combined with their predictions to
make final decision by the simple plurality
vote.

I11. METHODS

The framework of malware detection by



using machine learning is shown in Fig.2. In
general, the working process can be split into
two phases: training and testing. The goal of
training phase is to generate classifiers for
detection, and then evaluate the classifiers
during testing phase. Detailed procedures for
each functional block in Fig.2 are described in
the following sections.

Samples Features Features

Collection [ ] Extracting | Reduction _I
Generate

.| Datasets | Class_lf!ers'by

"| Creation 7| Classification
Algorithms
Evaluate

Test

» I

"| Classifiers d Measured
Metrics

Fig.2. Malware detection by machine learning.
3.1 Samples Collection

A few years ago, the purpose of malware
was to cause major damage. The malware
writer wanted to cause the most damages and
gather the most media attention. In the last few
years, the motivation of malware writers has
shifted to profit-making [36]. As a result,
malware is becoming more insidious. It will
carry out its malicious activities without the
user’s knowledge. In this paper, the malicious
samples were collected according to current
trends in malware. The focus is on those
malware with insidious activities (such as
keyloggers, password thieves, network sniffers,
backdoors, stealth Trojans, spyware and rookits
etc.), and not the ones with destructive
behaviors (such as virus).

Unlike intrusion detection systems (IDS)
that all have a common database set (DARPA
datasets [37]), no standard data sets are
available to researches of malware detection. As
a result, the researchers had to collect benign
and malicious samples to establish the datasets
manually. The benign samples were gathered
from the Web site Softking
(http://www.softking.com.tw). Those samples
consisted of different categories of programs,
such as graphic software, system tool,
multimedia software, office tool and internet
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application etc. The malware samples from
different sources were then obtained. They
included the website AvpClub
(http://www.avpclub.ddns.info/discuz
findex.php), attachments of infected e-mails,
and laboratories of related anti-virus
organizations. A total of 1,200 samples were
collected, including 400 malware and 800
benign programs. After running through five
popular anti-virus software products (Kaspersky,
Symantec, Trend Micro, Spyware Detector and
F-secure online) for verification, each sample
was labeled either as malicious or benign.

3.2 Features Extracting

In our study, the content-based and
behavior-based features were proposed and
combined in order to take advantage of each
feature. They are described below:

3.2.1 Content-based features

In comparison with N-grams and PE
features, using strings as features offers the
worst accuracy [17], although Ye et al. [16]
proposed that using “interpretable string” to
replace simple printable strings can improve
accuracy. In [12], Lai et al. used four methods
(frequency, glossary filter, support threshold,
and frequency item sets) to select 100 most
important strings as features for malicious
detection. Their experimental results showed
that the glossary method is slightly better than
frequency method, but inferior to support
threshold and frequency item sets. Moreover,
no matter which method is used for selecting
important strings, most of the selected strings
are interpretable strings. So the system
effectiveness of Ye et al. is possibly due to their
use of Support Vector Machine ensemble
bagging as classification algorithm, and not
because of the selected interpretable strings as
features. In [17], N-grams is better than strings,
but N-grams approach incurs huge space
problem and large overhead in pre-processing
for features selection. In this paper, PE
information was chosen as content-based
features. Unlike Shafig et al. [17] who selected
DLLs and computable fields from PE format as
features of an executable, DLLs and API
function calls were chosen in this study as
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features. In addition to DLLs, API function
calls were also identified because the
researchers believed that the functions of a
specific DLL are too wide to capture the exact
intend and goal of an executable. The API is a
function call for implementing a specific
function. It is better than DLL in capturing the
malicious purposes of an executable.

The Windows DLL/API function calls
were identified as content-based features of an
executable in this study. The reason behind the
use of DLL/API is that the presence or absence
of an informative API is related to the presence
or absence of a certain action in the code of an
executable. To extract such information from
the import section of the file’s PE format, a
program called GetFileAPls was developed to
parse the DLLs/APIs function calls used by an
executable. The results were compared to a
popular freeware called PEView [38] to
ascertain the features extracted by this program
are correct. The purpose of developing this
program as a replacement of the tool PEView is
to save processing time. This program can
analyze all executables by batch mode, while
PEView can only analyze executable one by
one. After all collected executables were
analyzed, 2682 distinct DLL/API function calls
were identified. A feature vector was then
generated for each sample. The feature vector
comprised of 2682 Boolean values to represent
whether or not an executable used a specific
DLL/API.

3.2.2 Behavior-based features

For behavior-based features, 12 primary
behaviors commonly seen in malicious
executables from the knowledge of relevant
experts were identified through group
discussion. To dynamically capture the behavior
features of an executable, VMWare [39], a
virtual machine installed with Microsoft
Windows XP operation system, was used as the
test environment to run the executable. The
advantage of using VMWare is that a clean
snapshot of VMWare can be easily restored
every time it needs to run a new executable.
Each sample was executed in VMWare and
investigated by some suitable sharewares to
determine whether or not there is a specific
existing malicious behavior. The behaviors and
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tools used to observe these behaviors are listed
in Table 1.

After all the samples were executed and
traced, we found that some of them could not
be executed properly. This may be due to
incompatibility between different versions of
operating system. In the end, a total of 980
samples (benign: 696, malicious: 284) was
executed. Each sample was represented by a
12-Dimension feature vector.

Table 1. Behaviors and tools used to observe them

ID | Behavior Description Tools

F1 | Packed PEID [40]

F2 | Auto-Start AutoRuns [41]

F3 | DLL Injection ProcessExplorer [43]
F4 | Modify system files FileMon [43]

F5 | Create execution file(s) FileMon

F6 | Hiding files RootkitRevealer [44]

IceSword [45]

F7 Hiding registry entries RootkitRevealer

IceSword
- ProcessExplorer
F8 Hiding processes IceSword
F9 Hiding services IceSword
F10 | Open port FPort [46]
F11 | Reinstallation after removal | ProcessExplorer
F12 | Hook IceSword

3.3 Features Reduction

Since the number of extracted DLL/API
features is fairly large, it is impractical to use all
of them for training because most of them
belong to noisy, redundant or irrelevant data.
We need to choose a small, relevant and useful
feature set from the entire large set. Many
criteria have been proposed [3,13,14,21,23] to
select the best features. In our work, we choose
information gain as the selection criterion. The
information gain of a feature F on a dataset S is
given by Eq.(3):

IG(S,F) = Entropy (S)—- X iv Entropy (S,) (3)

veVal (F) ‘ ‘

Where Val(F) is the set of all possible
values for feature F, and S, is the subset of .S for
which feature F has value v. In our case, each
feature has only two possible values, either 0 or
1, representing the feature existed in the
executable or not. Entropy(S) is computed using

Eq.(4):

k
Entropy (S) ==Y P, x Log,P, 4)
=




Where P; is the proportion of instances
belonging to class i in S, k is the total number of
classes in S.

In our pilot studies, we ranked each
DLL/API by its information gain, and then
selected the top 100, 200, 500,..., 2682
DLLs/APIs to evaluate the performance of
Naive Bayes, Decision Tree, KNNs and SVMs.
The results are shown in Fig.3.
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the experimental results, four datasets were
constructed (A, B, C, D) for the experiments.
The datasets differed in the number of samples
and malware percentage. Each dataset has three
versions. The first version contains both
content-based and behavior-based features,
which means that each sample is represented to
a 512-Dimension feature vector. The second
and third versions contain only content-based or
behavior-based features. Table 2 shows the
properties of the datasets used in the
experiments.

Table 2. Datasets in our experiments
#Samples
(#Ben/#Mal)

Dataset Features Mal%

500 DLLs/APIs

Al .
A + 12 behaviors 980 30%

A2 | 500 DLLS/APIs (696 / 284)
A3 12 behaviors
B1 500 DLLs/APIs

+ 12 behaviors 819

B 15%

TopN B2 | 500 DLLs/APIs (696 / 123)
B3 12 behaviors
- . 500 DLLS/API
Fig.3. Accuracy vs. size of DLLS/APIs. Cl |11 beh;\,iorss 568
C 50%
It can be seen that the best results were gg fgobgh';bféf's (2841284)
produced by selecting top 500 DLLS/APIs. A 500 DLLS/APIs
D1 i
+ 12 behaviors 405

curve based on the information gain and rank of
each DLL/API is shown in Fig.4.

0.2

0.15

0.1

0.05

0 500 1000 1500 2000 2500

Rank
Fig.4. Information gain and rank of each DLL/API.

It also shows that only top 500 DLLS/APIs
were needed to generate a significant
information gain. Based on the above
perspectives, the top 500 DLLSs/APIs were
selected as content-based features of each
sample. It was unnecessary to reduce
behavior-based features, as the total number of
such features was small.

3.4 Datasets Creation

To avoid the population number affecting
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0,
D "D2 [ 500DLLIAPIs | (121/284) 0%

D3 12 behaviors

3.5 SVM-AR

A new method, SVM-AR, was proposed in
this paper. It combines SVM and association
rules based on hierarchical taxonomies. The
reason that SVM was selected as fundamental
classifier of SVM-AR is explained below:
According to the review of the related papers on
the topic of malware detection using machine
learning, it was found that Support Vector
Machine, Decision Tree, Naive Bayes, and k
Nearest Neighbors are the most common
classification algorithms used by researchers.
This study then tested the overall accuracy of
each algorithm in malware detection using the
collected datasets. The results showed that NB
is the worst classification algorithm. As a result,
NB was deleted from the shortlist for its poor
accuracy. Empirical studies showed that the
accuracy  improvement achieved  using
multi-classifiers is related to the diversity of
classifiers. The diversity between DT and
association rules didn’t meet this basic
requirement, so DT was also deleted from the
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shortlist. In the end, SVM was selected because
it is superior to KNNs in algorithm efficiency,
and it is most frequently used in related papers.
Table 3 is a summary of the above descriptions.
Apart from the reasons mentioned above, SVM
is effective in resolving binary classification
problems just like the one in this paper.

Table 3. A comparison sheet of popular
classification algorithms

SVM DT kNNs

orithms
Criteria
Classification
accuracy
Diversity to
association
rules
Frequency
used in the
related
researches
Efficiency
of algorithm

After the description of SVM method in
the preceding section, The Association Rules
and how to combine these two methods to
improve the accuracy for classification will be
described in this section.

Let 7 = {1, L,,..., I,} be a set of items. The
form of association rule is X—=Y [s, ¢/. An
association rule is an implication X=>Y, where
Xcl YclI and XNY =@. s is the support rate
of the rule, it represents the percent of the
records in the dataset contain X (/Y. ¢ is the
confidence of the rule, it represents the percent
of records in dataset which contain X also
contain Y, i.e.

NB

Good Good Good Bad

High Low High High

Medium

~ High Low

High Medium

Good Best Bad Good

_ Count (X UY) (5)
b5
_ Count (Xur) (6)

Count (X))

Where Count(X L/Y) returns the records in
the dataset where X (/Y holds. |DB]| is the
number of records in the dataset.

In this paper, we let X be a situation of
behavior features, Y be a label of class. A
minimum support and minimum confidence
was given as thresholds to ensure that only
those rules that appear with a high enough
support and confidence, as specified, are
retained. The rules generated look like this:

(F2 =1, F5 =1, F11 = 1) &> Class =

64

Malicious [5%, 100%]

(F1=0,F2=0,F6=0,F7 =0, F10 =0)
-> Class = Benign [1.6%, 100%)]

By referring to the ID of each behavior
feature in Table 1, one can determine the
meaning of the malicious rule. It means that if
an unknown executable has the following
behaviors (auto-start, create execution file(s),
and reinstallation after removal), then it is
malicious. The support and confidence of this
rule are 5% and 100% respectively. The
meaning of the benign rule is explained as
follows: An unknown executable is un-packed,
without auto-run setting, without hiding files
and registries, and without opening any port, it
is benign. The support and confidence of this
rule are 1.6% and 100% respectively.

Using Apriori [47] algorithm, one can
obtain all the association rules with certain
support and confidence values. The generated
rules can be divided into two groups:
Class=Benign for benign association rules,
Class=Malicious for malicious association
rules.

Fig.5 shows how to integrate SVM and
Association Rules into SVM-AR. Empirical
studies show that the accuracy improvement
achieved using multi-classifiers is related to the
diversity of classifiers. SVM and Association
Rules work in different manners and exploit
different sets of features. By integrating them,
the possibility of achieving better performance
will be high. According to the hierarchical
taxonomies in Fig.5, the concept of SVM-AR
begins with the use of SVM to roughly divide
executables into two areas, namely malicious
and benign, by a global optimal hyper-plane.
The false rate of SVM resulted from the false
classification causes some of the executables to
be in the wrong area. One can reduce this false
rate by filtering out these false predictions with
local optimal method. Here, SVM-AR uses the
related association rules to filter out the
suspicious executables. It can filter out false
negative executables by using malicious
association rules, and false positive executables
by using benign association rules. Those
association rules are induced from common
behavior  patterns  of  malicious/benign
executables.
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Fig.5. The architecture of SVM-AR.

There are two questions needed to be
answered: First, can one guarantee that
SVM-AR will be better than other algorithms?
The answer is that the basic assumption of
SVM-AR is not to reveal any executables that
meet the benign rules within malicious
boundary determined by Support \ector
Machine. In the same way, the executables
within benign boundary should not meet any
malicious rules. The best case is that one can
filter out all misclassified samples by some
association rules. The general case may be that
some misclassified samples can not be filtered
out as they may not fulfill any of the association
rules. However, the overall accuracy will still
be improved because certain false positive and
false negative samples have been filtered out by
the association rules. Second, is it possible that
some correct classified samples are also filtered
out by the association rules; hence the overall
accuracy will be reduced and not improved?
The answer is that this can only happen in two
situations. The first situation is where a benign
executable is classified correctly by Support
Vector Machine but fulfill a specific malicious
rule. This situation should not happen as a
benign executable usually does not have a
strong pattern of malicious behaviors. Another
situation is where a malicious executable is
classified correctly by Support Vector Machine
but fulfills a benign rule. This situation is likely
to take place because the malicious behaviors
may go by undetected under our eyes (this is
the instinctive drawback for behavior analysis).
However, the probability should be very low, as
some malicious behaviors may slip through, but
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to fail in observing all malicious behaviors of a
malicious executable will be near impossible.
As long as one can observe one or two
malicious behaviors of an unknown executable,
this executable will not meet any benign rule.
We believe that SVM-AR should improve
classification accuracy based on the above
analysis. To prove this inference, additional
experiments were conducted in this study and
they vyielded the expected results as shown in
section V.

3.6 Measured Metrics

For evaluation purpose, we used the
Overall Accuracy (0OA), Detection Rate (DR),
and False Positive Rate (FPR) as measured
metrics. OA is the percentage of true
classifications over all test samples. DR is the
percentage of total malicious programs which
were labeled as malicious. FPR is the
percentage of benign programs which were
labeled as malicious. The equations are shown
as follows:

TP + TN

- x 100% (7
TP + TN + FP + FN
R=—"P 1009 (8)
TP+ FN
FPR = x 100% 9)
FP+TN
Where,

TP (True Positives): the number of
malicious samples classified as malicious.

FP (False Positives): the number of benign
samples classified as malicious.

FN (False Negatives): the number of
malicious samples classified as benign.

TN (True Negatives): the number of
benign samples classified as benign.

IV. RESULTS AND DISCUSSION

In this section we begin by describing the
experimental environment. Weka [48] and
LIBSVM [49] were used in this study to
perform experiments with different learning
algorithms. All experiments were executed on a
PC that runs on Windows XP operating system
(SP2), with a Intel Pentium4 CPU and 512M of
RAM.
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In order to evaluate the generalized
accuracy, the 10-fold cross-validation procedure
was repeated 3 times for all experiments. The
obtained experimental results are presented and
discussed in the following sections.

4.1 Features Effect

Table 4 shows the overall accuracy for
applying each individual algorithm on four
datasets.

Table 4. Overall accuracy for using different features

Dataset g:)'/‘g SVM | kNNS | DT | OneR
Al 74.56%| 92.88%| 93.49%| 92.63%| 88.64%
A A2 73.63%| 87.99%| 90.97%| 91.53%| 86.94%
A3 87.59%| 90.72%| 90.23%| 91.53%| 88.64%
Bl 77.55%| 93.67%| 92.14%| 92.07%| 83.37%
B B2 76.97%| 88.64%| 89.49%| 91.80%| 76.94%
B3 85.10%| 86.60%| 85.78%| 87.04%| 83.37%
C1l 78.99%| 88.61%| 89.55%| 88.32%| 75.35%
C Cc2 78.52%| 83.10%| 85.03%| 85.68%]| 75.35%
C3 77.82%| 81.21%| 79.57%| 82.04%| 72.71%
D1 81.59%| 85.60%| 91.93%| 89.63%| 73.44%
D D2 79.52%| 84.20%| 83.70%| 86.25%| 73.44%
D3 71.44%| 75.96%| 77.96%| 78.02%| 69.31%

It can be seen that the combination of both
content-based and behavior-based features can
improve the accuracy for SVM, KNNs, and
Decision Tree in each dataset, but not work well
for Naive Bayes and OneR. OneR uses the
minimum-error feature for prediction; this
feature can be either content-based or
behavior-based. Therefore, it just retains its
original accuracy. Naive Bayes uses Eq.(1) to
compute posterior probability of each class,
thus the combined features can not guarantee
accuracy improvement. For SVM, kNNs and
Decision  Tree, the combination  of
content-based and behavior-based features will
give more information to each sample.
Therefore, applying these algorithms can
generate more appropriate models for
classification. In successive experiments,
datasets that contain both features were used to
represent executables.
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4.2 Ensemble vs. Individual Learning

Table 5 shows the experimental results of
overall accuracy of all ten algorithms based on
4 datasets.

Table 5. Rank for each algorithm

Datasets
Algorithm Avg. | Rank
Al Bl C1l D1
NB 74.56% | 77.55% | 78.99% | 81.59% | 78.17%| 10
SVM 92.88% | 93.67% | 88.61% | 85.60% | 90.10% 8
kNNs 93.49% | 92.14% | 89.55% | 91.93% | 91.78% 5
DT 92.63% | 92.07% | 88.32% | 89.63% | 90.66% 6
OneR 88.64% | 83.37% | 75.35% | 73.44% | 80.20% 9
Voting | 94.22% | 93.98% | 88.32% | 86.10% | 90.66% 6
gz}ggmg 94.42% | 92.93% | 91.08% | 91.35% | 92.45% 4
g‘%osmg 95.15% | 94.80% | 92.60% | 93.33% | 93.97% 1
Stacking | 94.87% | 94.42% | 90.49% | 91.27% | 92.76% 3
Grading | 94.50% | 94.29% | 91.84% | 91.85% | 93.14% ?

In our work, bagging and boosting were
performed on decision tree for 10 times. The
ensemble algorithms, including voting, stacking
and grading, used NB, SVM, kNNs, DT and
OneR as their base learning algorithms. The
average accuracy of each algorithm was
calculated and ranked based on 4 datasets. It
can be seen that the degree of accuracy of
ensemble learning algorithms was higher than
the individual algorithms.

4.3 The Performance of SVM-AR

The performance of SVM-AR is illustrated
in Figs.6-8. We tested on four datasets (A1, B1,
C1, and D1) to avoid the data affecting the
performance. It can be seen that SVM-AR
outperforms nearly all popular ensemble
learning algorithms at overall accuracy,
detection rate and false positive rate in each
case. Fig.7 and Fig.8 show that the malware’s
percentage in the dataset affects the detection
and false positive rate. Except SVM-AR, most
of the algorithms didn’t perform well on false
positive rate in the datasets with higher
percentage of malware. The reason is that most
of the algorithms tend to misclassify the
instances of the less represented class, leading




to high false positive rate. However, SVM-AR
can reduce the false positive rate by applying its
association rules on the malicious side
separated by a SVM.

100

—&—Bagging
9 —— Boosting
90 —&—\Voting

\‘\A —%— Stacking
1 1 - )

—X¥— Grading
—&— SVM-AR
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85 L
15% 30% 50% 70%

Malware% in Dataset

Fig.6. OA comparison between SVM-AR and
popular ensemble algorithms.
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Fig.9. Training time comparison of learning
algorithms.
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Fig.7. DR comparison between SVM-AR and
popular ensemble algorithms.
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Fig.8. FPR comparison between SVM-AR and
popular ensemble algorithms.

4.4 Execution Time
Figs.9-10 show the execution time used by

each of the aforementioned algorithm during
the training and testing phase.

SVM-AR
Grading
Stacking
Voting
Boosting
Bagging
SVM
DT |o
kNNs | 1 5
NB  0.04
OneR |0

0 2 4 6

Testing time (sec)

Fig.10. Testing time comparison of learning
algorithms.

In general, the execution time of an
ensemble algorithm is longer than an individual
algorithm in both phases. It is because the
ensemble learning algorithms must generate
multi-classifiers during the training phase and
combine the predictions of multi-classifiers to
make the final decision. The boosted DT and
bagging DT in testing execution time are
exceptions. They are even better than some
individual algorithms. The reason is that the
time to execute decision tree for testing is
negligible, hence the time needed to run it
several times is still very short.

The training execution time for SVM-AR
is longer than most of the algorithms. The
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reason is that it uses Apriori scheme to identify
the related association rules, which is a time
consuming process. However, SVM-AR’s
testing execution time is better than most of the
ensemble algorithms. It is because the time for
applying association rules to test samples is
negligible, the testing time of SVM-AR is
dominated the execution time of SVM.
Therefore, it makes SVM-AR even comparable
to individual learning algorithm.

Practically speaking, once the detection model
is generated from training phase, it didn’t need
to retrain the model for each test case. Thus,
testing time is more critical than training time
for machine learning application. From this
viewpoint, our method, SVM-AR, is very
efficient in terms of execution time.

V. CONCLUSIONS

Machine learning can be used to detect
new and unknown malware. However, the
limitation of this technique is its high false rate.
The performance of machine learning is
influenced by two main factors: features and
algorithms. In this research, we set out to
improve the precision of machine learning
through these two factors. The conclusions
drawn from the experimental results are:

(1) Content-based and behavior-based features
are complementary to each other.
Combining both of them can improve the
overall accuracy of malware detection for
most of classification algorithms.

(2)In general, ensemble learning algorithms
outperform individual learning algorithms in
accuracy, but at a cost of longer execution
time.

(3) A new ensemble learning model, SVM-AR,
was proposed in this article. The
experimental results revealed that SVM-AR
offers a better performance than other
well-known ensemble algorithms in terms of
accuracy, detection rate, and false positive
rate. Moreover, SVM-AR is comparable to
any individual learning algorithm in test
execution time.

The limitation in this research is the
analysis process used to detect unknown
executables” dynamic behaviors within a
VMWare environment with certain sharewares.
As a result, this study was forced to adopt a
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semi-automated approach, even though the
efficiency of SVM-AR, a hybrid classification
algorithm proposed by this study, is promising
in real-time malware detection. Future work
should focus on how to conduct similar

classification processes in an automated
manner.
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