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INTRODUCTION

Haemopoietic stem cell transplantation (HSCT) is a curative therapy for severe haematological disorders. It was first car-
ried out successfully ~50 years ago. With technological advances, HSCT has expanded rapidly over the past 20 years.’
Current indications for HSCT include leukaemias, lymphomas, solid tumours (e.g. neuroblastomas), severe combined
immunodeficiencies, inborn errors of metabolism, autoimmune diseases and severe anaemias.”> HSCT is now provided to
~70,000 patients p.a. worldwide. In the UK, approximately 3,000 HSC transplants are performed p.a. (www.bsbmt.com),
contributing to ~25,000 p.a. across Europe.™ Of those HSCT provided worldwide, ~70-80% have autologous or related
allogeneic HSCT. The remainder have unrelated HSCT, of which almost 20% are sourced from unrelated umbilical cord
blood (UCB) donations in the USA and 50% in Japan.” Despite significant advances, overall survival following HSCT can
vary because of disease relapse, engraftment failure, infections and Graft versus Host Disease (GvHD).>®

In this review, we describe the current use, advantages and limitations of UCB for HSCT, principally concentrating on
unrelated allogeneic UCB units. However, UCB and the umbilical cord (UC) also contain other stem/progenitor cells (e.g.
mesenchymal stem cells (MSC)) and hence we extend our discussions to these describing their potential therapeutic use
in HSCT and regenerative medicine.

Key Words: umbilical cord blood, stem cells, mesenchymal stem cells, GvHD, infections, engraftment, expansion, tissue
repair, immunomodulation

HAEMOPOIETIC STEM CELLS (HSC) FROM
UMBILICAL CORD BLOOD FOR HSC TRANS-
PLANTATION

sibling UCB.” It is now well accepted as an alternative
source of allogeneic HSC for certain disease indications.*"
As well as unrelated donations, directed allogeneic dona-
tions from family members, especially when they pro-
vide a disease free identical HLA-matched UCB dona-
tion through pre-natal HLA typing and genetic screening,
are most often used for the treatment of siblings suffering
from such inherited isorders as haemoglobinopathies."™
The resulting matched directed sibling donor transplants
generally demonstrate less GvHD then matched unre-
lated donations." ™

Advantages of UCB over BM and peripheral blood

UCB was first successfully transplanted in 1988 in a
child with Fanconi’s anaemia using an HLA-identical
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stem cells (PBSC) include less stringent HLA matches,
reduced GvHD, lack of donor attrition, urgent provision
and ready accessibility of viral pathogen free and HLA
typed HSC, especially for those from ethnic minority
groups where finding matched HSCs can be difficult,
although high cell dose and HLA matching are impor-
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tant indicators of outcome.”*** However, engraftment of
UCB HSCs is inefficient, with each UCB unit containing
limited HSC numbers, delays in haematological reconsti-
tution and increased risks of viral infections post HSCT
with UCB. Other disadvantages include the lack of donor
lymphocytes for enhancing a graft versus malignancy
effect or to combat infections and in the case of tandem
transplants, the lack of a back-up HSC donation. With
HSCT increasing worldwide, with predicted doubling
of the usage of UCB in HSCT in adults and with signifi-
cant technological advances, the trend now is for more
personalised treatments to fit patient need.***>"" Thus,
there is still a need to increase the efficacy of the HSCs
available for HSCT by reducing engraftment failure rates
through a better understanding of the control of stem cell
fate, improving homing and engraftment, identifying and
targeting the malignancy initiating stem-like cells and
regulating the immune response to control GvHD and
viral infections which contribute significantly to graft
failure and poor survival.

ADVANCES IN UCB HSC TRANSPLANTATION

HLA matching and cell dose

HLA matching is important to the outcome of alloge-
neic HSCT, with GvHD being a serious consequence of
mismatches between donor and recipient in the unrelated
allogeneic setting especially with BM and PBSC where
10/10 HLA allele matching is sought at 5 loci — HLA-A,
-B, -C, -DR and -DQ."" Since HLA matching is consid-
ered less important in UCB HSCTs, more mismatched (at
1-2 loci) UCB HSCT have been performed, but limited
cell dosages in such single UCB units can further con-
tribute to delays in engraftment and subsequent effects
on early survival post transplant. UCB units are most
often selected for 3 HLA loci based on high resolution
matching at the allelic level for HLA-DRB1 and at low-
intermediate HLA-A and -B resolution. Studies have
indicated that to achieve >50% survival, cell dosages of
>2.5x10" and >5x10" per kg recipient body weight were
required for 5/6 and 4/6 mismatched UCB grafts respec-
tively."” Conclusions from 1,061 single UCB myeloabla-
tive transplants for patients with leukaemia or myelodys-
plasia (given adequate TNC (total nucleated cells) were i)
faster neutrophil engraftment with HLA-matched grafts;
ii) no difference in time to neutrophil engraftment be-
tween 5/6 or 4/6 HLA-mismatched grafts; iii) there was
a lower incidence of grade 3-4 acute GvHD in matched
grafts; and iv) lower transplant related mortality (TRM)
correlated with higher pre-cryopreservation TNC and
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better HLA matching, without increased relapse rates."’
Other studies™ revealed that, in children receiving 4/6
and 5/6 mismatched UCB transplants for leukaemia, in-
fusion of >3x10” TNC per kg recipient body weight pro-
vided similar outcomes to those receiving matched BM.

As cell dosage can partially overcome the adverse
effects of HLA mismatch, Smith and Wagner® have
recently defined the adequacy of UCB cell dosage for
HSCT as a TNC/kg recipient body weight of >3><10" for
6/6, >4><10' for 5/6 and >5><10’ for 4/6 HLA matched
cord blood units. Based on these cell doses, the follow-
ing recommendations were made recently®® for sourc-
ing cells for unrelated allogeneic HSCT: (i) selection of
cells from UCB, BM or PBSC based on patient need as
judged by the transplant physician treating the patient;
(ii) for malignant disease, a 6/6 HLA matched UCB with
an adequate cell dose (as above) for both children and
adults as the first choice, with an 8/8 HLA matched unre-
lated BM or PBSC harvest or a 5/6 or 4/6 HLA matched
UCB as the second choice but the decision would be
based on cell dose, the urgent need for a transplant, and
the future requirements for tandem transplants or donor
lymphocyte infusions; and (iii) for non-malignant dis-
orders, there was no definite recommendation although
the gold standard was cited as an 8/8 HLA BM for both
children and adults, or PBSC harvest in adults, with the
next choice suggested as an adequate dose of 6/6 or 5/6
HLA matched UCB unit. Eurocord data have recently
suggested that, for non malignant conditions, HLA dis-
parity affects engraftment, GvHD, survival and TRM and
have recommended a cell dose of >3.5x10" TNC per kg
recipient body weight when treating such patients."” *™ ™"
erences therein. Additionally, some investigators have indicated
that CD34 dose is an important predictor of UCB HSCT
outcome and time to neutrophil recovery, but this is not
often used as one of the routine selection criteria."**™ "
ences therein

Unlike BM HSCT, few data exist on the positive ef-
fects of high-resolution HLA matching in the UCB
setting,"* although recent studies”™ suggest faster neu-
trophil, but not platelet, recovery with Class | HLA-B
(but not Cw) matching of single or double UCB units. It
has been hypothesised that HLA-B may act as a target
for NK cell KIR receptors™** and that such mismatching
results in selective killing of the donor UCB cells. Ad-
ditionally, HLA Class Il (DR) mismatching in the double
UCB HSCT setting correlates with grade II-1V acute
GVHD.19-24

Improving UCB HSC engraftment



Limited cell numbers have presented a significant
problem in unrelated allogeneic UCB HSCT in adults.
The most obvious way to enhance haematological re-
constitution, determined as the time to peripheral blood
neutrophil and platelet recovery, is to increase the
numbers of UCB haemopoietic stem/progenitor cells
transplanted. For unrelated UCB allogeneic transplants,
strategies to improve engraftment include enhancing the
homing mechanisms and fate determination in the BM
niche, transplantation of two UCB units, direct injection
of HSC into the BM and ex vivo expansion of UCB HSC
using exogenous cytokines. The use of double unrelated
UCB HSCT in adults has extended their use in patients
up to 75 years of age."** However, even with 2 UCB
HSCT into one recipient, one UCB often engrafts long
term in preference to the other."** These new transplant
approaches have complemented the increased clinical ex-
perience in UCB HSCT in terms of patient conditioning,
time of UCB administration, disease type and status etc
and an improved understanding the importance of UCB
quality.”‘”’zs

Ex vivo expansion of UCB HSC has been attempted
with various cytokine cocktails, chimaeric cytokine/
cytokine receptors or soluble transcription factors (e.g.
TPO, FLT3L, SCF, IL6R, Notch ligands, AngptLP,
HoxB4)."**® Many of these have not significantly or
safely expanded HSCs without their differentiation. For
example, a recent phase | myeloablative double UCB tri-
al using ex vivo Notch-ligand treated UCB HSC showed
enhanced neutrophil but not platelet recovery and insig-
nificant expansion of long-term repopulating HSCs.**
Although initially promising and although this technique
may reduce the severity of GvHD at least with single
UCB HSCTs, intrabone injections do not appear to have
improved engraftment outcomes in the double transplant
setting.** Another approach has been to supplement
single or double UCB transplants with mobilised periph-
eral blood CD34" cells or third party mesenchymal stem/
stromal cells (MSCs).*****

MSCs in UCB and UC. Can these benefit UCB HSCT
and tissue repair?

MSCs, which are found in the BM, placenta, UCB
and the UC, are thought to suppress GvHD following
HSCT and may enhance HSC engraftment."***** They
may also contribute directly to tissue repair (e.g. of the
vasculature, bone, cartilage) or act in a paracrine, endo-
crine or anti-inflammatory manner (e.g. by promoting
revascularisation or the proliferation of endogenous stem
cells, limiting scarring or apoptosis, or modulating tissue
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remodelling, without necessarily replacing the damaged
tissue itself). "6 o references herein Ayhar stem/progenitor cell
types including endothelial progenitors,*** multipotent
USSC (unrestricted somatic stem cells),” and VSEL (very
small embryonic-like) stem cells have also been de-
scribed in UCB.” MSCs represent a special case because
their therapeutic potential in immunomodulation during
HSCT and for tissue repair has been well described, at
least when sourced from BM.** The remainder of this
review will concentrate on MSCs especially those de-
rived from UC.

Definition of MSCs

BM MSCs were the first characterised as plastic ad-
herent fibroblastoid-like cells expressing CD90, CD73
and CD105, but not CD14, CD11b, CD79, CD34, CD45
or HLA-DR, with the ability to generate clonogenic
fibroblastoid colony forming umits (CFU-F), and to at
least differentiate into adipogenic, chondrogenic and
osteogenic lineages in vitro, 53 & references therein. ga gaser
et al.”* have recently defined the most primitive MSCs
more stringently as those multipotent cells with clonal
single cell derived self-renewing activity and the ability
to generate at least 5 lineages, viz. fat, cartilage, bone,
muscle, and fibroblastic lineages (tendon, ligament and
stromal). The BM stromal cells™ can for example support
haemopoiesis or suppress GVHD.*****"*** Despite this,
the MSC terminology has generally been loosely used to
encompass both self-renewing stem cells with the abil-
ity to form multiple lineages and heterogenous cultures
of cells with a fibroblastic phenotype and with differing
capacities to generate multiple lineages, particularly fat,
bone and cartilage, and often without an explicit dem-
onstration of their self-renewal potential.”” Here, we will
use the term MSC to refer to both the mesenchymal stem
cells and their progeny often called mesenchymal stromal
cells, but will attempt to distinguish these cells by their
known functional capacities.

MSC tissue distribution

Originally identified in BM where they occur at a
clonogenic frequency of 1 in 10°-10° mononuclear cells,
MSCs with multipotent properties at least in vitro are
also found in the fetal circulation being particularly
prevalent in the first trimester of pregnancy, in fetal and
adult tissues, UC and mid-gestation amniotic fluid.”*®
It is generally accepted that MSCs from earlier stages of
ontogeny have a higher proliferative ability and greater
functional capacities. Recently, the perivascular niche has
been suggested as the potential site of origin of MSCs
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in many organs”™®’ (although this is not universally ac-

cepted®) and it has been proposed that under homeostatic
conditions, although multipotent, such perivascular cells
(PVCs) by default generate stromal cells for the organ
of origin rather than multiple lineages. An example is
the adventitial reticular cells or CD146+ osteoprogenitor
cells which are closely associated with the sinusoidal en-
dothelium in the BM where their main purpose is to reg-
ulate haemopoiesis.” Since only ~10-65% of UCB units
generate MSCs in culture® and since MSCs from UCB
and UC may share a common UC perivascular origin,**"
the UC has been examined as an alternative non-invasive
source of MSCs of consistent donor age. Furthermore,
many of the standards that regulate the collection and
banking of UCB for HSCT also translate into the collec-
tion of the UC.

MSCs from the UC — Wharton’s jelly versus perivas-
cular cells

The UC at term contains two arteries and a vein sur-
rounded by a connective tissue matrix or Wharton’s
jelly. The vein has been generally used to source UC
endothelial cells,*”* while Wharton’s jelly and UC PVCs
have been the main source of UC MSCs.”"’

The isolation and characteristics of Wharton’s jelly
MSCs have been reviewed recently,’ " "eferences herein |55
tion methods include i) removal of UC vessels before
the Wharton’s jelly is taken and digested enzymatically
with either collagenase/trypsin or hyaluronidse/collge-
nase/trypsin before culture, ii) by generating MSCs from
explants of Wharton’s jelly and amniotic membrane
without enzymatic digestion and iii) by cryopreservation
of 1cm segments of Wharton’s jelly in heat inactivated
autologous UCB plasma containing 10% DMSO prior
to subsequent culture.****"™"™® Ag a whole cell popula-
tion, Wharton’s jelly MSCs share some but not all char-
acteristics with BM MSCs. They resemble BM MSCs in
their expression of CD90, CD105, CD73, CD13, CD29,
CD10, CD13, CD49, CD51, CD166, CD44 and HLA-
A,-B, -C and -G, but lack of expression of CD45, CD14,
CD56, CD31 and CD34 and are reported to be HLA
DR+.""" In our own studies, we detected CD146 on
almost 40% of UC PVC but not of the majority of Whar-
ton’s jelly MSCs.”

A major issue in comparing MSCs from different tis-
sues is in defining their relative functionality and their
side-by-side ability to differentiate, to modulate immune
and inflammatory responses, to support haemopoiesis
or vasculogenesis, and to self-renew.”” Wharton’s jelly
MSCs have been reported to form osteoblasts, chon-
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drocytes, adipocytes, cardiomyocytes, hepatocytes,
pancreatic, endothelial and neural like cells, to support
haemopoiesis and to modulate immune responses.”*
6466.69,71,72,14-80 and references therein panorts are conflicting and
some studies suggest that Wharton’s jelly MSCs more
closely resemble UCB MSCs than BM MSCs in their
reduced ability to form fat cells, and have less potential
for osteogenic differentiation as assessed both by side-
by-side in vitro differentiation and global trancriptome
profiling and for chondrocytic differentiation than BM
MSCs.”"*® However, Wharton’s jelly MSCs appear to
retain the ability to support HSC/HPC and ES cell expan-
sion in vitro and for immunomodulation.”™""*"® Although
Wharton’s jelly MSCs have been reported to form cells
with myogenic, neural and cardiac muscle phenotypes
in vitro, it is not universally accepted that these cells are
functional in terms of their ability to replace damaged
neurons or cardiac muscle. Like BM MSCs, they may
promote such tissue repair through paracrine, endocrine
or anti-inflammatory mechanisms.** To add to the com-
plexity, Karahuseyinglu et al.** have described Type | and
Il Wharton’s jelly MSCs, which differ in their ability to
differentiate into particular lineages, while Hoynowski
et al.” have identified a subset of Wharton’s jelly MSCs
which express the so-called pluripotent markers, SSEA-4
and TRA-1-60. Wharton’s jelly MSCs can be expanded
for >15 passages and possess greater doubling times than
BM MSCs.™® While many researchers culture MSCs
from the UC prior to analysing them functionally or
phenotypically, a great deal of effort has recently been
directed into identifying the regions of the UC which
contain more primitive MSCs prior to culture.

Where are the MSCs located in the UC?

Cellular content of UC segments have been examined
using specific biomarkers both in situ and after isolation
and culture, with the particular aim of identifying and
isolating the more primitive MSCs with stem-like char-
acteristics. Schugar et al.” examined the distribution of
cells expressing CD44, CD105, CD73 and CD90 in the
UC vasculature and Wharton’s jelly at the time of isola-
tion and devised a method for the generation of large
numbers of such cells. They estimated that the UC seg-
ments (average weight 40g) contained ~1.1>10" cells/g,
and ~5.3><10° cells could be isolated per gram after UC
digestion. They predicted an entire UC would contain as
many as 5>10° cells and demonstrated that UC dissec-
tion (without the removal of vessels) followed by col-
lagenase digestion consistently generated higher levels
of CD146+(40-50%)HLA-class Il negative MSCs which



could be enriched for CD146+ cells by flow cytometry.
They demonstrated that i) EGM2 medium enhanced the
growth rates of the UC MSC allowing some to reach 55
population doubling with a population doubling time
of 24h, and ii) maintained phenotypic stability. In other
reports where CD105+ explanted UC MSC reached 30
population doubling with population doubling times of
~38h, 7683 and references therein Thoage differences may reflect
the isolation and culture conditions used, as well as the
UC location of the MSC. In contrast, mechanical disrup-
tion, explant culture and dispase digestion generated
CD144+CD146+ endothelial cells.”™™

It has more recently been hypothesised that MSCs are
derived from CD146+ NG2+ PDGF-R[3+ ALP+CD34-
CD45-vWF-CD144- PVCs expressing ox-smooth-muscle-
actin,**"" and hence can be found in most tissues. UC
PVCs also express CD44-v3 as defined by the 3G5
antibody, a marker on BM MSCs.*"*** Montemurro et
al.** examined the distribution of such cells in UC Whar-
ton’s jelly, veins, arteries and microvessels preterm (23-
32 weeks of gestation-fetal UC), and at term. CD146+
a-smooth-muscle-actin+ PVC cells were numerous in
the arteries but not in the vein or Wharton’s jelly, the lat-
ter containing CD105+cr-smooth-muscle actin+CD146-
cells but no cells with endothelial phenotypes. The per-
centage of CD146+ o-smooth-muscle-actin+ PVC cells
was higher preterm (2.5% in preterm and 0.15% in term
UCs). The UCs were dissected to expose the Wharton’s
jelly, vein and two arteries, digested with collagenase
and the cells cultured first in EGM2 medium on gelatin
and then in high glucose DMEM with 20% FCS. When
harvested, UC PVCs occur at a frequency of 1:300 and
when cultured have a clonogenic frequency of >1:3. The
preterm cultured PVCs (p3) expressed SSEA-4, low
Oct-4 and Runx1, but not Rex1, Sox2, Myo-D, Myf 5,
CD31, CD45, CD34 or CD144. In vitro, these cells were
shown to differentiate into the 3 lineages measured, viz.
fat, bone and myogenic cells. Furthermore, in culture a
UC PVC subset did not express HLA Class | or 1l and
this may have important implications for allogeneic cell
based therapies.**® Their ability to migrate towards dam-
aged lung tissue in an in vivo model led Montemurro et
al.* to suggest that preterm autologous UC PVC may be
therapeutically important in treating bronchopulmonary
dysplasia in premature infants.

Is there a hierarchy of UC MSCs?

Many studies do not examine the capacity of MSCs to
self-renew and differentiate into the 5 functional lineages
(quinti-potential).” Sarugaser et al.>* addressed this issue
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by using clonal single cell analyses to define multipotent
MSC subsets derived from UC PVCs or CFUMACOF
(colony forming units with muscle, adipocytic, chondro-
genic, osteogenic and fibroblastoid potential) which can
generate daughter cells in vitro with the capacity to dif-
ferentiate into these same 5 lineages. They propose a hi-
erarchy of MSCs reminiscent of the haemopoietic lineage
with the self-renewing CFUMACOF generating self-
renewing progenitors which gradually lose their capacity
to differentiate (first their myogenic ability, and subse-
quently adipogenic, chondrogenic and finally osteogenic
lineages) eventually giving rise to the myofibroblast.
This contrasts with other hypothesised hierarchies,®®
where the default lineage was the osteogenic lineage
with multipotent MSCs giving rise to bipotent CFU-OA
or CFU-OC. Whichever hypothesis is correct, it must be
remembered that MSCs from different sources may have
different potentials and it will be important to define
MSC subsets and to understand the molecular mecha-
nisms that regulate their hierarchical fate decisions® so
that MSCs can be optimally expanded and directed into
the appropriate lineage for tissue repair or for modulating
the immune and inflammatory responses.

Are UC MSC functional in vivo?

This is key and there are various clinical conditions
for which MSCs may have potential therapeutic benefits,
yet results of clinical trials using BM MSCs are mixed
and the mechanisms of their effectiveness are not fully
understood. These trials, which have slightly more often
(>60%) used allogeneic rather than autologous MSCs,
include treating GVHD, SLE, diabetes, bone and joint
injuries, cardiovascular diseases, lung, skin and liver
diseases/injuries, stroke, spinal cord and brain injury and
Crohn’s disease.45 and references therein.

While some trials depend on MSCs regenerating dam-
aged tissues (e.g. bone, cartilage, tendons etc), others
rely on MSC immunomodulatory or anti-inflammatory
mechanisms. One example of the latter is the European
phase /1l clinical trial using allogeneic MSCs to treat
GvHD. This showed significant effects in over 50% of
patients with steroid refractory GvHD.* This contrasts
with an international phase 111 clinical trial led by Osiris
Therapeutics where clinical endpoints were not reached.”
Others are the BOOST and Osiris Prochymal trials for
acute myocardial infarction (AMI), which appear to limit
scarring and improve left ventricular ejection fraction at
least shortly after treatment, but which may not be effec-
tive over the longer term,*® 2 s e | aa ot 31 *® have
demonstrated in an animal model that upon systemic
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delivery, many MSCs lodge in the lung where they se-
crete anti-inflammatory factors, e.g. TSG-6, which may
indirectly prevent further cardiac damage. Our studies
have suggested that autologous BM MSCs can remain in
the heart in rodent models of AMI, but decrease in num-
ber over time and do not significantly differentiate into
cardiomyocytes.’>**

Although clinical translation of novel therapeutics is
associated with risks of failure, successful translation,
as illustrated earlier by gradual improvements in UCB
HSCTs over the past 20 years, takes time but has the poten-
tial to revolutionise medical care. A notable recent suc-
cess has been the transplantation of a tissue engineered
decellularised trachea populated with autologous BM
MSCs (which form cartilage to mechanically strengthen
the graft) and epithelial cells in a patient with TB.* This
approach is being extended to other tissues.**

The therapeutic use of UC MSCs, whether from Whar-
ton’s jelly or UC PVCs, remains to be tested fully if they
are to substitute for BM MSCs.”*** These cells can be
sourced non-invasively but may be immunogenic under
certain circumstances as described.'® They may retain
their immunomodulatory or differentiation specific func-
tions. What is elusive and still a challenge is to robustly
define the optimal cell source which may be specific for
each treatment strategy, as well as cell safety, dosage, im-
munogenicity, the best route of delivery and the types of
patients who would benefit most.”

CONCLUSIONS

The key points from this review are:

* UCB and UC contain a variety of stem/progenitor cells
including HSCs and MSCs

* It has taken ~20 years for UCB to become an estab-
lished source of HSCs for HSCT in both children and
adults and its usage continues to be optimised

* MSCs are found in the perivascular region and Whar-
ton’s jelly of UC, yet the best therapeutic source
remains a matter of debate. If they are biologically
equivalent to BM MSC in their immunomodulatory or
tissue repair abilities, then they could provide an abun-
dant, non-invasive, ethically acceptable supply of cells
that could be banked for therapeutic use.

* Robust comparisons of the best source and subset of
MSCs are necessary to ensure product quality, safety
and efficacy in clinical trials related to HSCT and re-
generative medicine.

* Elucidation of the mechanisms by which MSCs exert
their beneficial effects is essential to optimising thera-
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peutic benefits.
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