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ABSTRACT 

With the rapid growth of internet application, malware has become one of the major threats to 
information security. Traditionally, anti-virus products use signature matching to detect malware, but 
the drawback is that they can not detect new and unknown malware. Recent studies showed that the 
use of machine learning can successfully detect new and unknown malware, but the limitation of this 
technique is its high false rate. The performance of machine learning is influenced by two main factors: 
(1) the features used to represent the instances; and (2) the algorithm used to generate classifier. In this 
paper, we improved the accuracy of machine learning from these two factors. On the one hand we 
combined features extracted from both content-based and behavior-based analyses to represent the 
instances; on the other hand, we used classifier ensembles to replace individual classifier. Based on 
our methodology, a hybrid-classifier was implemented to classify unknown executables as either 
malicious or benign. Experimental results show that the methods proposed in this paper can improve 
the accuracy of malware detection effectively. 
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摘  要 

網際網路的蓬勃發展使得惡意程式對資訊安全造成嚴重的威脅。傳統上是以病毒碼比對

的方式偵測惡意程式，其缺點是無法偵測出新型及未知的惡意程式。近年來許多研究顯示運

用機器學習可有效偵測出未知的惡意程式，其缺點是錯誤率過高。本文針對特徵及演算法這

兩項影響機器學習準確性的關鍵因素著手改進。在特徵方面，結合內容及行為特徵來表示樣

本；在演算法方面，運用集成分類法取代單一分類法。基於上述改進方法，本文提出一個混

合型分類法用來區分未知程式屬於惡意或正常類別。實驗結果顯示，本文所提出的方法可有

效提高惡意程式偵測的準確性。 
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I. INTRODUCTION 

Traditionally, anti-virus products use 
signature matching to detect malware. They 
create a unique pattern tag for each malware so 
that its future executables can be correctly 
classified. The drawback is that they can not 
detect new and unknown malware. Recent 
studies [1-7] showed that the use of machine 
learning can successfully detect new and 
unknown malware, but the limitation of this 
technique is its high false rate. Therefore, how 
to improve the accuracy of machine learning 
becomes the critical issue in using machine 
learning for malware detection in practical 
applications. The performance of machine 
learning is influenced by two main factors: (1) 
the features used to represent the instances; and 
(2) the algorithm used to generate classifier. In 
this paper, we plan to improve the accuracy of 
machine learning from these two factors.  

First, for the features used to represent the 
instances, Schultz et al. [1] proposed three 
kinds of features: Dynamic Link Library (DLL) 
/ Application Programming Interface (API) 
function calls used, strings, and byte sequences 
(i.e. Binary N-grams). For each executable, the 
authors constructed binary feature vectors based 
on the presence or absence of each to represent 
the executable. Subsequent researchers [8-12] 
chose one of them as feature of executables in 
using machine learning to detect malware. 
Recently, Masud et al. [13, 14] proposed a 
combination of three different kinds of features 
to achieve high accuracy in detecting malicious 
executables. They are binary N-grams, 
assembly instruction sequences, and DLL/API 
function calls. Besides choosing the features 
proposed by Schultz et al. [1], some researchers 
also tried to modify Schultz’s features for 
malware detection. In [15], Reddy et al. 
proposed using variable length N-grams to 
replace fixed length N-grams. They believed 
that fixed length N-grams cannot capture 
meaningful sequences of different lengths. In 
[16], Ye et al. proposed “interpretable strings” 
to replace simple printable strings. Ye et al. 
suggested that printable string, like 
“3d%3dtgyhjij”, should not be extracted as 
features, since it can’t be interpreted. In [17], 
Shafig et al. extracted 189 features based on the 
structural information of PE files. Besides the 

73 DLLs referred to in executables, they 
extracted 116 statically computable features 
such as number of sections, size of the stack 
and the heap, etc. The aforementioned features 
are all classified as content-based features. 
Content-based features primarily target at the 
structural information of an executable. The 
advantage is that such information can be 
extracted from the content of an executable 
without really executing it. But the shortcoming 
is that they often fail to reveal system 
interaction information. For example, using 
‘KERNEL32.dll /CopyFile’ DLL/API to copy 
an .exe file to a system directory is likely to be 
malicious, while copy a .txt file to user’s 
directory is thought to be benign. 

 In order to resolve the shortcoming of 
content-based features, recent studies have 
proposed using behavior-based features for 
detecting malware. Liu [18] listed 35 host 
behaviors (such as create files, set auto run etc.) 
to detect malicious executables. Liu et al. [19] 
selected 8 behaviors shared by many malware 
(such as registry modification etc.) as 
behavioral features. Hu et al. [6] proposed a 
malicious detecting method using 35 run-time 
behavioral features, such as hiding windows, 
hooking keyboard etc. The idea is to provide an 
executable with the environment where it can 
be executed realistically, so that the executable 
can then be classified as either malicious or not 
according to what it does. The limitation of 
using behavior-based features for malware 
detection is that the decision model can work 
well only if all behaviors can be clearly 
observed. It may not observe random or 
environment specific behaviors. Moreover, 
modern malware will often try and evade 
detection by hiding its malicious behaviors. 

In this paper, we plan to combine 
content-based and behavior-based features for 
the purpose of complementary results. As most 
executables nowadays target at Microsoft 
Windows platform and exploit the DLL/API to 
access system resources such as files, the 
registry, processes, and networking information 
etc. We chose DLL/API function calls as 
content-based feature of an executable. The 
reason behind the use of DLL/API is that the 
presence or absence of an informative API is 
related to the presence or absence of a certain 
action in the code of an executable. Another 
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reason is that the domain of DLL/API is limited 
compared with binary N-grams and strings. For 
example, there are only thousands of DLL/APIs, 
but the domain of N-grams is 2^32 
(4,294,927,296) for N=4. Such a huge domain 
of features will produce problems in memory 
storage and execution time. For behavior-based 
features, 12 primary behaviors commonly seen 
in malicious executables were chosen through 
group discussion. Section III provides detailed 
descriptions of these behaviors.  

Secondly, for the algorithm used to 
generate classifier, several machine learning 
algorithms have been investigated for the 
malware detection. They are Support Vector 
Machine (SVM) [4,20,21,22], Decision Tree 
(DT) [2,5], Artificial Neural Networks (ANN) 
[24-25], Naïve Bayes (NB) [1,5], and k Nearest 
Neighbors (kNNs) [3,23] etc. Experimental 
results of above literature show that the 
classifiers generated by these popular 
algorithms perform passably. To improve the 
performance, the solution is to combine 
different classifiers just like the old saying: two 
heads is better than one. This is particularly true 
when the heads are diverse. Combing the 
predictions of different classifiers to achieve a 
better performance than any of the base 
classifiers involved in the combination is an 
approach used in various fields. Recent studies 
have proved that individual base learning 
methods can be replaced by ensemble learning 
methods to improve the accuracy of malware 
detection. Kolter [3] tested an ensemble 
learning method called Boosted to boost SVM, 
Naïve Bayes and decision tree, the experimental 
results showed that Boosted decision tree 
outperforms individual base learning methods. 
Menahem et al. [26] proposed a multi-inducer 
ensemble method that combines five different 
base learning methods (Decision Tree, Naïve 
Bayes, kNNs, VFI and OneR) to improve 
malware detection. Besides the aforementioned 
ensemble learning methods, popular ensemble 
learning methods such as bagging, voting, 
stacking, and grading all have been successfully 
used in several applications [27-30]. In this 
paper, the performance of these popular 
methods was compared using dataset. 
Meanwhile, we propose a new ensemble 
learning method called SVM-AR, it combines 
SVM and association rules [31] based on 

hierarchical taxonomies. The motivation for 
using the hierarchical taxonomies is to classify 
unknown executables in two steps for 
improving the accuracy of malware detection. 
In the first step, the executables were roughly 
divided into malicious and benign group by a 
hyper-plane determined by SVM algorithm. 
After that the false predictions were filtered out 
by applying association rules induced from the 
behavioral patterns of executables. One can 
think of the hyper-plane as a global optimal cut, 
while the association rules are local optimal 
filters. Experimental results show that 
SVM-AR outperforms all popular ensemble 
learning methods. 

The rest of this paper is organized as 
follows: Section II briefly describes a number 
of popular classification algorithms examined 
in this study. Section III describes our machine 
learning method for improving malware 
detection. The experimental results are 
presented and discussed in section IV. Section 
V is the conclusions. 

II. RELATED CLASSIFICATION 
ALGORITHMS 

In this section, a number of classification 
algorithms examined in this research are briefly 
described as follows: 

2.1 Individual Learning Algorithms 

NB: Naïve Bayes [1] is a probabilistic 
method. Given an unknown testing instance, it 
uses Eq.(1) to compute posterior probability of 
each class and then the class with the highest 
value is its prediction. 

)|()(maxarg i
j
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Where P(Ci) is the probability of class i, 
P(Fj|Ci) is the conditional probability of each 
feature value given the class i. 

SVM: SVM [32] is based on the structural 
risk minimization principle from the statistical 
learning theory. It is particularly suitable for 
solving binary classification problems. SVM 
can identify an optimal separating hyper-plane 
between two classes in a high dimension feature 
space. The optimal hyper-plane is subject to the 
constraint as: 
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Where w is normal to the hyper-plane, ξi 
is error for the i-th instance. C is a parameter to 
represent the tradeoff between maximizing the 
margin and minimizing the training error. The 
concept of SVM is shown in Fig.1. 
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Fig.1. SVM optimal hyperplane. 

kNNs: kNNs [33] is the simplest learning 
method. To classify an unknown testing 
instance, it finds the k-nearest neighbors from 
training instances and then returns the plurality 
vote of their class labels of these k-nearest 
neighbors as its prediction. 

DT: A decision tree [34] is a rooted tree 
with internal and leaf nodes. The internal nodes 
correspond to features and leaf nodes 
correspond to class labels. It builds a tree by 
selecting the feature that best divides the 
training instances into proper classes in learning. 
For testing, it uses the features and their values 
of an instance to traverse the tree from the root 
to a leaf, and then outputs the class label of the 
leaf as its prediction. 

OneR: OneR [35] is a very simple 
classification model; it uses the minimum-error 
feature (attribute) for prediction.  

2.2 Ensemble Learning Algorithms 

In this paper we examined several 
well-known ensemble algorithms used in 
various fields. They are briefly described as 
follows:   

Bagging: The bagging method [27] 
produces a number of imaginary training sets 
first. Each imaginary training set is generated 

by randomly drawing N instances, where N is 
the size of the original training set. It is possible 
that some instances are drawn multiple times 
while other are left out. After that, each 
homogeneous individual classifier is generated 
with a different imaginary training set. The 
weight of each individual classifier is equal, so 
the final prediction is determined according to 
plurality vote. 

Boosting: The boosting method [27] 
produces a set of weighted homogeneous 
classifiers by iteratively learning a classifier 
from a weighted dataset, evaluating it, and then 
reweighting each instance in the dataset based 
on whether the prediction for the instance is 
correct or not. In every iteratively learning, it 
pays more attention to those instances with 
false predictions in the last iteration. For testing, 
it uses the set of homogeneous classifiers and 
their weights to predict the class with the 
highest weight. 

Voting: It is the most intuitional method to 
combine heterogonous classifiers. Each 
base-level classifier casts a vote for its 
prediction, and then combines classifiers 
according to the plurality vote.   

Stacking: The Stacking method [28] uses 
two levels to combine heterogonous classifiers. 
In level-0, each heterogonous base-classifier 
predicts the probabilities for every class. And 
then it combines the different predictions of 
each base-classifier and class value into one 
vector for every training instance to form the 
meta-training set. This meta-training set is used 
to generate a meta-classifier in level-1. For 
testing, the base classifiers are first conducted 
for the probabilities of every class on the test 
instance. These form a meta-sample for the 
meta-classifier which predicts the final class.        

Grading: The Grading method [29] learns 
a meta-level classifier for each heterogonous 
base-level classifier. The meta-level classifier is 
used to predict whether the base-level classifier 
is to be trusted. Only the base-level classifiers 
that are predicted to be trustworthy are selected 
and then combined with their predictions to 
make final decision by the simple plurality 
vote. 

III. METHODS 

The framework of malware detection by 
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using machine learning is shown in Fig.2. In 
general, the working process can be split into 
two phases: training and testing. The goal of 
training phase is to generate classifiers for 
detection, and then evaluate the classifiers 
during testing phase. Detailed procedures for 
each functional block in Fig.2 are described in 
the following sections. 

 
Fig.2. Malware detection by machine learning. 

3.1 Samples Collection 

A few years ago, the purpose of malware 
was to cause major damage. The malware 
writer wanted to cause the most damages and 
gather the most media attention. In the last few 
years, the motivation of malware writers has 
shifted to profit-making [36]. As a result, 
malware is becoming more insidious. It will 
carry out its malicious activities without the 
user’s knowledge. In this paper, the malicious 
samples were collected according to current 
trends in malware. The focus is on those 
malware with insidious activities (such as 
keyloggers, password thieves, network sniffers, 
backdoors, stealth Trojans, spyware and rookits 
etc.), and not the ones with destructive 
behaviors (such as virus). 

Unlike intrusion detection systems (IDS) 
that all have a common database set (DARPA 
datasets [37]), no standard data sets are 
available to researches of malware detection. As 
a result, the researchers had to collect benign 
and malicious samples to establish the datasets 
manually. The benign samples were gathered 
from the Web site Softking 
(http://www.softking.com.tw). Those samples 
consisted of different categories of programs, 
such as graphic software, system tool, 
multimedia software, office tool and internet 

application etc. The malware samples from 
different sources were then obtained. They 
included the website AvpClub 
(http://www.avpclub.ddns.info/discuz 
/index.php), attachments of infected e-mails, 
and laboratories of related anti-virus 
organizations. A total of 1,200 samples were 
collected, including 400 malware and 800 
benign programs. After running through five 
popular anti-virus software products (Kaspersky, 
Symantec, Trend Micro, Spyware Detector and 
F-secure online) for verification, each sample 
was labeled either as malicious or benign. 

3.2 Features Extracting 

In our study, the content-based and 
behavior-based features were proposed and 
combined in order to take advantage of each 
feature. They are described below: 

3.2.1 Content-based features 

In comparison with N-grams and PE 
features, using strings as features offers the 
worst accuracy [17], although Ye et al. [16] 
proposed that using “interpretable string” to 
replace simple printable strings can improve 
accuracy. In [12], Lai et al. used four methods 
(frequency, glossary filter, support threshold, 
and frequency item sets) to select 100 most 
important strings as features for malicious 
detection. Their experimental results showed 
that the glossary method is slightly better than 
frequency method, but inferior to support 
threshold and frequency item sets. Moreover, 
no matter which method is used for selecting 
important strings, most of the selected strings 
are interpretable strings. So the system 
effectiveness of Ye et al. is possibly due to their 
use of Support Vector Machine ensemble 
bagging as classification algorithm, and not 
because of the selected interpretable strings as 
features. In [17], N-grams is better than strings, 
but N-grams approach incurs huge space 
problem and large overhead in pre-processing 
for features selection. In this paper, PE 
information was chosen as content-based 
features. Unlike Shafig et al. [17] who selected 
DLLs and computable fields from PE format as 
features of an executable, DLLs and API 
function calls were chosen in this study as 
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features. In addition to DLLs, API function 
calls were also identified because the 
researchers believed that the functions of a 
specific DLL are too wide to capture the exact 
intend and goal of an executable. The API is a 
function call for implementing a specific 
function. It is better than DLL in capturing the 
malicious purposes of an executable. 
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The Windows DLL/API function calls 
were identified as content-based features of an 
executable in this study. The reason behind the 
use of DLL/API is that the presence or absence 
of an informative API is related to the presence 
or absence of a certain action in the code of an 
executable. To extract such information from 
the import section of the file’s PE format, a 
program called GetFileAPIs was developed to 
parse the DLLs/APIs function calls used by an 
executable. The results were compared to a 
popular freeware called PEView [38] to 
ascertain the features extracted by this program 
are correct. The purpose of developing this 
program as a replacement of the tool PEView is 
to save processing time. This program can 
analyze all executables by batch mode, while 
PEView can only analyze executable one by 
one. After all collected executables were 
analyzed, 2682 distinct DLL/API function calls 
were identified. A feature vector was then 
generated for each sample. The feature vector 
comprised of 2682 Boolean values to represent 
whether or not an executable used a specific 
DLL/API. 

3.2.2 Behavior-based features 

For behavior-based features, 12 primary 
behaviors commonly seen in malicious 
executables from the knowledge of relevant 
experts were identified through group 
discussion. To dynamically capture the behavior 
features of an executable, VMWare [39], a 
virtual machine installed with Microsoft 
Windows XP operation system, was used as the 
test environment to run the executable. The 
advantage of using VMWare is that a clean 
snapshot of VMWare can be easily restored 
every time it needs to run a new executable. 
Each sample was executed in VMWare and 
investigated by some suitable sharewares to 
determine whether or not there is a specific 
existing malicious behavior. The behaviors and 

tools used to observe these behaviors are listed 
in Table 1. 

After all the samples were executed and 
traced, we found that some of them could not 
be executed properly. This may be due to 
incompatibility between different versions of 
operating system. In the end, a total of 980 
samples (benign: 696, malicious: 284) was 
executed. Each sample was represented by a 
12-Dimension feature vector.  

Table 1. Behaviors and tools used to observe them 
ID Behavior Description Tools 
F1 Packed PEiD [40] 
F2 Auto-Start AutoRuns [41] 
F3 DLL Injection ProcessExplorer [43]
F4 Modify system files FileMon [43] 
F5 Create execution file(s) FileMon 

F6 Hiding files RootkitRevealer [44]
IceSword [45] 

F7 Hiding registry entries RootkitRevealer 
IceSword 

F8 Hiding processes ProcessExplorer 
IceSword 

F9 Hiding services IceSword 
F10 Open port FPort [46] 
F11 Reinstallation after removal ProcessExplorer 
F12 Hook IceSword 

3.3 Features Reduction 

Since the number of extracted DLL/API 
features is fairly large, it is impractical to use all 
of them for training because most of them 
belong to noisy, redundant or irrelevant data. 
We need to choose a small, relevant and useful 
feature set from the entire large set. Many 
criteria have been proposed [3,13,14,21,23] to 
select the best features. In our work, we choose 
information gain as the selection criterion. The 
information gain of a feature F on a dataset S is 
given by Eq.(3): 

)()(),(
)(

v
FValv

v SEntropy
S
S

SEntropyFSIG ∑−=
∈

(3) 

Where Val(F) is the set of all possible 
values for feature F, and Sv is the subset of S for 
which feature F has value v. In our case, each 
feature has only two possible values, either 0 or 
1, representing the feature existed in the 
executable or not. Entropy(S) is computed using 
Eq.(4): 
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Where Pi is the proportion of instances 
belonging to class i in S, k is the total number of 
classes in S. 

In our pilot studies, we ranked each 
DLL/API by its information gain, and then 
selected the top 100, 200, 500,…, 2682 
DLLs/APIs to evaluate the performance of 
Naïve Bayes, Decision Tree, kNNs and SVMs. 
The results are shown in Fig.3.  
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Fig.3. Accuracy vs. size of DLLs/APIs. 

It can be seen that the best results were 
produced by selecting top 500 DLLs/APIs. A 
curve based on the information gain and rank of 
each DLL/API is shown in Fig.4. 

 
Fig.4. Information gain and rank of each DLL/API. 

It also shows that only top 500 DLLs/APIs 
were needed to generate a significant 
information gain. Based on the above 
perspectives, the top 500 DLLs/APIs were 
selected as content-based features of each 
sample. It was unnecessary to reduce 
behavior-based features, as the total number of 
such features was small. 

3.4 Datasets Creation 

To avoid the population number affecting 

the experimental results, four datasets were 
constructed (A, B, C, D) for the experiments. 
The datasets differed in the number of samples 
and malware percentage. Each dataset has three 
versions. The first version contains both 
content-based and behavior-based features, 
which means that each sample is represented to 
a 512-Dimension feature vector. The second 
and third versions contain only content-based or 
behavior-based features. Table 2 shows the 
properties of the datasets used in the 
experiments. 

Table 2. Datasets in our experiments 
Dataset Features #Samples 

(#Ben/#Mal) Mal%

A
A1 500 DLLs/APIs 

+ 12 behaviors 980 
(696 / 284) 30% A2 500 DLLs/APIs 

A3 12 behaviors 

B
B1 500 DLLs/APIs 

+ 12 behaviors 819 
(696 / 123) 15% B2 500 DLLs/APIs 

B3 12 behaviors 

C
C1 500 DLLs/APIs 

+ 12 behaviors 568 
(284 / 284) 50% C2 500 DLLs/APIs 

C3 12 behaviors 

D
D1 500 DLLs/APIs 

+ 12 behaviors 405 
(121 / 284) 70% D2 500 DLLs/APIs 

D3 12 behaviors 

3.5 SVM-AR 
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A new method, SVM-AR, was proposed in 
this paper. It combines SVM and association 
rules based on hierarchical taxonomies. The 
reason that SVM was selected as fundamental 
classifier of SVM-AR is explained below: 
According to the review of the related papers on 
the topic of malware detection using machine 
learning, it was found that Support Vector 
Machine, Decision Tree, Naïve Bayes, and k 
Nearest Neighbors are the most common 
classification algorithms used by researchers. 
This study then tested the overall accuracy of 
each algorithm in malware detection using the 
collected datasets. The results showed that NB 
is the worst classification algorithm. As a result, 
NB was deleted from the shortlist for its poor 
accuracy. Empirical studies showed that the 
accuracy improvement achieved using 
multi-classifiers is related to the diversity of 
classifiers. The diversity between DT and 
association rules didn’t meet this basic 
requirement, so DT was also deleted from the 
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shortlist. In the end, SVM was selected because 
it is superior to kNNs in algorithm efficiency, 
and it is most frequently used in related papers. 
Table 3 is a summary of the above descriptions. 
Apart from the reasons mentioned above, SVM 
is effective in resolving binary classification 
problems just like the one in this paper. 
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Table 3. A comparison sheet of popular  
  classification algorithms 

Algorithms 
Criteria SVM DT kNNs NB 

Classification  
accuracy Good Good Good Bad 

Diversity to  
association 
rules 

High Low High High 

Frequency 
used in the 
related 
researches 

High Medium 
~ High Medium Low 

Efficiency  
of algorithm Good Best Bad Good 

After the description of SVM method in 
the preceding section, The Association Rules 
and how to combine these two methods to 
improve the accuracy for classification will be 
described in this section. 

Let I = {I1, I2,…, In} be a set of items. The 
form of association rule is X→Y [s, c]. An 
association rule is an implication X=>Y, where 
X ⊆ I, Y ⊆ I, and X∩Y =Φ. s is the support rate 
of the rule, it represents the percent of the 
records in the dataset contain X∪Y. c is the 
confidence of the rule, it represents the percent 
of records in dataset which contain X also 
contain Y, i.e. 

DB
YXCounts )( ∪

=          (5) 

)(
)(

XCount
YXCountc ∪

=     (6) 

Where Count(X∪Y) returns the records in 
the dataset where X∪Y holds. |DB| is the 
number of records in the dataset. 

In this paper, we let X be a situation of 
behavior features, Y be a label of class. A 
minimum support and minimum confidence 
was given as thresholds to ensure that only 
those rules that appear with a high enough 
support and confidence, as specified, are 
retained. The rules generated look like this: 

(F2 = 1, F5 = 1, F11 = 1)  Class = 

Malicious [5%, 100%] 
(F1 = 0, F2 = 0, F6 = 0, F7 = 0, F10 = 0) 

 Class = Benign [1.6%, 100%] 
By referring to the ID of each behavior 

feature in Table 1, one can determine the 
meaning of the malicious rule. It means that if 
an unknown executable has the following 
behaviors (auto-start, create execution file(s), 
and reinstallation after removal), then it is 
malicious. The support and confidence of this 
rule are 5% and 100% respectively. The 
meaning of the benign rule is explained as 
follows: An unknown executable is un-packed, 
without auto-run setting, without hiding files 
and registries, and without opening any port, it 
is benign. The support and confidence of this 
rule are 1.6% and 100% respectively.  

Using Apriori [47] algorithm, one can 
obtain all the association rules with certain 
support and confidence values. The generated 
rules can be divided into two groups: 
Class=Benign for benign association rules, 
Class=Malicious for malicious association 
rules. 

Fig.5 shows how to integrate SVM and 
Association Rules into SVM-AR. Empirical 
studies show that the accuracy improvement 
achieved using multi-classifiers is related to the 
diversity of classifiers. SVM and Association 
Rules work in different manners and exploit 
different sets of features. By integrating them, 
the possibility of achieving better performance 
will be high. According to the hierarchical 
taxonomies in Fig.5, the concept of SVM-AR 
begins with the use of SVM to roughly divide 
executables into two areas, namely malicious 
and benign, by a global optimal hyper-plane. 
The false rate of SVM resulted from the false 
classification causes some of the executables to 
be in the wrong area. One can reduce this false 
rate by filtering out these false predictions with 
local optimal method. Here, SVM-AR uses the 
related association rules to filter out the 
suspicious executables. It can filter out false 
negative executables by using malicious 
association rules, and false positive executables 
by using benign association rules. Those 
association rules are induced from common 
behavior patterns of malicious/benign 
executables. 
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Fig.5. The architecture of SVM-AR. 

There are two questions needed to be 
answered: First, can one guarantee that 
SVM-AR will be better than other algorithms? 
The answer is that the basic assumption of 
SVM-AR is not to reveal any executables that 
meet the benign rules within malicious 
boundary determined by Support Vector 
Machine. In the same way, the executables 
within benign boundary should not meet any 
malicious rules. The best case is that one can 
filter out all misclassified samples by some 
association rules. The general case may be that 
some misclassified samples can not be filtered 
out as they may not fulfill any of the association 
rules. However, the overall accuracy will still 
be improved because certain false positive and 
false negative samples have been filtered out by 
the association rules. Second, is it possible that 
some correct classified samples are also filtered 
out by the association rules; hence the overall 
accuracy will be reduced and not improved? 
The answer is that this can only happen in two 
situations. The first situation is where a benign 
executable is classified correctly by Support 
Vector Machine but fulfill a specific malicious 
rule. This situation should not happen as a 
benign executable usually does not have a 
strong pattern of malicious behaviors. Another 
situation is where a malicious executable is 
classified correctly by Support Vector Machine 
but fulfills a benign rule. This situation is likely 
to take place because the malicious behaviors 
may go by undetected under our eyes (this is 
the instinctive drawback for behavior analysis). 
However, the probability should be very low, as 
some malicious behaviors may slip through, but 

to fail in observing all malicious behaviors of a 
malicious executable will be near impossible. 
As long as one can observe one or two 
malicious behaviors of an unknown executable, 
this executable will not meet any benign rule. 
We believe that SVM-AR should improve 
classification accuracy based on the above 
analysis. To prove this inference, additional 
experiments were conducted in this study and 
they yielded the expected results as shown in 
section IV.  

Unknown 
Executable 

M: Malicious 
B: Benign 

3.6 Measured Metrics 

For evaluation purpose, we used the 
Overall Accuracy (OA), Detection Rate (DR), 
and False Positive Rate (FPR) as measured 
metrics. OA is the percentage of true 
classifications over all test samples. DR is the 
percentage of total malicious programs which 
were labeled as malicious. FPR is the 
percentage of benign programs which were 
labeled as malicious. The equations are shown 
as follows:  

100%
FNFPTNTP

TNTPOA ×
+++

+
=       (7) 

100%
FNTP

TPDR ×
+

=                (8) 

100%
TNFP

FPFPR ×
+

=              (9) 

Where, 
TP (True Positives): the number of 

malicious samples classified as malicious. 
FP (False Positives): the number of benign 

samples classified as malicious. 
FN (False Negatives): the number of 

malicious samples classified as benign. 
TN (True Negatives): the number of 

benign samples classified as benign. 

IV. RESULTS AND DISCUSSION 

In this section we begin by describing the 
experimental environment. Weka [48] and 
LIBSVM [49] were used in this study to 
perform experiments with different learning 
algorithms. All experiments were executed on a 
PC that runs on Windows XP operating system 
(SP2), with a Intel Pentium4 CPU and 512M of 
RAM.  

M 

Y 

N 

Y 

B 

N 

SVM 
Match any 
malicious 

association 
rule? 

B M 
Match any 

benign 
association 

rule?
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In order to evaluate the generalized 
accuracy, the 10-fold cross-validation procedure 
was repeated 3 times for all experiments. The 
obtained experimental results are presented and 
discussed in the following sections.  

4.1 Features Effect 

Table 4 shows the overall accuracy for 
applying each individual algorithm on four 
datasets.  
Table 4. Overall accuracy for using different features 

Dataset Naïve 
Bayes SVM kNNS DT OneR

A 

A1 74.56% 92.88% 93.49% 92.63% 88.64%

A2 73.63% 87.99% 90.97% 91.53% 86.94%

A3 87.59% 90.72% 90.23% 91.53% 88.64%

B 

B1 77.55% 93.67% 92.14% 92.07% 83.37%

B2 76.97% 88.64% 89.49% 91.80% 76.94%

B3 85.10% 86.60% 85.78% 87.04% 83.37%

C 

C1 78.99% 88.61% 89.55% 88.32% 75.35%

C2 78.52% 83.10% 85.03% 85.68% 75.35%

C3 77.82% 81.21% 79.57% 82.04% 72.71%

D 

D1 81.59% 85.60% 91.93% 89.63% 73.44%

D2 79.52% 84.20% 83.70% 86.25% 73.44%

D3 71.44% 75.96% 77.96% 78.02% 69.31%

It can be seen that the combination of both 
content-based and behavior-based features can 
improve the accuracy for SVM, KNNs, and 
Decision Tree in each dataset, but not work well 
for Naïve Bayes and OneR. OneR uses the 
minimum-error feature for prediction; this 
feature can be either content-based or 
behavior-based. Therefore, it just retains its 
original accuracy. Naïve Bayes uses Eq.(1) to 
compute posterior probability of each class, 
thus the combined features can not guarantee 
accuracy improvement. For SVM, kNNs and 
Decision Tree, the combination of 
content-based and behavior-based features will 
give more information to each sample. 
Therefore, applying these algorithms can 
generate more appropriate models for 
classification. In successive experiments, 
datasets that contain both features were used to 
represent executables. 

4.2 Ensemble vs. Individual Learning 

Table 5 shows the experimental results of 
overall accuracy of all ten algorithms based on 
4 datasets.  

Table 5. Rank for each algorithm 

Algorithm
Datasets 

Avg. Rank
A1 B1 C1 D1 

NB 74.56% 77.55% 78.99% 81.59% 78.17% 10

SVM 92.88% 93.67% 88.61% 85.60% 90.10% 8

kNNs 93.49% 92.14% 89.55% 91.93% 91.78% 5

DT  92.63% 92.07% 88.32% 89.63% 90.66% 6

OneR 88.64% 83.37% 75.35% 73.44% 80.20% 9

Voting 94.22% 93.98% 88.32% 86.10% 90.66% 6
Bagging 
DT 94.42% 92.93% 91.08% 91.35% 92.45% 4

Boosting 
DT 95.15% 94.80% 92.60% 93.33% 93.97% 1

Stacking 94.87% 94.42% 90.49% 91.27% 92.76% 3

Grading 94.59% 94.29% 91.84% 91.85% 93.14% 2

In our work, bagging and boosting were 
performed on decision tree for 10 times. The 
ensemble algorithms, including voting, stacking 
and grading, used NB, SVM, kNNs, DT and 
OneR as their base learning algorithms. The 
average accuracy of each algorithm was 
calculated and ranked based on 4 datasets. It 
can be seen that the degree of accuracy of 
ensemble learning algorithms was higher than 
the individual algorithms. 

4.3 The Performance of SVM-AR  

The performance of SVM-AR is illustrated 
in Figs.6-8. We tested on four datasets (A1, B1, 
C1, and D1) to avoid the data affecting the 
performance. It can be seen that SVM-AR 
outperforms nearly all popular ensemble 
learning algorithms at overall accuracy, 
detection rate and false positive rate in each 
case. Fig.7 and Fig.8 show that the malware’s 
percentage in the dataset affects the detection 
and false positive rate. Except SVM-AR, most 
of the algorithms didn’t perform well on false 
positive rate in the datasets with higher 
percentage of malware. The reason is that most 
of the algorithms tend to misclassify the 
instances of the less represented class, leading 
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to high false positive rate. However, SVM-AR 
can reduce the false positive rate by applying its 
association rules on the malicious side 
separated by a SVM.  
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In general, the execution time of an 
ensemble algorithm is longer than an individual 
algorithm in both phases. It is because the 
ensemble learning algorithms must generate 
multi-classifiers during the training phase and 
combine the predictions of multi-classifiers to 
make the final decision. The boosted DT and 
bagging DT in testing execution time are 
exceptions. They are even better than some 
individual algorithms. The reason is that the 
time to execute decision tree for testing is 
negligible, hence the time needed to run it 
several times is still very short. 

popular ensemble algorithms. 

4.4 Execution Time 

Figs.9-10 show the execution time used by 
each of the aforementioned algorithm during 
the training and testing phase. 

The training execution time for SVM-AR 
is longer than most of the algorithms. The 
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reason is that it uses Apriori scheme to identify 
the related association rules, which is a time 
consuming process. However, SVM-AR’s 
testing execution time is better than most of the 
ensemble algorithms. It is because the time for 
applying association rules to test samples is 
negligible, the testing time of SVM-AR is 
dominated the execution time of SVM. 
Therefore, it makes SVM-AR even comparable 
to individual learning algorithm. 
Practically speaking, once the detection model 
is generated from training phase, it didn’t need 
to retrain the model for each test case. Thus, 
testing time is more critical than training time 
for machine learning application. From this 
viewpoint, our method, SVM-AR, is very 
efficient in terms of execution time. 

V. CONCLUSIONS 

Machine learning can be used to detect 
new and unknown malware. However, the 
limitation of this technique is its high false rate. 
The performance of machine learning is 
influenced by two main factors: features and 
algorithms. In this research, we set out to 
improve the precision of machine learning 
through these two factors. The conclusions 
drawn from the experimental results are: 
(1) Content-based and behavior-based features 

are complementary to each other. 
Combining both of them can improve the 
overall accuracy of malware detection for 
most of classification algorithms. 

(2) In general, ensemble learning algorithms 
outperform individual learning algorithms in 
accuracy, but at a cost of longer execution 
time. 

(3) A new ensemble learning model, SVM-AR, 
was proposed in this article. The 
experimental results revealed that SVM-AR 
offers a better performance than other 
well-known ensemble algorithms in terms of 
accuracy, detection rate, and false positive 
rate. Moreover, SVM-AR is comparable to 
any individual learning algorithm in test 
execution time.  

The limitation in this research is the 
analysis process used to detect unknown 
executables’ dynamic behaviors within a 
VMWare environment with certain sharewares. 
As a result, this study was forced to adopt a 

semi-automated approach, even though the 
efficiency of SVM-AR, a hybrid classification 
algorithm proposed by this study, is promising 
in real-time malware detection. Future work 
should focus on how to conduct similar 
classification processes in an automated 
manner. 
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