抗紅外線煙幕遮蔽材料效能評估之研析

作者簡介

作者辛毓民中校,畢業於陸軍官校正 58 期、化校專精班 12 期;歷任排長、連長、總部系分官、編裝官、中隊長、營長,現就讀國防大學中正理工應用化學研究所。

提要

- 一、長久以來,國軍煙幕的遮蔽效能一直無法透過光學儀器量測來提供科學數據,以證明煙幕確實能夠反制光電偵測的能力。從美軍對其國內 ASBURY 等五家公司生產的 42 種規格石墨所做的煙道粉體遮蔽實驗發現,煙幕材料的遮蔽效能是能夠計算的,而且即使是相同性質的遮蔽材料,也會因為材料尺寸、表面積、加工過程、大氣中的沉降速度等不同,而有不同的實驗結果。
- 二、未來若能整合或更新國內煙道實驗室,將可參照美軍實驗模式,除建構煙幕材料資料庫外,更可發展符合國內環境、環保條件、自主生產、價廉、遮蔽效能高的煙幕遮蔽材料,提升國軍煙幕科技。

壹、前言

從黃帝在煙幕中利用指南車破除戰場迷霧打敗蚩尤開始,煙幕在戰爭中就一直扮演著「攻」與「防」或「矛」與「盾」重要的角色。(註1)第一次世界大戰煙幕系統概念開始萌芽,從遮蔽傳統的可見光,以妨礙敵軍觀測攻擊,快速進展到反制紅外光電導引武器與偵測系統,今日煙幕科技已邁入對毫米波甚至全波段遮蔽的境界。

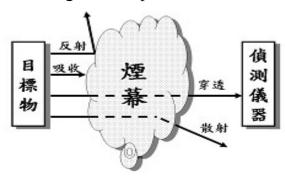
然而,隨著世界各國煙幕科技快速進展之際,我國在煙幕科技發展的步調上相對極為緩慢,令人憂心,尤其煙幕所產生的顯著作戰效能,可能僅須花費數百或數千元的遮蔽材料,就可以使昂貴的精確導引武器裝備失去作用。因此,煙幕在光電防護作戰上可說是一種高軍事效益值的反制手段。(註2)

但是,煙幕反制光電作戰的真正關鍵是遮蔽材料,從紅外波段對煙幕穿透變化所計算的遮蔽係數-α值,可以決定煙幕遮蔽材料的良窳,因此,本篇研究目的即在探討美軍如何透過煙幕遮蔽實驗,以評估煙幕遮蔽材料的效能,作為未來從事煙幕科技研究的參考。

貳、本文

一、煙幕遮蔽原理

煙幕是由許多固體或液體微粒分散懸浮於大氣中,當目標物本身輻射


註1 拙著,「中共光電導引技術的威脅對我煙幕科技發展之啓示」,《核生化防護半年刊》, 第80期,民國94年9月,頁86。

註2 許波、時家明、汪家春、袁忠才,「煙幕發生器評述」,《電子對抗技術》,第 17 卷第 5 期,2002 年,第 41 頁。

核生化防護半年刊第81期

出的紅外光波入射到煙幕中時,輻射能量會被散布的煙幕微粒吸收、反射、 散射而導致入射能量強度衰減,這種現象可稱為煙幕遮蔽效應,其原理如圖 一所示(註3,4)。(註5,6)透過煙幕中微粒的吸收效應可直接阻隔入射光與電 磁波穿透,而反射與散射則能造成觀測混淆與無法聚像之效果,也就是說遮 蔽效應(Extinction)是光波的散射(Scattering)、吸收(Absorption)與反射 (Reflection)強度衰減的總和,光學上可用以下式:

I Extinction=I Scattering+I Absorption+I Reflection來表示。(註7)

圖一 煙幕遮蔽效應原理示意

圖片來源:劉順民,「發煙劑材料粒徑影響紅外輻射規律及應用」,南京理工大學碩士論文,2004年,頁5。

二、美軍煙幕研究模式

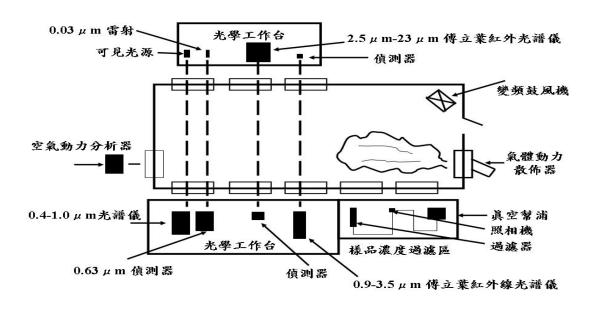
煙幕科技的發展,影響敵軍光電導引武器的偵測效能,美軍為確保海外作戰部隊與其本土重要設施的安全防護,對於反制光電導引武器系統的研發不餘遺力,尤其是低成本、高軍事效益的煙幕反制手段。因此,數十年的努力,使得美軍在煙幕技術上相當成熟,並實際投入現役裝備與戰術任務上。所以,未來我國煙幕科技發展,必須探究美軍的研究方法,方能趕上當前國際煙幕科技的水準。

(一)美軍煙道實驗設計8

美軍 Edgewood Research Development & Engineering Center, (現更名為 US Army Edgewood Chemical Biological Center, ECBC) 設計了一個約 13.6 立方公尺的煙道實驗室,如圖二。利用實驗室各種儀器量測煙幕遮蔽材料的

註3 劉順民,「發煙劑材料粒徑影響紅外輻射規律及應用」,南京理工大學碩士論文,2004 年7月,頁5。

註4 陳麗、李濤、李青,「煙幕對激光制導武器的影響」,《戰術導彈技術》,2004年7月,頁66-67。


註5 註3。

註6 同註 4。

註7 蔡長壽、王惠龍、彭福明、張明達,抗紅外線石墨粉(Graphite Powder)煙幕劑之 遮蔽性能報告,中山科學研究院第四所,民國81年12月15日,頁8。

註8 J. F. Embury, D. L. Walker, C. J. Zimmermann, "SCREENING SMOKE PERFORMANCE OF COMMERCIALLY AVAILABLE POWDERS I.INFRARED SCREENING BY GRAPHITE FLAKE", NTIS AD-A272 461/5, Jul 1993,p20.

各項基本參數,計算實驗材料的遮蔽係數,以評估其遮蔽的效能。

圖二 美軍 ERDEC 設計的 13.6 立方公尺的煙道實驗室 圖片來源:同註 7,p21.

煙道實驗室的設計係以一組可以產生每平方英吋60磅的高速氣體噴嘴系統,將材料粉體噴出分散在煙道中,以產生所需的煙幕微粒。煙道內有一變頻鼓風機以低轉速在煙道內連續運轉,維持一定的濃度和提供一個標準的氣流推動微粒,煙道周邊設置各項量測儀器,包括可以製造每分鐘20公升流速的真空泵浦(Vacuum Pump),吸取煙道微粒進入多孔玻璃纖維過濾器(Filter)來測量微粒濃度、頻譜範圍,包括0.03微米的雷射(Laser)、0.4-1.0微米的光譜儀(Spectrascan)、以及0.9-3.5微米、2.5-23微米的傅立葉紅外光譜儀(FTIR)與0.63微米的偵測器(Detector)等,以量測各種波段對煙幕微粒的穿透率,並利用微量天平和粒子大小測定器量測微粒的分布,以探討反制光電偵測的最佳粒徑尺寸。

(二)美國境內生產的石墨遮蔽實驗評估(註9)

1993 年美軍 ECBC 針對其國內 ASBURY、CIBA-GEIGY、DIXON、LONZA 及 SUPERIOR 等五家公司生產的 42 種規格的石墨,以煙道實驗室的粉體分散系統,將各家公司所生產的石墨粉體噴散於煙道中,以實施可見光至遠紅外波段的遮蔽效能實驗,透過實驗獲得可見光、近紅外光、中紅外光及遠紅外光波段的各項基本參數。計算結果顯示:遮蔽係數概介於 0.72~2.69之間 (如表一)。美軍透過表一所列的石墨遮蔽係數,選擇合乎成本效益、或可發揮最大遮蔽能力、或作為研發新一代煙幕產生器的重要參考數據。

註9 同註4,頁8-14。

核生化防護半年刊第81期

表一 利用每平方英吋 60 磅的高速氣體噴嘴系統於煙道中測試材料的性能參數與遮蔽係數計算

数			·
材料與編號	表面積 (m ² /g) 碳含量 (%)	粒子密度 (g/cm³)	遮蔽係數範圍(m²/g) 0.45-0.65μm 1.06μm 3.0-5.0μm 8.0-14.0μm
ASBURY A-98 SYNTHETIC	11-15 99.6% C	2.23	0.82~0.95
ASBURY MICRO 150 SYNTHETIC	22-25 82.4% C	2.28	2.69~1.1
ASBURY MICRO 250 SYNTHETIC	18-20 99.9% C	2.27	1.64~1.61
ASBURY MICRO 260 SYNTHETIC	17-22 99.9% C	2.27	1.70~1.65
ASBURY ULTRA FINE 440 SYNTHETIC	≒84.7 99.5% C	2.27	0.79~0.88
ASBURY MICRO 450 SYNTHETIC	25-30 99.1% C	2.27	1.91~1.79
ASBURY MICRO 460 SYNTHETIC	22-28 99.5% C	2.27	1.85~1.76
ASBURY 508 NATURAL	18-20 83.2% C	2.28	1.06~0.70
ASBURY MICRO 750 NATURAL	10-15 96.5% C	2.29	2.00~1.72
ASBURY 999 NATURAL	∆ 83.3% C	2.28	2.17~1.06
ASBURY 3203 NATURAL	10-15 96.3% C	2.29	1.39~1.46
ASBURY 3204 NATURAL	8-14 96.4% C	2.29	0.72~0.91
ASBURY 3442 NATURAL	12-18 96.8% C	2.29	1.77~1.76
ASBURY 7101 NATURAL	7-11 99.8% C	2.23	0.72~0.80
CIBA-GEIGY 6154 SYNTHETIC	≒13.3 99.9% C	2.30	1.74~1.78
CIBA-GEIGY 7525 SYNTHETIC	21.0 99.9% C	2.30	2.11~2.14

	2.27	1.95~1.95	
	2.27	2.04~2.09	
)).)/0 C			
\wedge	2.27	2.10~1.06	
\wedge			
97 0% C	2.27	1.26~1.43	
\ \ \			
97 0% C	2.27	1.39~1.56	
	2.27	1.34~1.55	
	2.27	1.75~1.81	
· · ·			
	2.27	1.42~1.54	
1 -			
	2.27	1.28~1.42	
	2.25	2.35~2.06	
≒ 20			
99.9% C	2.26	2.24~2.22	
≒20			
99.9% C	2.26	2.29~2.31	
≒ 18	2.25	1 20 1 55	
99.9% C	2.25	1.39~1.55	
≒ 11	2.24	1 41 1 64	
99.9% C	2.24	1.41~1.64	
≒ 14	2.24	1.10, 1.27	
99.9% C	2.24	1.19~1.36	
≒ 15	2.24	1 21 1 25	
89.9% C	2.24	1.21~1.35	
≒ 12.5	2.21	1.56. 1.55	
99.8% C	2.21	1.56~1.55	
≒28.9	2.22	1 (0, 1, 10	
78.0% C	2.22	1.68~1.10	
≒ 25.0	2.22	1 (0, 1 00	
85.0% C	2.22	1.69~1.09	
	99.9% C ⇒20 99.9% C ⇒18 99.9% C ⇒11 99.9% C ⇒14 99.9% C ⇒15 89.9% C ⇒15 89.9% C ⇒12.5 99.8% C ⇒28.9 78.0% C ⇒25.0	99.5% C △ 99.9% C △ 2.27 △ 97.0% C 2.27 △ 97.0% C 2.27 △ 97.9% C 2.27 △ 97.9% C 2.27 △ 99.4% C 2.27 △ 99.1% C △ 99.1% C △ 96.0% C ⇒24.7 99.9 ⇒20 99.9% C ⇒20 99.9% C ⇒18 99.9% C ⇒11 99.9% C ⇒12 ⇒15 89.9% C ⇒15 89.9% C ⇒12.5 99.8% C ⇒12.5 99.8% C ⇒2.24 ⇒15 89.9% C ⇒2.24 ⇒15 89.9% C ⇒2.24 ⇒15 89.9% C ⇒2.24 ⇒2.24 ⇒2.24 ⇒2.24 ⇒2.24 ⇒2.24 ⇒2.26	

SUPERIOR 4739 CRYSTALLINE VEIN	≒8.5 96.6% C	2.20	0.85~0.97
SUPERIOR 4939 CRYSTALLINE VEIN	≒12.5. 99.8% C	2.20	0.98~1.12
SUPERIOR 5039 SYNTHETIC	≒14.7 99.0% C	2.20	1.35~1.23
SUPERIOR 5539 SYNTHETIC	10-15 99.8% C	2.13	1.02~1.16
SUPERIOR 8539 CRYSTALLINE FLAKE	≒10.79 98.0% C	2.20	0.97~1.10
SUPERIOR 9039 DESULCO	≒17.7 99.5% C	2.20	1.09~1.13
SUPERIOR SF-39 CRYSTALLINE FLAKE	≒15.0 98.0% C	2.20	0.94~1.05

資料來源: J. F. Embury, D. L. Walker, C. J. Zimmermann, "SCREENING SMOKE PERFORMANCE OF COMMERCIALLY AVAILABLE POWDERS I.INFRARED SCREENING BY GRAPHITE FLAKE", NTIS, 1993, pp.8-14.

(三) 遮蔽實驗參數計算規則10,11

煙幕對紅外光波遮蔽效能的量化可以透過朗伯-比爾定律 (Lamber-Beer Law) 解釋,其方程式為 $\alpha=(1/CL) \times \ln(1/T)$,利用煙道實驗室中所測得的基本參數包括:煙幕微粒濃度 $C\left(g/m^3\right)$ 、紅外光波對煙幕的穿透率 $T\left(\%\right)$ 與光波行經的路徑長 $L\left(m\right)$,帶入公式計算後可獲得遮蔽係數 $\alpha\left(m^2/g\right)$ 值。從上述方程式關係中可以發現,紅外光波受到煙幕中懸浮微粒影響,所以穿透率隨煙幕微粒濃度與光波行經的路徑長之增加而降低,遮蔽係數 α 值變大,也就是紅外光波穿透能力愈低,遮蔽材料效能則愈強。

(四)美軍未來煙幕遮蔽效能要求

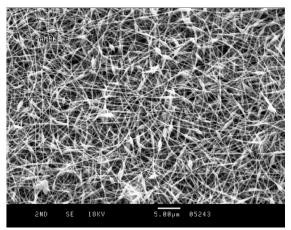
由於美軍作戰講究部隊防護與機動安全,所以在對煙幕遮蔽材料的發展上相當嚴苛,對反制紅外光波的遮蔽係數值必須在 1.5 m²/g以上,毫米波則必須達到 2 m²/g以上;而且在反制紅外波段的材料上則須具傳導性,例如黃銅、鋁、石墨等薄片或者細尺寸的導電纖維。而反制毫米波的材料就必須具有散射或吸收的能力,例如微細金屬絲、鍍金屬纖維或碳纖維與導電高分子等,而且這些反制光電偵測的材料都必須經過煙幕微粒大小、穿透率、電磁

註10 同註4頁22。

註11 蔡長壽、王惠龍、彭福明,「煙幕油(SGF-2)之特性研究報告」,中山科學研究院第四所,民國81年12月5日,頁7。

頻譜範圍、懸浮能力與遮蔽模擬等五大測試,以嚴謹實驗的可信度,確保部 隊與設施的防護安全(如表二)。

	7	1 1 1 2 1 1 2 1 1 2 1	<u> </u>	
技術	對美軍不可缺少的最 低軍事參數水準保證	不可缺少的材料	專用測試	軟體
中、遠紅外線散射吸收	紅外遮蔽係數>1.5 材料填充密度要>50% 分散效果要>50%	1.導電性薄片: 銅、鋁、石墨 2.細微直徑的導電 纖維	浮質測試 煙道測試 穿透率範圍	遮蔽
毫米波散射	毫米波遮蔽係數>2	1.細微金屬絲 2.金屬塗層的纖維	牙迈罕軋困 測試 懸浮測試	模 型
毫米波吸收	材料填充密度要>50% 分散效果要>50%	1.碳纖維 2.導電高分子	[您 / 例 试	


表二 美軍遮蔽材料在軍事上的技術參數

資料來源:轉譯 http://www.dtic.mil/mctl/MCTL/Sec15all.pdf

目前美軍委請自然科學股份有限公司新英格蘭商業中心(Physical Sciences, Inc. New England Business Center)在亞伯丁試驗場(Aberdeen Proving Ground),研發能夠於水中自然分解且具環保效能的高分子材料。這種新型的煙幕材料要求遮蔽係數值必須達到 4 m²/g外(註12),如圖三。除了具有吸收電磁頻譜的能力外,同時也具有一定的環保指標意義。目前用於M56A1/E1 渦輪發煙機毫米波(Millimeter Wave,MMW)模系統組測試上的材料是以聚丙烯腈為基材的碳纖維(PAN-BASED carbon fiber)(註13),以降低對環境的污染與人體健康影響。

註12 Susan T. P. Gardner*, Kristen J. Mulherin, Alan H. Gelb, W. Terry Rawlins, and Mitchell R. Zakin," CONDUCTIVE POLYMER BLENDS FOR NONTOXIC OBSCURANT MATERIALS", Physical Sciences, Inc.and US Army Edgewood Chemical Biological Center.

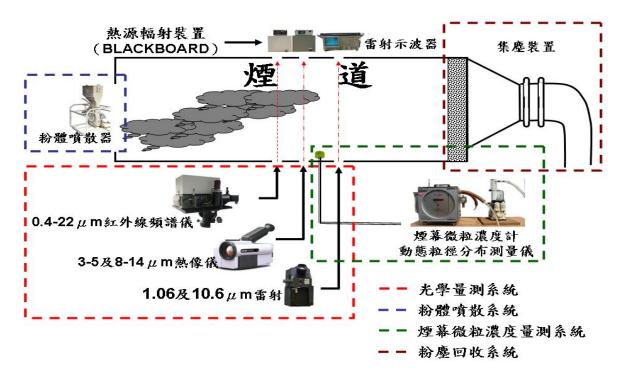
註13 N. A. Chester, M. V. Haley, C. W. Kumas, R. T. Checkai, Assessing Toxicity of Obscurant Grade Pan-Based Carbon Fiber Aquatic Species Chronic Tests., Edgewood Chemical Biological Center, Aberdeen Proving Ground, NTIS, 2004.

圖三 電子顯微鏡下可於水中分解的高分子遮蔽材料 圖片來源:同註 9。

三、我國煙幕遮蔽實驗效能評估模式發展之芻議

我國煙幕材料發展的研究機構目前僅中科院,雖投入研究距今已超過 10 年,惟世界各國均將煙幕科技文獻列為機密,因此文獻資料庫有關煙幕科技發展的資料並不多見,因此,透過美軍 ECBC 對於石墨的遮蔽實驗設計與流程提出個人的淺見,希望對未來的煙幕科技發展有所助益。

(一)更新煙道實驗室的設計

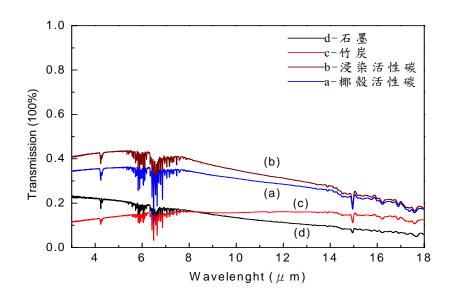

依據美軍實驗室的煙道設計模式,概區分粉體噴散系統、煙幕微粒濃度量測系統、光學參數量測系統、微粒尺寸分布量測系統與集塵裝置等五項,因此未來國內煙道實驗室的設計,除參考美軍實驗設計外,研擬將煙道實驗室的煙道本體設置於室內,除減少受到外界天候、環境影響與干擾外,也可提供完整的工作時段,對遲滯的煙幕科技而言,將會有有很大的助益。

煙道光學偵測系統設計除針對近紅外 $(0.45-0.75 \mu m)$ 、中紅外 $(3-5 \mu m)$ 、遠紅外 $(8-12 \mu m)$ 光波段與 $1.06 \mu m$ 、 $10.6 \mu m$ 的軍用雷射波段外,(註14) 另應提高頻譜範圍至毫米波,(註15) 以強化未來煙幕能夠反制紅外、雷射及更高頻譜的光電導引武器偵測系統,而且光學儀器設計具機動性,可配合戰術性能實施野外實測,提高部隊對煙幕防護的信心。

煙道本體內部設計採恆溫控制系統,可調控溫度、相對濕度,並設置流場風量變化系統,模擬野外實際風力與風速,營造大氣環境,同時為使實驗時對環境不會造成污染與公害,煙道末端設置微粒集塵裝置與粉體粒徑分布儀器,除可將實驗粉體回收處理,減少污染外,也可透過粒徑分布情形,探討光學遮蔽所需的最佳粒徑尺寸,建立可以量測完整遮蔽材料參數且符合國際實驗認證的環保煙道實驗室,如圖四。

註14許波、時家明、汪家春、袁忠才,「光電對抗中的煙幕技術」,《彈箭與制導學報》, 第 22 卷第 2 期,2002 年,頁 79。

註15向敬成、張明友編,《毫米波雷達及其應用》,國防工業出版社,2005年,頁2。 毫米波頻段目前尚無精確定義,通常將30-300GHz的頻域稱爲毫米波,但是IEEE在 1976年頒布的標準中係將40-300GHz作爲毫米波的標準頻率範圍。


圖四 煙道實驗室系統設計規劃示意圖 資料來源:筆者參考美軍與中科院煙道實驗室後修訂規劃

(二) 煙幕材料效能評估

筆者利用煙道實驗室,將國內自產的椰殼顆粒活性碳、浸染活性碳、 竹炭與現役M56 渦輪發煙機抗紅外線的石墨,依據文獻先行完成材料粉體研磨、表面積測定、結構微觀等物理性質與化學成分分析後,實施粉體遮蔽性能實驗,透過Lamber-Beers定律,將粉體對紅外光波的遮蔽效能予以量化。(註16)

首先,將煙道實驗室中測得的煙幕微粒濃度 C、紅外光波對煙幕的平均穿透率 T(如圖 5)與光波行經的路徑長 L,帶入 $\alpha = (1/CL)$ $\times ln$ (1/T) 公式中,計算出遮蔽係數 α (m2/g) 值,透過遮蔽係數值可以鑑別材料的良窳。例如石墨與竹炭在中、遠紅外波段,平均穿透率約在 12-21% 間,遮蔽係數值則介於 $1.0\sim1.6$ 之間,而椰殼顆粒活性碳與浸染活性碳平均穿透率約在 $29\%\sim42\%$ 間,遮蔽係數值僅 $0.2\sim0.4$ (詳如表三)。因此,我們可以利用煙道的粉體遮蔽性實驗,透過實驗獲得的參數計算各種粉體材料的遮蔽係數值,瞭解各種粉體材料的遮蔽性能,未來值得投入研究。

註16 辛毓民,「抗紅外線煙幕材料特性與應用研究」,《國防科技研討會論文集》,2005 年 11 月。

圖五 透過紅外線頻譜儀量測中、遠紅外波段對煙幕穿透率變化情形 圖片來源:作者實驗數據

+ -	+	・キルート	小波段平均	, 炉 禾 は	5 始上1	. 竺 凇 汨	14 11 14]遮蔽係數
衣一	44	* なお なし タ	下波粉干匙	一牙粉丝	产班訂	具獲得	- 61 12:	17点 浙 1余 野
1		~~~		/ / / ~ _	7 7 7 1	71 JX 13	77 1 .	

, , , , , , , , , , , , , , , , , , ,	<u> </u>	1 77 0 1	71 21 71 32 11 44 1	V C 114-C 11 X 2 2
區分	濃度 C (g/m ³)	光波通過 路徑長 L(m)	平均穿透率 T	平均遮蔽係數 α (m ² /g)
			3-5µm	3-5µm
			8-14µm	8-14μm
石墨	0.27031		21.984%	1.05819
2 型	0.27031		12.513%	1.63311
椰殼顆粒	0.45385	2.3	35.170%	0.43476
活性碳			29.843%	0.50309
浸染活性碳	0.59091	2.3	42.151%	0.27606
			33.190%	0.35244
竹炭	0.33562		12.781%	1.15873
		<u> </u>	15.898%	1.03463

資料來源:筆者實驗數據

三、建立國內煙幕遮蔽材料資料庫

鑒於國軍煙幕部隊所使用的抗紅外線遮蔽材料—石墨,必須由國外進口,獲得期程受限外,影響任務遂行。因此,基於國防工業自主原則下,材料獲應可朝向自主生產方面探討。依據美軍對石墨遮蔽效能的分析研究報告,我們可以選擇國內產製類同、價格低廉的碳(炭)類材料,透過表面積測定、材料組織結構微觀、元素分析、粒徑分析等物理特性與化學組份分析,以瞭解所選擇的遮蔽材料是否符合文獻規範並評估其優劣,再實施粉體遮蔽性實驗,以篩選適合投入研究的煙幕材料,並依據各項實驗數據與驗證成果,

除建立研究步驟與方法外,更可投入完成煙幕遮蔽材料資料庫的可行性,以 提供未來煙幕產生器研改或緊急狀況下的煙幕替代材料。

參、結論

長久以來,國軍煙幕的遮蔽效能,一直無法提供透過儀器來量化的科學數據,以證明煙幕確實能夠反制光電偵測的能力,也造成各級長官對煙幕遮蔽效能不信任的看法。我們從美軍對石墨的遮蔽實驗發現,煙幕的效能是能夠計算的,而且可以找出每種遮蔽材料反制光電偵測的遮蔽係數—α值,同時,我們也發現即使是相同性質的遮蔽材料,也會因為微粒尺寸、表面積、加工過程、大氣中的沉降速度不同等,而具有不同的遮蔽係數。因此,透過美軍的實驗模式,我們可以選擇適合本島地理環境、符合環保條件、國內產製、價廉、遮蔽效能高的煙幕遮蔽材料,透過煙道粉體遮蔽實驗,建立各種遮蔽材料實驗數據資料庫,未來將可提供煙幕產生器更新或投入更高頻譜遮蔽材料研發的工作,提升國軍未來煙幕科技與水準。