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INTRODUCTION

Haemopoietic stem cell transplantation (HSCT) is a curative therapy for severe haematological disorders. It was fi rst car-
ried out successfully ~50 years ago. With technological advances, HSCT has expanded rapidly over the past 20 years.1,2 
Current indications for HSCT include leukaemias, lymphomas, solid tumours (e.g. neuroblastomas), severe combined 
immunodefi ciencies, inborn errors of metabolism, autoimmune diseases and severe anaemias.1-3 HSCT is now provided to 
~70,000 patients p.a. worldwide. In the UK, approximately 3,000 HSC transplants are performed p.a. (www.bsbmt.com), 
contributing to ~25,000 p.a. across Europe.1-4 Of those HSCT provided worldwide, ~70-80% have autologous or related 
allogeneic HSCT. The remainder have unrelated HSCT, of which almost 20% are sourced from unrelated umbilical cord 
blood (UCB) donations in the USA and 50% in Japan.4 Despite signifi cant advances, overall survival following HSCT can 
vary because of disease relapse, engraftment failure, infections and Graft versus Host Disease (GvHD).5,6 
In this review, we describe the current use, advantages and limitations of UCB for HSCT, principally concentrating on 
unrelated allogeneic UCB units. However, UCB and the umbilical cord (UC) also contain other stem/progenitor cells (e.g. 
mesenchymal stem cells (MSC)) and hence we extend our discussions to these describing their potential therapeutic use 
in HSCT and regenerative medicine.

Key Words: umbilical cord blood, stem cells, mesenchymal stem cells, GvHD, infections, engraftment, expansion, tissue 
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HAEMOPOIETIC STEM CELLS (HSC) FROM 
UMBILICAL CORD BLOOD FOR HSC TRANS-
PLANTATION

UCB was fi rst successfully transplanted in 1988 in a 
child with Fanconi’s anaemia using an HLA-identical 

sibling UCB.7 It is now well accepted as an alternative 
source of allogeneic HSC for certain disease indications.3-17 
As well as unrelated donations, directed allogeneic dona-
tions from family members, especially when they pro-
vide a disease free identical HLA-matched UCB dona-
tion through pre-natal HLA typing and genetic screening, 
are most often used for the treatment of siblings suffering 
from such inherited isorders as haemoglobinopathies.11-15 
The resulting matched directed sibling donor transplants 
generally demonstrate less GvHD then matched unre-
lated donations.11-15  

Advantages of UCB over BM and peripheral blood 
stem cells (PBSC) include less stringent HLA matches, 
reduced GvHD, lack of donor attrition, urgent provision 
and ready accessibility of viral pathogen free and HLA 
typed HSC, especially for those from ethnic minority 
groups where finding matched HSCs can be difficult, 
although high cell dose and HLA matching are impor-
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tant indicators of outcome.13-18 However, engraftment of 
UCB HSCs is ineffi cient, with each UCB unit containing 
limited HSC numbers, delays in haematological reconsti-
tution and increased risks of viral infections post HSCT 
with UCB. Other disadvantages include the lack of donor 
lymphocytes for enhancing a graft versus malignancy 
effect or to combat infections and in the case of tandem 
transplants, the lack of a back-up HSC donation. With 
HSCT increasing worldwide, with predicted doubling 
of the usage of UCB in HSCT in adults and with signifi -
cant technological advances, the trend now is for more 
personalised treatments to fit patient need.3,4,15-17 Thus, 
there is still a need to increase the effi cacy of the HSCs 
available for HSCT by reducing engraftment failure rates 
through a better understanding of the control of stem cell 
fate, improving homing and engraftment, identifying and 
targeting the malignancy initiating stem-like cells and 
regulating the immune response to control GvHD and 
viral infections which contribute significantly to graft 
failure and poor survival. 

ADVANCES IN UCB HSC TRANSPLANTATION

HLA matching and cell dose
HLA matching is important to the outcome of alloge-

neic HSCT, with GvHD being a serious consequence of 
mismatches between donor and recipient in the unrelated 
allogeneic setting especially with BM and PBSC where 
10/10 HLA allele matching is sought at 5 loci – HLA-A,  
-B, -C, -DR and –DQ.17 Since HLA matching is consid-
ered less important in UCB HSCTs, more mismatched (at 
1-2 loci) UCB HSCT have been performed, but limited 
cell dosages in such single UCB units can further con-
tribute to delays in engraftment and subsequent effects 
on early survival post transplant. UCB units are most 
often selected for 3 HLA loci based on high resolution 
matching at the allelic level for HLA-DRB1 and at low-
intermediate HLA-A and –B resolution. Studies have 
indicated that to achieve >50% survival, cell dosages of 
>2.5x107 and >5x107 per kg recipient body weight were 
required for 5/6 and 4/6 mismatched UCB grafts respec-
tively.17 Conclusions from 1,061 single UCB myeloabla-
tive transplants for patients with leukaemia or myelodys-
plasia (given adequate TNC (total nucleated cells) were i) 
faster neutrophil engraftment with HLA-matched grafts; 
ii) no difference in time to neutrophil engraftment be-
tween 5/6 or 4/6 HLA-mismatched grafts; iii) there was 
a lower incidence of grade 3-4 acute GvHD in matched 
grafts; and iv) lower transplant related mortality (TRM) 
correlated with higher pre-cryopreservation TNC and 

better HLA matching, without increased relapse rates.17 
Other studies5,6 revealed that, in children receiving 4/6 
and 5/6 mismatched UCB transplants for leukaemia, in-
fusion of >3x107 TNC per kg recipient body weight pro-
vided similar outcomes to those receiving matched BM. 

As cell dosage can partially overcome the adverse 
effects of HLA mismatch, Smith and Wagner8 have 
recently defined the adequacy of UCB cell dosage for 
HSCT as a TNC/kg recipient body weight of >3×107 for 
6/6, >4×107 for 5/6 and >5×107 for 4/6 HLA matched 
cord blood units. Based on these cell doses, the follow-
ing recommendations were made recently8,9 for sourc-
ing cells for unrelated allogeneic HSCT: (i) selection of 
cells from UCB, BM or PBSC based on patient need as 
judged by the transplant physician treating the patient; 
(ii) for malignant disease, a 6/6 HLA matched UCB with 
an adequate cell dose (as above) for both children and 
adults as the fi rst choice, with an 8/8 HLA matched unre-
lated BM or PBSC harvest or a 5/6 or 4/6 HLA matched 
UCB as the second choice but the decision would be 
based on cell dose, the urgent need for a transplant, and 
the future requirements for tandem transplants or donor 
lymphocyte infusions; and (iii) for non-malignant dis-
orders, there was no defi nite recommendation although 
the gold standard was cited as an 8/8 HLA BM for both 
children and adults, or PBSC harvest in adults, with the 
next choice suggested as an adequate dose of 6/6 or 5/6 
HLA matched UCB unit. Eurocord data have recently 
suggested that, for non malignant conditions, HLA dis-
parity affects engraftment, GvHD, survival and TRM and 
have recommended a cell dose of >3.5x107 TNC per kg 
recipient body weight when treating such patients.17 and ref-

erences therein Additionally, some investigators have indicated 
that CD34 dose is an important predictor of UCB HSCT 
outcome and time to neutrophil recovery, but this is not 
often used as one of the routine selection criteria.14 and refer-

ences therein

Unlike BM HSCT, few data exist on the positive ef-
fects of high-resolution HLA matching in the UCB 
setting,19,20 although recent studies21 suggest faster neu-
trophil, but not platelet, recovery with Class I HLA-B 
(but not Cw) matching of single or double UCB units. It 
has been hypothesised that HLA-B may act as a target 
for NK cell KIR receptors22-24 and that such mismatching 
results in selective killing of the donor UCB cells. Ad-
ditionally, HLA Class II (DR) mismatching in the double 
UCB HSCT setting correlates with grade II-IV acute 
GvHD.19-24 

Improving UCB HSC engraftment
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Limited cell numbers have presented a significant 
problem in unrelated allogeneic UCB HSCT in adults. 
The most obvious way to enhance haematological re-
constitution, determined as the time to peripheral blood 
neutrophil and platelet recovery, is to increase the 
numbers of UCB haemopoietic stem/progenitor cells 
transplanted. For unrelated UCB allogeneic transplants, 
strategies to improve engraftment include enhancing the 
homing mechanisms and fate determination in the BM 
niche, transplantation of two UCB units, direct injection 
of HSC into the BM and ex vivo expansion of UCB HSC 
using exogenous cytokines. The use of double unrelated 
UCB HSCT in adults has extended their use in patients 
up to 75 years of age.14,25 However, even with 2 UCB 
HSCT into one recipient, one UCB often engrafts long 
term in preference to the other.14,26 These new transplant 
approaches have complemented the increased clinical ex-
perience in UCB HSCT in terms of patient conditioning, 
time of UCB administration, disease type and status etc 
and an improved understanding the importance of UCB 
quality.14,27,28 

Ex vivo expansion of UCB HSC has been attempted 
with various cytokine cocktails, chimaeric cytokine/
cytokine receptors or soluble transcription factors (e.g. 
TPO, FLT3L, SCF, IL6Rα, Notch ligands, AngptLP, 
HoxB4).14,29-38 Many of these have not significantly or 
safely expanded HSCs without their differentiation. For 
example, a recent phase I myeloablative double UCB tri-
al using ex vivo Notch-ligand treated UCB HSC showed 
enhanced neutrophil but not platelet recovery and insig-
nificant expansion of long-term repopulating HSCs.4,38 
Although initially promising and although this technique 
may reduce the severity of GvHD at least with single 
UCB HSCTs, intrabone injections do not appear to have 
improved engraftment outcomes in the double transplant 
setting.14,39 Another approach has been to supplement 
single or double UCB transplants with mobilised periph-
eral blood CD34+ cells or third party mesenchymal stem/
stromal cells (MSCs).14,40,41 

MSCs in UCB and UC. Can these benefi t UCB HSCT 
and tissue repair?

MSCs, which are found in the BM, placenta, UCB 
and the UC, are thought to suppress GvHD following 
HSCT and may enhance HSC engraftment.14,40-42 They 
may also contribute directly to tissue repair (e.g. of the 
vasculature, bone, cartilage) or act in a paracrine, endo-
crine or anti-inflammatory manner (e.g. by promoting 
revascularisation or the proliferation of endogenous stem 
cells, limiting scarring or apoptosis, or modulating tissue 

remodelling, without necessarily replacing the damaged 
tissue itself).43-46 and references therein Other stem/progenitor cell 
types including endothelial progenitors,47,48 multipotent 
USSC (unrestricted somatic stem cells),49 and VSEL (very 
small embryonic-like) stem cells have also been de-
scribed in UCB.50 MSCs represent a special case because 
their therapeutic potential in immunomodulation during 
HSCT and for tissue repair has been well described, at 
least when sourced from BM.45,51 The remainder of this 
review will concentrate on MSCs especially those de-
rived from UC.

Defi nition of MSCs
BM MSCs were the fi rst characterised as plastic ad-

herent fibroblastoid-like cells expressing CD90, CD73 
and CD105, but not CD14, CD11b, CD79, CD34, CD45 
or HLA-DR, with the ability to generate clonogenic 
fibroblastoid colony forming umits (CFU-F), and to at 
least differentiate into adipogenic, chondrogenic and 
osteogenic lineages in vitro.52,53 and references therein Sarugaser 
et al.54 have recently defined the most primitive MSCs 
more stringently as those multipotent cells with clonal 
single cell derived self-renewing activity and the ability 
to generate at least 5 lineages, viz. fat, cartilage, bone, 
muscle, and fi broblastic lineages (tendon, ligament and 
stromal). The BM stromal cells55 can for example support 
haemopoiesis or suppress GvHD.14,40,41,42,45 Despite this, 
the MSC terminology has generally been loosely used to 
encompass both self-renewing stem cells with the abil-
ity to form multiple lineages and heterogenous cultures 
of cells with a fi broblastic phenotype and with differing 
capacities to generate multiple lineages, particularly fat, 
bone and cartilage, and often without an explicit dem-
onstration of their self-renewal potential.52 Here, we will 
use the term MSC to refer to both the mesenchymal stem 
cells and their progeny often called mesenchymal stromal 
cells, but will attempt to distinguish these cells by their 
known functional capacities.

MSC tissue distribution
Originally identified in BM where they occur at a 

clonogenic frequency of 1 in 104-105 mononuclear cells, 
MSCs with multipotent properties at least in vitro are 
also found in the fetal circulation being particularly 
prevalent in the fi rst trimester of pregnancy, in fetal and 
adult tissues, UC and mid-gestation amniotic fluid.56-68 
It is generally accepted that MSCs from earlier stages of 
ontogeny have a higher proliferative ability and greater 
functional capacities. Recently, the perivascular niche has 
been suggested as the potential site of origin of MSCs 
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in many organs56,57 (although this is not universally ac-
cepted60) and it has been proposed that under homeostatic 
conditions, although multipotent, such perivascular cells 
(PVCs) by default generate stromal cells for the organ 
of origin rather than multiple lineages. An example is 
the adventitial reticular cells or CD146+ osteoprogenitor 
cells which are closely associated with the sinusoidal en-
dothelium in the BM where their main purpose is to reg-
ulate haemopoiesis.68 Since only ~10-65% of UCB units 
generate MSCs in culture69 and since MSCs from UCB 
and UC may share a common UC perivascular origin,54,70 
the UC has been examined as an alternative non-invasive 
source of MSCs of consistent donor age. Furthermore, 
many of the standards that regulate the collection and 
banking of UCB for HSCT also translate into the collec-
tion of the UC. 

MSCs from the UC – Wharton’s jelly versus perivas-
cular cells

The UC at term contains two arteries and a vein sur-
rounded by a connective tissue matrix or Wharton’s 
jelly.71 The vein has been generally used to source UC 
endothelial cells,47,48 while Wharton’s jelly and UC PVCs 
have been the main source of UC MSCs.70-77 

The isolation and characteristics of Wharton’s jelly 
MSCs have been reviewed recently.71 and references therein Isola-
tion methods include i) removal of UC vessels before 
the Wharton’s jelly is taken and digested enzymatically 
with either collagenase/trypsin or hyaluronidse/collge-
nase/trypsin before culture, ii) by generating MSCs from 
explants of Wharton’s jelly and amniotic membrane 
without enzymatic digestion and iii) by cryopreservation 
of 1cm segments of Wharton’s jelly in heat inactivated 
autologous UCB plasma containing 10% DMSO prior 
to subsequent culture.64,69,71,72,74,76 As a whole cell popula-
tion, Wharton’s jelly MSCs share some but not all char-
acteristics with BM MSCs. They resemble BM MSCs in 
their expression of CD90, CD105, CD73, CD13, CD29, 
CD10, CD13, CD49e, CD51, CD166, CD44 and HLA-
A,-B, -C and –G, but lack of expression of CD45, CD14, 
CD56, CD31 and CD34 and are reported to be HLA 
DR+.71,72,76 In our own studies, we detected CD146 on 
almost 40% of UC PVC but not of the majority of Whar-
ton’s jelly MSCs.75

A major issue in comparing MSCs from different tis-
sues is in defining their relative functionality and their 
side-by-side ability to differentiate, to modulate immune 
and inflammatory responses, to support haemopoiesis 
or vasculogenesis, and to self-renew.60 Wharton’s jelly 
MSCs have been reported to form osteoblasts, chon-

drocytes, adipocytes, cardiomyocytes, hepatocytes, 
pancreatic, endothelial and neural like cells, to support 
haemopoiesis and to modulate immune responses.42,44,

64,66,69,71,72,74-80 and references therein Reports are conflicting and 
some studies suggest that Wharton’s jelly MSCs more 
closely resemble UCB MSCs than BM MSCs in their 
reduced ability to form fat cells, and have less potential 
for osteogenic differentiation as assessed both by side-
by-side in vitro differentiation and global trancriptome 
profiling and for chondrocytic differentiation than BM 
MSCs.75,76,80 However, Wharton’s jelly MSCs appear to 
retain the ability to support HSC/HPC and ES cell expan-
sion in vitro and for immunomodulation.71,74,76-78 Although 
Wharton’s jelly MSCs have been reported to form cells 
with myogenic, neural and cardiac muscle phenotypes 
in vitro, it is not universally accepted that these cells are 
functional in terms of their ability to replace damaged 
neurons or cardiac muscle. Like BM MSCs, they may 
promote such tissue repair through paracrine, endocrine 
or anti-infl ammatory mechanisms.45,60 To add to the com-
plexity, Karahuseyinglu et al.81 have described Type I and 
II Wharton’s jelly MSCs, which differ in their ability to 
differentiate into particular lineages, while Hoynowski 
et al.82 have identifi ed a subset of Wharton’s jelly MSCs 
which express the so-called pluripotent markers, SSEA-4 
and TRA-1-60. Wharton’s jelly MSCs can be expanded 
for >15 passages and possess greater doubling times than 
BM MSCs.71,76 While many researchers culture MSCs 
from the UC prior to analysing them functionally or 
phenotypically, a great deal of effort has recently been 
directed into identifying the regions of the UC which 
contain more primitive MSCs prior to culture.

Where are the MSCs located in the UC?
Cellular content of UC segments have been examined 

using specifi c biomarkers both in situ and after isolation 
and culture, with the particular aim of identifying and 
isolating the more primitive MSCs with stem-like char-
acteristics. Schugar et al.70 examined the distribution of 
cells expressing CD44, CD105, CD73 and CD90 in the 
UC vasculature and Wharton’s jelly at the time of isola-
tion and devised a method for the generation of large 
numbers of such cells. They estimated that the UC seg-
ments (average weight 40g) contained ~1.1×107 cells/g, 
and ~5.3×105 cells could be isolated per gram after UC 
digestion. They predicted an entire UC would contain as 
many as 5×108 cells and demonstrated that UC dissec-
tion (without the removal of vessels) followed by col-
lagenase digestion consistently generated higher levels 
of CD146+(40-50%)HLA-class II negative MSCs which 
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could be enriched for CD146+ cells by fl ow cytometry. 
They demonstrated that i) EGM2 medium enhanced the 
growth rates of the UC MSC allowing some to reach 55 
population doubling with a population doubling time 
of 24h, and ii) maintained phenotypic stability. In other 
reports where CD105+ explanted UC MSC reached 30 
population doubling with population doubling times of 
~38h.71,76,83 and references therein These differences may reflect 
the isolation and culture conditions used, as well as the 
UC location of the MSC. In contrast, mechanical disrup-
tion, explant culture and dispase digestion generated 
CD144+CD146+ endothelial cells.71,76 

It has more recently been hypothesised that MSCs are 
derived from CD146+ NG2+ PDGF-Rβ+ ALP+CD34-
CD45-vWF-CD144- PVCs expressing α-smooth-muscle-
actin,54,70,73 and hence can be found in most tissues. UC 
PVCs also express CD44-v3 as defined by the 3G5 
antibody, a marker on BM MSCs.54,73,84 Montemurro et 
al.85 examined the distribution of such cells in UC Whar-
ton’s jelly, veins, arteries and microvessels preterm (23-
32 weeks of gestation-fetal UC), and at term. CD146+ 
α-smooth-muscle-actin+ PVC cells were numerous in 
the arteries but not in the vein or Wharton’s jelly, the lat-
ter containing CD105+α-smooth-muscle actin+CD146- 
cells but no cells with endothelial phenotypes. The per-
centage of CD146+ α-smooth-muscle-actin+ PVC cells 
was higher preterm (2.5% in preterm and 0.15% in term 
UCs). The UCs were dissected to expose the Wharton’s 
jelly, vein and two arteries, digested with collagenase 
and the cells cultured fi rst in EGM2 medium on gelatin 
and then in high glucose DMEM with 20% FCS. When 
harvested, UC PVCs occur at a frequency of 1:300 and 
when cultured have a clonogenic frequency of >1:3. The 
preterm cultured PVCs (p3) expressed SSEA-4, low 
Oct-4 and Runx1, but not Rex1, Sox2, Myo-D, Myf 5, 
CD31, CD45, CD34 or CD144. In vitro, these cells were 
shown to differentiate into the 3 lineages measured, viz. 
fat, bone and myogenic cells. Furthermore, in culture a 
UC PVC subset did not express HLA Class I or II and 
this may have important implications for allogeneic cell 
based therapies.54,85 Their ability to migrate towards dam-
aged lung tissue in an in vivo model led Montemurro et 
al.85 to suggest that preterm autologous UC PVC may be 
therapeutically important in treating bronchopulmonary 
dysplasia in premature infants. 

Is there a hierarchy of UC MSCs?
Many studies do not examine the capacity of MSCs to 

self-renew and differentiate into the 5 functional lineages 
(quinti-potential).54 Sarugaser et al.54 addressed this issue 

by using clonal single cell analyses to defi ne multipotent 
MSC subsets derived from UC PVCs or CFUMACOF 
(colony forming units with muscle, adipocytic, chondro-
genic, osteogenic and fi broblastoid potential) which can 
generate daughter cells in vitro with the capacity to dif-
ferentiate into these same 5 lineages. They propose a hi-
erarchy of MSCs reminiscent of the haemopoietic lineage 
with the self-renewing CFUMACOF generating self-
renewing progenitors which gradually lose their capacity 
to differentiate (first their myogenic ability, and subse-
quently adipogenic, chondrogenic and fi nally osteogenic 
lineages) eventually giving rise to the myofibroblast. 
This contrasts with other hypothesised hierarchies,86, 87 
where the default lineage was the osteogenic lineage 
with multipotent MSCs giving rise to bipotent CFU-OA 
or CFU-OC. Whichever hypothesis is correct, it must be 
remembered that MSCs from different sources may have 
different potentials and it will be important to define 
MSC subsets and to understand the molecular mecha-
nisms that regulate their hierarchical fate decisions60 so 
that MSCs can be optimally expanded and directed into 
the appropriate lineage for tissue repair or for modulating 
the immune and infl ammatory  responses.  

Are UC MSC functional in vivo?
This is key and there are various clinical conditions 

for which MSCs may have potential therapeutic benefi ts, 
yet results of clinical trials using BM MSCs are mixed 
and the mechanisms of their effectiveness are not fully 
understood. These trials, which have slightly more often 
(>60%) used allogeneic rather than autologous MSCs, 
include treating GvHD, SLE, diabetes, bone and joint 
injuries, cardiovascular diseases, lung, skin and liver 
diseases/injuries, stroke, spinal cord and brain injury and 
Crohn’s disease.45 and references therein.

While some trials depend on MSCs regenerating dam-
aged tissues (e.g. bone, cartilage, tendons etc), others 
rely on MSC immunomodulatory or anti-inflammatory 
mechanisms. One example of the latter is the European 
phase I/II clinical trial using allogeneic MSCs to treat 
GvHD. This showed signifi cant effects in over 50% of 
patients with steroid refractory GvHD.88 This contrasts 
with an international phase III clinical trial led by Osiris 
Therapeutics where clinical endpoints were not reached.89 

Others are the BOOST and Osiris Prochymal trials for 
acute myocardial infarction (AMI), which appear to limit 
scarring and improve left ventricular ejection fraction at 
least shortly after treatment, but which may not be effec-
tive over the longer term.45 and references therein Lee et al.46 have 
demonstrated in an animal model that upon systemic 
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delivery, many MSCs lodge in the lung where they se-
crete anti-infl ammatory factors, e.g. TSG-6, which may 
indirectly prevent further cardiac damage. Our studies 
have suggested that autologous BM MSCs can remain in 
the heart in rodent models of AMI, but decrease in num-
ber over time and do not signifi cantly differentiate into 
cardiomyocytes.75,91-93 

Although clinical translation of novel therapeutics is 
associated with risks of failure, successful translation, 
as illustrated earlier by gradual improvements in UCB 
HSCTs over the past 20 years, takes time but has the poten-
tial to revolutionise medical care. A notable recent suc-
cess has been the transplantation of a tissue engineered 
decellularised trachea populated with autologous BM 
MSCs (which form cartilage to mechanically strengthen 
the graft) and epithelial cells in a patient with TB.94 This 
approach is being extended to other tissues.95-98

The therapeutic use of UC MSCs, whether from Whar-
ton’s jelly or UC PVCs, remains to be tested fully if they 
are to substitute for BM MSCs.60,98,99 These cells can be 
sourced non-invasively but may be immunogenic under 
certain circumstances as described.100 They may retain 
their immunomodulatory or differentiation specifi c func-
tions. What is elusive and still a challenge is to robustly 
defi ne the optimal cell source which may be specifi c for 
each treatment strategy, as well as cell safety, dosage, im-
munogenicity, the best route of delivery and the types of 
patients who would benefi t most.60 

CONCLUSIONS

The key points from this review are:
* UCB and UC contain a variety of stem/progenitor cells 

including HSCs and MSCs
* It has taken ~20 years for UCB to become an estab-

lished source of HSCs for HSCT in both children and 
adults and its usage continues to be optimised

* MSCs are found in the perivascular region and Whar-
ton’s jelly of UC, yet the best therapeutic source 
remains a matter of debate. If they are biologically 
equivalent to BM MSC in their immunomodulatory or 
tissue repair abilities, then they could provide an abun-
dant, non-invasive, ethically acceptable supply of cells 
that could be banked for therapeutic use. 

* Robust comparisons of the best source and subset of 
MSCs are necessary to ensure product quality, safety 
and effi cacy in clinical trials related to HSCT and re-
generative medicine.

* Elucidation of the mechanisms by which MSCs exert 
their benefi cial effects is essential to optimising thera-

peutic benefi ts.
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