美軍新式核生化偵檢車譯介

作者簡介

作者吳明郎中校,畢業於陸軍官校正 58 期、化校正規班 54 期、中正理工應用物理研究所碩士、國立交通大學光電工程博士候選人,歷任排長、連長、參謀官、教官、編參官,現任化校學員生總隊長。

提要

- 一、經過波斯灣及伊拉克等戰役後,美軍更精密計算修訂新式核生化偵檢車之性能要求,以符合未來「國土防衛」與「反恐作戰」等多面向戰場需求, 其功能、配備、指管通情監偵等系統之緊密組合,已形成目前最先進核生化防衛利器。
- 二、2001年911後美軍為因應反恐任務,將核生化整備方向修正為朝向立即、 快速偵知和辨識核生化危害,其轉型重要作為便是Stryker核生化偵檢車 的建置。
- 三、本文在比較美軍現行M93系列狐式核生化偵檢車及未來Stryker核生化偵檢 車在運用於偵檢、警報與取樣之異同,並評析其在未來核生化作戰環境下 之優異處及窒礙點,以為我核生化偵檢車建案參考。

壹、前言

美軍核生化偵檢車的基本裝備為M93 系列狐式核生化偵檢車,經過二次波灣戰爭的驗證後,歸納出M93 與M93A1 核生化偵檢車能力與限制因素比較表如表一、二(註1)。另美軍預計從 2004 年至 2007 年採購 44 輛Stryker核生化偵檢車(註2),預估每輛造價約為 1 億 5 千餘萬元,採購時程及概估預算表如表三,逐步取代各型狐式核生化偵檢車。Stryker核生化偵檢車是Stryker輪型裝甲車的延伸型;其運用主要在提供固定場所、港口及機場等地區之偵測效能。此種核生化偵檢車具有偵檢、警報與取樣能力,所有偵檢器材均整合在高速、高機動、輪型和裝甲載具中,但此車不是作戰車輛,故缺乏敵火應變能力。

表一	M93偵檢車能	力與限制說明表
----	---------	---------

能力	限制
每小時45公里時速實施偵檢作業	無敵我辨識能力
人員在車內實施偵檢作業	系統須要特殊維修支援
具正壓系統	MM1光譜儀須有15到20分鐘熱機準備
偵檢和辨識60種化學戰劑	載具無重裝甲
提供位置資料	MM1光譜儀不能連續操作

註 1 MULTISERVICE TACTICS, TECHNIQUES, AND PROCEDURES FOR NUCLEAR, BIOLOGICAL, AND CHEMICAL RECONNAISSANCE,2004,P J2-J3。

註 2 Army Modernization Plan 2003,P D-12。

核生化防護半年刊第81期

具浮游	MM1光譜儀無化學汽化偵檢能力
具空氣調節裝置	無化學和生化遠距偵檢能力
具自動污染標示	對高承載工作冷卻系統功能不足
對未知戰劑的儲存	無生物偵檢能力
可與友軍保持連絡	
具航海嵌入式方向控制系統	
在一區域具機動力	
具自我恢復能力	
具樣品回收和儲存能力	

資料來源:作者整理繪表

表二 M93A1核生化偵檢車能力與限制因素

能力	限制
移動中可實施核生化偵檢與檢驗能力	無敵我辨識能力
無須人員離開車內,即可實施偵檢作業	系統須要特殊維修支援
具正壓系統	MM1光譜儀須有15到20分鐘熱機準備
偵檢和辨識60種化學戰劑	載具無重裝甲
具導航系統可提供位置資料,戰場指揮	M21遠距偵檢系統不能在行駛中使用
與回報系統	
具浮游功能	MM1光譜儀不能連續操作
具空氣調節功能	MM1光譜儀無化學汽化偵檢能力
自動污染標示	對高承載工作冷卻系統功能不足
樣品儲存	無生物偵檢能力
具友軍通訊能力	不能連續操作空氣調節系統
具航海嵌入式方向控制系統	
在區域具機動力	
具自我恢復能力	
具數位通訊能力	
具遠距偵檢能力(M21)	
具自動雙輪取樣系統	
電腦整合各系統 reduced from 4 to 3	
具度量衡感測器	
具地面溫度感測器	
具修正標誌系統	
具修正正壓系統	
收回與保留	

資料來源:作者整理繪表

表三 採購時程及預算表

項目\年度	2004	2006	2007	總計
數量(輛)	17	23	4	44
金額	29.9 M	42.7 M	7.9 M	80.5M

資料來源:作者整理繪表

其偵檢作業人力需求為M93 偵檢車由車長、駕駛和 2 員作業員 (其中 1 員是MM1 操作手)實施偵檢作業; M93A1 偵檢車由車長、駕駛和作業員 (MM1 操作手)實施偵檢作業,而其配備原則如下: (註3)

- 重裝師化兵連偵檢排有 6 輛 M93A1
- 軍團化兵連偵檢排有 8 輛 M93A1
- 化兵偵檢排(重裝)有 6 輛 M93A1
- 化兵偵檢排(輕裝)有 4 輛 M93A1
- · Stryker 旅級有化兵偵檢排 3 輛 Stryker 核生化偵檢車

圖 1. Stryker 核生化偵檢車

貳、裝備特性

一、裝備特性:

Strvker 核生化偵檢車(如圖 1)設計方面之特點如下:

- (一)減少反應時間:提供快速偵檢,可在數秒內確認、數分鐘內確定污染 目標。
- (二) 具快速標記能力。
- (三)可在靜止及運動中進行化學戰劑(液態與氣態)遙測偵檢。

註3同註2, P.J4。

核生化防護半年刊第81期

- (四)可在靜止及運動中行輻射偵檢。
- (五)可在静止中進行生物偵檢(註4)。
- (六)經由點偵測及遠距偵測及取樣等偵檢作業,去執行化生放核及工業有 毒物質偵測工作。
- (七)可經由機動管制系統整合污染資訊、核生化數值、導航及氣象資料提供自動化預警,並可在每小時45公里時速下進行偵檢作業(註5)。
- (八)系統設計的五大任務為一發現、識別、記號、報告和取樣,作業實施要領為搜查、監視和偵察(路線、範圍或地區),以確認核生化之危險或攻擊。

二、重要配備(註6):

(一) 載具配備:

- 1.350匹柴油內燃機引擎
- 2. 自動中控輪胎充氣系統
- 3. 載具高度調整處理系統
- 4. 車內正壓系統
- 5. 遠距離射擊座
- 6. M2式50口徑機關槍
- 7. M6煙幕發射器
- 8. 熱像儀
- 9. Stryker編成單位共同通訊裝置
- 10. 單頻地對空無線電系統
- 11. 位置回報系統
- 12. 戰場指揮系統
- 13. 全球定位系統
- 14.14.5公釐彈道防護鋼材
- 15四員作業人員—駕駛、車長、兩員作業員
- 16全車系電腦整合系統

(二) 偵檢系統:

- 1. 雙輪取樣系統
- 2. M22自動化學戰劑警報系統
- 3. AN/VDR-2輻射偵檢器
- 4. AN/VDR-13袖珍型輻射偵檢器

註4同註2, P.N2。

註5同註2, P.N1。

註6 J. McVeigh , army chemical review, 2003,

- 5. 狐式固體取樣尾部設計
- 6. 另配賦先進偵檢系統如下:
 - (1) 第二代化學生物質譜儀(如圖2): 具同時偵檢生物和化學 戰劑及有毒化學物質與工業危害物質能力,可偵檢已知 氣態和液能化學戰劑。

- •為離子式生化偵檢器
- ●可偵測液體與汽化化 學戰劑
- •運用熱解技術偵測生 物戰劑
- 化學與生物戰劑偵檢確認時間少於5分鐘

圖 2. 第二代化學生物質譜儀

- (2) 聯合生物點偵測系統(JBPDS): 具有偵檢和辨識生物戰劑, 並可收集和儲存可疑樣本,以供實驗室偵驗。
- (3) 聯合輕量型遙測化學戰劑偵檢器(JSLSCAD)(如圖3)。

圖 3. 聯合輕量型遙測化學戰劑偵檢

7. 具有行駛中可全自動、360度掃瞄5公里內之大氣中的汽化化 學戰劑之偵檢能力,比M21遥感化學戰劑警報器具有更多優 點,其操作相關參數如圖4所示。

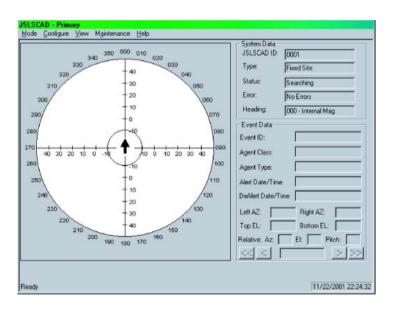


圖 4. 先進遠距化學戰劑偵檢器工作參數

三、主要性能:

- (一)可偵檢神經、靡爤、血液汽化戰劑,更可偵測其它汽化化學戰劑和工業化毒。
- (二)可在每小時56公里速度下工作。
- (三)使用被動紅外線系統光譜分析偵測目標化學戰劑。
- (四)可藉 C2 系統行個人及小地區通訊。
- (五)化學汽化樣取系統(CVSS):具有自動捕取化學汽化樣本,以提供相關實驗室檢驗,其取樣原則為限制固體重量在10公克,液體在15至25毫升。
- (六) Metsman 氣象系統:具有測量相對風速、方向、溫度、大氣壓、相對 濕度和地面溫度。
- (七)核生化感應器處理組(NBCSPG):具有核生化偵檢系統和設備監視和控制系統,以提供車長和主操作員專用工作平台。此軟體也自動進行核生化偵檢預警與回報,並對偵檢任務過程中自動電子資料記錄存查(如圖 5)。

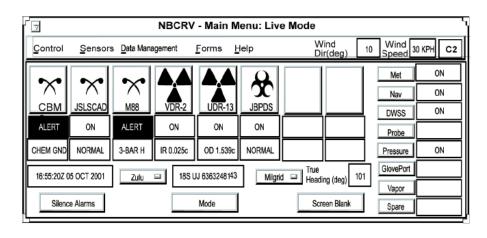


圖 5 Stryker 核生化偵檢車主要操作簡易螢幕

參、美軍現行偵檢車與新式 Stryker 偵檢車功能比較

美軍從2003年開始著手規畫新式核生化偵檢車(如圖6),在經過波斯灣及 以拉克等戰役後,美軍更精緻修訂新式核生化偵檢車之性能要求,其與現役偵 檢車之功能比較如表四,由其功能、配備、指管通情監等系統之緊密組合,形 成目前最先進核生化防衛利器。

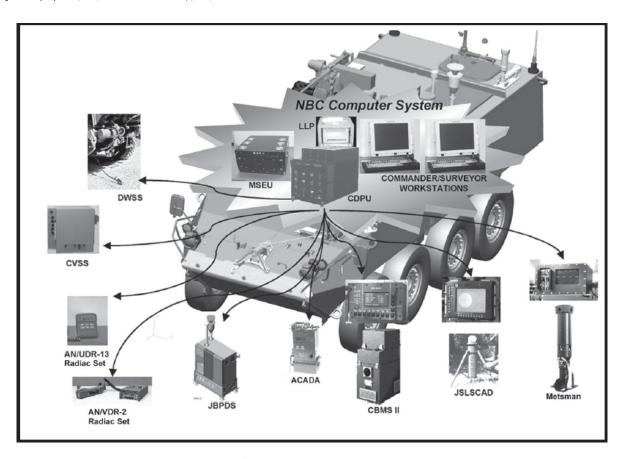


圖6 系統各部重大名稱

核生化防護半年刊第81期

表四 現有偵檢車與新式Stryker偵檢車功能比較

區分	項目	現有偵檢車	Stryker偵檢車
	裝甲	7.62-mm 裝甲鋼板	14.5mm裝甲鋼板
能力	武器	M240 機關槍 (7.62-mm)	M2機關槍
感應器	液體化學戰劑	MMI	第二代化學與生物質譜儀
	定點化學汽化 遠距偵檢	M21 (60°掃瞄)	聯軍、輕型、遠距化學戰劑偵 檢器(360°掃瞄能力)
	行駛中遠距化 學汽化偵檢	無	聯軍、輕型、遠距化學戰劑偵 檢器(360°掃瞄能力)
	化學汽化確認	無	有
	生物偵檢/浮質	無	有

資料來源:作者整理自繪

肆、結論

前瞻美軍新式核生化偵檢車,我們須學習其設計精神,考量運用、需求、 地形、氣候、資訊傳輸、自動化設計、後勤支援、操作人員素質及國軍是否已 接受自動化偵檢與核生化預警作為,如此,才能參考先進裝備,設計規劃出符 合我國土需求、人民需要、化學兵適用之核生化偵檢車,以符合未來作戰及國 土防衛與反恐作戰等多面向任務。