

A 4,5-Secolanostane Triterpenoid from the Sclerotium of *Poria cocos*

Hang-Ching Lin^{1,2*}, Yi-Yang Song², Yu-Chuan Huang³, and Wen-Liang Chang^{2*}

¹R & D Center, Sinphar Pharm. Co., Ltd, I-Lan;
²School of Pharmacy;

³Graduate Institute of Life Sciences, National Defense Medical Center, Taipei,

Taiwan, Republic of China

A 4,5-seco-lanostane triterpenoid, daedaleanic acid A, together with six known compounds, was isolated for the first time from the sclerotium of *Poria cocos* (Schw.) Wolf (Polyporaceae). Their structures were identified by comparing their spectral data with the literature values or that of authentic samples.

Key word: Poria cocos; 4,5-seco-lanostane; daedaleanic acid A

Fu-Ling, or Hoelen, the dried sclerotium of the fungus Poria cocos (Schw.) Wolf (Polyporaceae) devoid of its surface layer, has been used in combination with other drugs in more than 2000 traditional Chinese prescriptions that are generally used as a diuretic, sedative, diabetic, and tonic medicines in varied dosage forms. In addition, it induces relaxation of the intestine, protects against ulcer formation, reduces the acidity of gastric juice and has antinephritic and anti-emetic effects.2-3 It is also reported to have an antineoplastic effect and anti-inflammatory

activity.²⁻⁴ Note, in China and Japan, the surface of the sclerotia is usually removed and only the inner part is used as "Fu-Ling". It has been reported to contain several

Fig. 1 Structure of triterpenoids isolated from *Poria cocos*.

Received: March 1, 2010; Revised: September 16, 2010; Accepted: September 21, 2010

*Corresponding author:

Hang-Ching Lin, R & D Center, Sinphar Pharm. Co., Ltd, Tel: +886-3-9581101, Fax: +886-3-9583040, E-mail: lhc@sinphar.com.tw.

Wen-Liang Chang, School of Pharmacy, National Defense Medical Center, No.161, Sec. 6, Min-Chuan East Road, Taipei 114, Taiwan, Republic of China. Tel: +886-2-87923100 ext. 18879, Fax: +886-2-87923169, E-mail: wlchang@ndmctsgh.edu.tw

triterpenoids of the lanostane type isolated from the inner part and 3,4-*seco*-lanostane type from the surface part of *P. cocos*.⁵⁻¹¹ Being interested in exploring biologically active components from Chinese herbs, we examined the polar fraction of this fungus.

The MeOH-soluble parts of the 95% ethanol extract in the dried sclerotium of the fungus *P. cocos* were subjected to silica gel column chromatography, yielding seven known triterpenoids. The known compounds (see Figure 1) were identified as daedaleanic acid A (1), ¹³ pachymic acid (2), ^{5,6} tumulosic acid (3), ^{5,6} polyporenic acid C (4), ⁵ 3-epidehydrotumulosic acid (5), ⁷ a mixture of pachymic acid (2) and dehydropachymic acid (2a), ^{5,6} a mixture of tumulosic acid (3) and dehydrotumulosic acid (3a) ^{5,6} by comparing their spectral data with the reported values or with that of authentic samples.

Fig. 2 Postulated biogenetic pathways of 1 from polyporenic acid C (4).

Note, the novel 4,5-seco-lanostane triterpenoid, dae-daleanic acid A (1), previously only 3,4-seco-lanostane triterpenes as poricoic acid A (6) reported from the surface layer of *P. cocos*, was isolated for the first time from this fungus¹² and independently identified by Yoshikawa's laboratory, isolated from *Daedalea dickisii*. The possible biogenetic pathway of daedaleanic acid A (1) may be converted from polyporenic acid C (4) in figure 2.

The structure of daedaleanic acid A (1) was further supported by mass spectrum, a base peak at m/z 449 [M⁺-CH₃-H₂O] and prominent peaks at m/z 467 [M⁺-CH₃], 464 [M⁺-H₂O], 403 [M⁺-CH₃-H₂O-HCOOH], and 363 [M⁺-CH₃-H₂O-CH₂COCH(CH₃)₂] also indicated compound 1 has a hydroxy-4,5-*seco*-lanostane skeleton as well as a benzene moiety in ring B, as depicted in figure 3.

Extraction and Isolation: The dried sclerotium of the fungus $P.\ cocos\ (10.0\ kg)$ was extracted with 95% ethanol (50 L × 2) at room temperature. The combined extract was concentrated under reduced pressure to yield a brown syrupy mass (80.71 g). This crude extract was dissolved in 95% MeOH/H₂O and then partitioned (1:1) with n-hexane to obtain n-hexane soluble fraction (2.13 g). The 95% MeOH layer was concentrated to obtain a MeOH-soluble fraction (78.58 g). The MeOH soluble fraction was subjected to column chromatography over a silica gel (70-230 mesh) using CH₂Cl₂-MeOH step gradient mixtures (0-20%) as eluents yielded pachymic acid (2, 0.43 g), tumulosic acid (3, 1.68 g), a mixture

of pachymic acid (2) and dehydropachymic acid (2a), a mixture of tumulosic acid (3) and dehydrotumulosic acid (3a), polyporenic acid (4, 0.35 g), 3-epidehydrotumulosic acid (5, 0.38 g) and daedaleanic acid A (1, 7.0 mg).

Daedaleanic acid A (1): white powder; $\begin{bmatrix} \\ \end{bmatrix}_D^{26} + 14.0^\circ$ (c 0.4, pyridine); UV (MeOH) max (log): 271 (4.20) nm: IR (KBr) max: 3407, 2957, 1705, 1690, 1638, 1457, 1380, 1266, 1071, 1014, 890, 814 cm⁻¹; EI-MS *m/z* (rel. int. %) 482 ([M]⁺, 12), 464 (13), 449 (100), 431 (24), 421 (15), 403 (37), 396 (23), 378 (16), 295 (35), 270 (23), 222 (26), 207 (25), 183 (48), 169 (37), 157 (28), 143 (20), 69 (18), 55 (30); ¹H NMR (C₅D₅N, 500 MHz) 0.98 (3H, d, J = 6.3 Hz, H-26), 0.99 (3H, d, J = 6.3Hz, H-27), 1.02 (6H, d, J = 7.2 Hz, H-28, 29), 1.03 (3H, s, H-18), 1.58 (3H, s, H-30), 2.25 (3H, s, H-19), 2.91 (1H, m, H-20), 2.95 (1H, m, H-17), 4.62 (1H, br s, H-16), 4.84, 4.98 (each 1H, brs, H-31), 6.95 (1H, d, *J*= 7.7 Hz, H-7), 7.06 (1H, d, J = 7.7 Hz, H-6); ¹³C NMR (CDCl₃, 125 213.4 (s, C-3), 178.6 (s, C-21), 156.1 (s, C-24), 145.9 (s, C-8), 138.0 (s, C-10), 133.3 (s, C-9), 133.1 (s, C-5), 128.1 (d, C-6), 123.1 (d, C-7), 107.0 (t, C-31), 76.7 (d, C-16), 57.3 (d, C-17), 49.4 (s, C-14), 48.7 (d, C-20), 45.4 (s, C-13), 45.1 (t, C-15), 40.9 (d, C-4), 39.1 (t, C-2), 34.1 (d, C-25), 33.2 (t, C-23), 31.4 (t, C-22), 29.7 (t, C-12), 29.3 (q, C-30), 23.8 (t, C-1), 23.4 (t, C-11), 22.0 (q, C-26), 21.9 (q, C-27), 19.7 (q, C-19), 18.4 (q, C-29), 18.3 (q, C-28), 18.0 (q, C-18); HREIMS m/z 482.3386 (calcd for $C_{31}H_{46}O_4$ [M]⁺ 482.3396).

Fig. 3 Major fragmentation process for compound 1.

REFERENCES

- 1. Chang HM, But Paul PH. Pharmacology and Application of Chinese Materia Medica. Vol. 2. World Scien-
- tific, Singapore 1987:875-877.
- 2. Huang KC, The Pharmacology of Chinese Herbs, 2nd, CRC Press LLC, 1999, pp 156-157.
- 3. Hattori T, Hayashi K, Nagao T, Furuta K, Ito M,

- Suzuki Y. Studies of antinephritic effects of plant components (3). Effects of pachyman, a main component of *Poria cocos* Wolf on original-type antiGBM nephritis in rats and its mechanism. Jpn J Pharmacol 1992;59:89-96.
- 4. Tai T, Akahori A, Shingu T. Triterpenoids from *Poria cocos*. Phytochemistry 1991;30:2796-2797.
- Tai T, Shingu T, Kikuchi T, Tezuka Y, Akahori A. Isolation of lanostane-type triterpene acids having an acetoxy group from sclerotia of *Poria cocos*. Phytochemistry 1995;40:225-231.
- 6. Kanematsu A, Natori S. Triterpenoids of Hoelen (Fuling), sclerotia of *Poria cocos* Wolf. II. 3 Hydroxylanosta-7,9(11),24-trien-21-oic acid. Chem Pharm Bull 1992;18:779-783.
- 7. Tai T, Shingu T, Kikuchi T, Tezuka Y, Akahori A. Triterpenes from the surface layers of *Poria cocos*. Phytochemistry 1995;39:1165-1169.
- 8. Tai T, Akahori A, Shingu T. A lanostane triterpenoid from *Poria cocos*. Phytochemistry 1992;31:2548-2549.

- Ukiya M, Akihisa T, Hirano M, Oshikubo M, Nobukuni Y, Kimura Y, Tai T, Kondo S, Nishino H. Inhibition of tumor-promoting effect by poricoic acid G and H and other lanostane-type triterpenes and cytotoxic activity of poricoic acids A and G from *Poria cocos*. J Nat Prod 2002;65:462-465.
- 10. Tai T, Akahori A, Shingu T. Triterpenes of *Poria cocos*. Phytochemistry 1993; 32:1239-1244.
- 11. Tai T, Akita Y, Kinoshita K, Takahachi K, Watanaba K. Anti-emetic principles of *Poria cocos*. Planta Medica 1995;61:527-530.
- 12. Song IY. Studies on the Chemical Constituents and Biological Activities of *Poria cocos* (II). M.S. Thesis; National Defense Medical Center, Taipei, Taiwan, Republic of China. 2004 Jun.
- Yoshikawa K, Kouso K, Takahashi J, Matsuda A, Okazoe M, Umeyama A, Arihara S. Cytotoxic Constituents of the fruit body of Daedalea dickisii. J Nat Prod 2005;68:911-914.