題目:從反裝甲火箭彈發展現況,論本軍部隊反裝甲戰力提升

作者簡介:

陳德菖上尉,陸軍官校正93年班,ROTC5期,曾任排、連絡官、教官,現任職於陸軍步兵學校反裝甲小組教官。

提要:

- 一、反裝甲火箭發展一日千里,精密武器動輒造價數百萬美金,但並非適合每 一國家的現實狀況,且由戰史得知,簡易耐用的單兵武器在現代戰爭中仍 佔一席之地,步兵使用之反裝甲火箭彈即為一例。
- 二、二次世界大戰後,單兵反裝甲火箭日益普遍,但戰場上裝甲車輛的裝甲防護不斷加強,開啟了裝甲與反裝甲武器對峙發展和相互競爭的局面。
- 三、反裝甲武器選擇不應「單一化」,必須針對武器裝備的特性(尤以穿甲厚度與有效射程),彈性部署與運用,以形成防護縱深,有效攻擊敵之戰車。

關鍵詞:反裝甲、主動式防禦、筒式武器、藥型罩

壹、前言:

1973年10月第四次中東戰爭^{註1},以色列軍隊於戈蘭高地,面對敘利亞裝甲部隊時,利用預設反裝甲陣地與M72反裝甲火箭彈,有效打擊與遏止敘利亞軍隊,奠定爾後勝利的基礎。1994年12月11日車臣戰爭^{註2},俄羅斯近四萬名部隊進軍車臣包圍其首都格羅茲尼。車臣游擊隊運用城鎮作戰之特性,配合「小群」、「多路」的游擊戰法,有效運用RPG火箭發射器與步、機槍,成功抗擊俄羅斯正規軍。俄軍某旅26輛坦克中有22輛被摧毀,116輛步兵裝甲車最後能完整撤出城的只有21輛。

前述之史例,除展現出以弱擊強、以寡擊眾的不對稱作戰一數,另一方面則凸顯物美價廉、簡易耐用的單人操作的反裝甲武器依然未退出現代戰爭,步兵使用之反裝甲火箭彈即為一例。而本文研究目的,首在分析現今反裝甲火箭彈之發展概況,其次是針對本軍現行營級部隊使用之反裝甲武器性能、諸元等,探究是否符合未來戰爭之需求,並綜合整理前述之研究,提出個人對強化營級反裝甲戰力之意見。

貳、反裝甲火箭彈發展概況:

據史料記載第一輛戰車(英國馬克I型)於第一次世界大戰中(1916年)出現^{並4},並成功突破「塹壕戰」僵局。第二次世界大戰中,德國以戰車「閃電戰術」重創了美、英、蘇等國家的軍隊,各國開始研製各式的反坦克武器。二次世界大戰後,裝甲車輛的防護力不斷加強,開啟了裝甲與反裝甲武器對峙發展的局面。

一、第一代反裝甲火箭彈-1942年至1960年初 #5

1942年,火箭彈始祖(巴祖卡) ^{並6}—美國「M1式火箭筒」(圖一)因反戰車的需要而問世,在北非突尼斯戰役中對付德軍戰車,功績卓越其特點為採用鋼質發射管比較笨重,到了50年代,火箭筒得到進一步發展,有效射程達到200~400公尺,穿甲厚度達20~30公分,典型產品有美國的M20式、蘇聯的RPG-2式、瑞典的卡爾·古斯塔夫M2式和德國的鐵拳系列火箭筒(圖二)等。

^{註1} www.news.cn 新華網,中國青年日報,2008年12月29日,摘錄自謝朝輝、羅慶旺<戰後世界重大軍事事件始末>

^{胜2}胡裕華,<城鎮巷戰新武器簡介>步兵季刊,94年,218期,頁33

註3「不對稱作戰」:分利用國家軍事戰略、武器技術和軍、兵種力量上的各種優勢,積極尋找對手軍事力量中的薄弱環節,揚長避短、以強擊弱、避實擊虚,以最小的代價達成戰爭的目的,黃欣榮<創新不對稱思維之研究>,步兵學術季刊,99年236期,頁1

^{註4} 羅傑。福特,〈戰車-陸戰之王的過去與未來〉《艱難的誕生歷程》,2010年4月,頁11

赴5 黄守銓, 下榮宣〈世界軍武發展史.輕兵器篇〉《裝甲車輛的近程剋星─火箭筒》, 2004年3月, 頁 250

^{註6} 同註 4, 頁 243

圖一:M1式火箭筒(巴祖卡)

資料來源:http://www.hudong.com/wiki hudong互動百科,軍事,巴祖卡火箭筒。

圖二:鐵拳100式30mm火箭筒

資料來源:馬汀。道格提<世界武器大觀—輕型經典武器圖鑑>,明天國際圖書有限公司, 2008年12月,頁206-207

二、第二代反裝甲火箭彈-1960至1970年代

新材料、新工藝和新原理的應用^{並7},使反裝甲火箭彈迅速發展。第二代 火箭彈品質較佳,穿甲厚度增加,發展出筒彈一體、兩截式結構及性能更優 異的重覆裝填式等^{並8}。如美國的M72A系列、法國的F1、蘇聯的RPG-7系列(圖三)、西德的鐵拳44—2A1、中國的70式62mm火箭發射器以及79式70mm 手持反坦克火箭等。

圖三:俄羅斯RPG-7V

資料來源:http://jczs.sina.com.cn2006年05月31日09:29 國外坦克

^{誰7} 第二次世界大戰後,西方先進國家的工業快速發展,到 1960-1970 年代發展達至最高峰,「工業形式」或「新現代主義」的設計,都是對新技術、新材料的運用與體現

^{註8} 馬汀。道格提<世界武器大觀—輕型經典武器圖鑑>,明天國際圖書有限公司,台北,2008 年 12 月,頁 210 第 3 頁,共 14 頁

三、第三代反裝甲火箭彈-1980年代初至今雖

1980年代初期,因裝甲防護技術不斷提升與改進,如複合、反應式裝甲的出現^{並10},且地面戰場的裝甲車輛運用日益增加,若僅依賴數量少且昂貴的反裝甲飛彈,將無法滿足反裝甲戰鬥需求。因此各國加速研究與發展第三代反裝甲火箭彈(如附表一),其特點如下:

一增加穿甲威力:

第二代反裝甲火箭彈其穿甲厚度均在20-30公分之間,無法有效剋 制現今戰甲車輛。因此透過下述技術提昇火箭穿甲及破壞效能。

1.加大彈頭直徑:為使穿甲效能提升,彈頭直徑加大則是一項既簡單 又具效益的技術,故世界各國即增加彈頭直徑至80-120公釐,使穿 甲能力獲得提昇,例如:法製APILAS口徑112公厘,穿甲厚度達72公 分,瑞典製「卡爾、古斯塔夫」火箭彈(圖四)口徑135公厘,穿甲厚 度達90公分。

圖四:卡爾、古斯塔夫火箭彈

資料來源:http://www.hudong.com/wiki hudong互動百科,軍事,卡爾。古斯塔夫武器系統

2.改良引信作用模式 ill: 在彈藥前端加裝探針式的延遲引信,當彈藥 撞擊如裝甲車等密度較高的硬質目標能瞬間啟爆;若目標是野戰工 事或建築物等軟性目標,彈藥則能透過裝置的延遲,使其進入目標 內部後再行啟爆,以提高破壞效能。如德製鐵拳3型與美製SMAW火箭 發射器(圖五)使用之MK118高爆穿甲彈。

^{註9}同註4,頁254

^{註10}羅傑。福特,〈戰車-陸戰之王的過去與未來〉《艱難的誕生歷程》,2010年4月,頁150

^{註11} 杜微,〈有堅甲:就有利兵—談未來裝甲防護技術新趨勢〉,尖端科技,2007年8月.,276期,台北,尖端 科技雜誌社,頁60-61

圖五: 美製 SMAW 火箭彈

資料來源: Talley 公司武器防禦系統商品簡介,1997年1月

3.優化藥型罩設計:以紫銅為主的傳統單錐藥型罩,改採行雙錐或多錐藥型罩,同時運用冷擠壓^{並12}或旋壓成型工藝技術^{並13},改善金屬噴流的連續性與質量,使穿甲厚度提高15-25%。如美國即利用衰變鈾藥型罩,使AT-4火箭彈(圖六)之穿甲厚度由45公分增加至70公分。俄製RPG-29、法製達特與德製鐵拳3型採用串列式彈頭,其穿甲厚度可達70公分以上,可應付反應式或複合式等現代裝甲。

圖六:AT-4火箭彈

資料來源:馬汀。道格提<世界武器大觀—輕型經典武器圖鑑>,明天國際圖書有限公司,台 北,2008年12月,頁210

二 增大有效射程:

傳統火箭彈有效射程多在200-400公尺間。新一代火箭彈運用光學瞄準具、夜視鏡(法製APILAS)^{並14}取代傳統簡易的機械瞄準具,甚至加裝小型的光電射控系統,不僅提高命中率,並配合火箭彈的拋射藥量將有效射程增加至600公尺以上。中共所研發之PF營用型反裝甲火箭,其有效射程可達800公尺。

^{註12} 陳國光〈彈藥製造工藝學〉《第四章彈體毛坯冷擠壓》,北京理工大學出版社,2004年 10 月,頁 137

^{胜13}王儒策,《第六章彈藥裝藥技術》, 北京, 2002 年 12 月, 頁 216-217

^{註14}同註8,頁214

三提升戰場存活力:

傳統之火箭彈為求射擊時能達無座力效果,以開放式後筒設計,將射擊產生之巨大能量(反作用力)導引至筒後渲洩,但相對也造成特徵明顯的筒後噴火及極高的爆音(如APILAS火箭彈瞬間音爆達180分貝以上)。如此致命的缺點便一一浮現,如易暴露射手位置及無法在小空間(如碉堡、建築物等)射擊,使射手戰場存活率偏低;筒後噴火區域具殺傷力,於戰場使用易傷及友軍,因此如何改良前述之限制因素,則需重新選擇新型的發射裝置。例如運用反衝重物(countermas)技術^{並15}或使用少量推進裝藥方式等^{並16},以降低射擊特徵,提升射手戰場存活率。例如鐵拳3型(圖七)、黃蜂(Wasp-58)(圖八)及AT-4(CS)等火箭彈即可在有條件之密閉、狹小空間使用。

圖七:鐵拳3

圖七:WASP火箭彈


資料來源: 1.沐慈偉〈個人手提反裝甲武器〉,台北,尖端科技,1989年4月56期,頁33 2.法國GIAT公司產品簡介

四多功能、多用途:

經過多年的戰爭經驗,許多國家已體認出多用途火箭彈是有其必要性的,發展以反裝甲火箭彈為例。美國陸軍於1980年代後期,積極研發「多用途個人武器彈藥」(Multi-Purpose Individual Munition, MPIM) $^{\pm 17}$,該型彈藥具備穿甲、爆破、殺傷等效能。其中以美製SMAW火箭發射器、以色列B-300(圖九)、南非FT-5、中共PF98營、連用型反裝甲火箭與俄製RPG-29為代表。

^{誰15} 反衝重物技術,利用後拋的附加物來平衡向前運動的彈丸,如 AT-4(CS)C 筒後方有鹽水用來中和火燄。廖 英輝〈步兵的即時火力支援—肩射反裝甲武力武器〉,全球防衛雜誌,1991 年 4 月,80 期,頁 53

^{誰16}少量推進裝藥方式,利用高低壓藥室設計,火藥利用率提高,對發射筒的強度要求不高,同註 5,頁 258 ^{誰17} 同註 15,頁 52

圖九:以色列B-300火箭彈 資料來源:以色列軍品生產公司產品簡介

附表一:各國第三代反裝甲火箭彈諸元表

世界	世界各國第三代反裝甲(發射器)性能諸元分析概要表								
項次	品名	全重 (公斤)	口徑 (公厘)	有效射程 (公尺)	穿甲厚度 (公分)	夜戰 能力	使用 方式	產製國家	彈藥類別
01	AT-4 火箭彈	6. 7	84	400	40-70	<u> </u>	使用後 抛 棄	瑞典	1.穿甲彈 2.高爆榴彈
02	APILAS 火箭彈	10	112	固定:500 活動:300	72	0	使用後	法國	穿甲彈
03	LAW80 火箭彈	9	94	500	70	X	使用後 抛 棄	英國	1. 穿甲彈 2. 高爆榴彈 3. 溫壓彈
04	WASP 火箭彈	3	165	300	33	X	使用後 抛 棄	法國	穿甲彈
05	FT5 火箭彈	11.3	100	400	65	0	重複用	南非	1.穿甲彈 2.高爆榴彈
06	鐵拳3 火箭彈	12	110	400-600	70-90	0	重複用	德國	1.穿甲彈 2.高爆榴彈
07	SMAW 火箭彈	7. 4	83	500	60-90	0	重複用	美國	1.穿甲彈 2.高爆榴彈
08	B300 火箭彈	8	82	400	60-80	0	重複用	以色列	1.穿甲彈 2.高爆榴彈
09	RPG-29 火箭彈	10	40	300	65	0	重複用	俄羅斯	1 空甲彈
10	PF-89 火箭彈	3. 7	80	300	60	X	重複用	中共	1.穿甲彈 2.高爆榴彈
11	PF-98 火箭彈	13.8	120	800	80	0	重複使用	中共	1.穿甲彈 2.多用途榴彈

資料來源:

- 1.黎春林〈單兵筒式武器〉《國產狙擊手的空間》
- 2.http://www.lantianyu.net/pdf19/ts055038 2.thm《二十一世紀輕武器》
- 3. 馬汀. 道格提〈世界武器大觀—輕型經典武器圖鑑〉,明天國際圖書有限公司 ,台北,2008年12月
- 4. 黄守銓, 卞榮宣〈世界軍武發展史. 輕兵器篇〉《裝甲車輛的近程剋星—火箭 筒》,2004年3月
- 5. 景繼生〈圖說槍·輕武器〉, 文經出版社有限公司, 2009年3月, 第1版
- 6.:http://www.hudong.com/wiki hudong互動百科,軍事
- 7.作者自行整理

參、本軍步兵營級部隊反裝甲能力分析

一、本軍步兵營級部隊反裝甲武器性能特性

為能有效遂行反裝甲戰鬥,近年不斷積極提出新式火箭彈需求,目前各 步兵營級單位配賦之反裝甲武器計有66火箭彈、及分別於84年與87年兩梯次 獲得的APILAS與AT-4火箭彈,其性能諸元如附表二:

表二:本軍步兵營反裝甲武器分析

本軍步兵營(含後備部隊)反裝甲武器分析表							
小四夕份	有效	穿甲	穿甲	配賦	特點	缺點	
武器名稱	射程	厚度	類別	層級	付和		
APILAS 火箭彈	500m	110cm	均質	外島	大口徑,具有光 學、夜視瞄準鏡 設計,可應付全 天候作戰	硬式發射,易曝 露射擊陣地。	
66 火箭彈	200m	25cm	均質	班	操作簡易	射程僅200M	
AT-4 火箭彈	400m	40cm	均質	外島	夜視瞄準鏡設計 ,可應付全天候 作戰,新型AT— 4火箭彈穿甲能 力可達70公分	無明顯缺點	
資料來源:作者自行整理							

二、共軍裝甲部隊與反裝甲火力的配賦

── 共軍裝甲部隊分析:

共軍裝甲部隊始建於1955年代,接收俄國T-54系列戰車後建立初步規模,並在俄國扶持下,藉技術轉移,開始於內部建立組裝工廠、培養相關人才,獲得初步戰車的生產能力^{雖18}。據<光明日報>報導,共軍近年積極整備兩棲機械化步兵師,對我遂行登陸作戰,其兩棲機械化步兵師主要裝備計有63A式水陸坦克、86B式兩棲步兵戰鬥車、92式系列(WZ55)步兵戰鬥車(圖十)^{±19}。90年代起解放軍在88式戰車基礎上研發了96、98、99(圖十一)式等坦克,使其戰力大幅提升(如附表三),99式坦克之科技水平使解放軍追上歐、美等先進國家,現今更名列世界十大坦克之林。以目前解放軍現有服役之各式坦克及步兵戰鬥車,筆者試圖以本軍部隊現有反裝甲武器作一比較(如附表四)。

表三:中共主力戰車(步兵戰鬥車)資料分析

中共現役主力戰車(步兵戰鬥車)基本資料分析表						
名稱	重量	武器口徑	裝甲材質	最高速率	備註	
59式系列	35噸	100mm	均質	50Km/h	履帶型	
63 A 式	22噸	105mm	複合	28Km/h(水上)	履帶型	
69式系列	36. 7噸	100mm	均質鋼板	50 Km/h	履帶型	
79式	36.8噸	105mm	均質鋼板	50 Km/h	履帶型	
80/88C式	38噸	105mm	反應、複合	57 Km/h	履帶型	
86B式	13.3噸	30mm機砲	複合	65 Km/h 7 Km/h(水上)	輪型	
85Ⅱ式	39.5噸	105mm	複合	57 Km/h	履帶型	
85Ⅲ式	42.5噸	125mm	反應、複合	65 Km/h	履帶型	
90系列	16噸	25mm機砲	反應、複合	60 Km/h	輪型	
92式系列 (WZ55)	16噸	30mm機砲	反應、複合	85 Km/h 7Km/h(水上)	輪型	
93式	11~15	14.5mm機槍	反應、複合	70Km/h 8Km/h(水上)	輪型	
98式	51噸	125mm	反應、複合	60 Km/h	履帶型	
VN-1	20噸	30mm機砲	反應、複合	100 Km/h 8Km/h(水上)	輪型	

^{註18}魏宗志,〈共軍坦克發展之研究〉,裝甲兵學術月刊,2008年10月,頁1

^{誰19} 鄧坤誠,〈共軍登陸作戰主力-兩棲機械化步兵師簡介與我精進作為〉,陸軍學術雙月刊,96年4月號,第43卷,第492期,頁52—54

資料來源:

- 1.魏宗志,共軍坦克發展之研究,裝甲兵學術月刊,2008年10月
- 2. 鄧坤誠,〈共軍登陸作戰主力—兩棲機械化步兵師簡介與我精進作為〉,陸軍學術雙月刊,96年4月號,第43卷,第492期
- 3. 劉建宏〈共軍輪型戰甲車發展現況研究探討〉, 裝甲兵季刊, 2010年6月3號
- 4.研究小組自行整理

備註:

- 1.上述90式、92式系列(WZ55)、VN-1系列、均為共軍現役步兵戰鬥車。
- 2. 共同缺點均有防護強度低,對於100mm以上火砲及反坦克飛彈則力防護能力較為薄弱。

圖十:WZ55 輪型防空導彈發射車

圖十一: 99式砲塔有類似豹二A5的楔型裝甲

資料來源: 1.http://big5.china.com/gate/big5/wqzb.military/htm/669html 2.http://military.people.com.cn/GB/42963/53009/4627714.html

附表四:本軍步兵營級反裝甲武器剋制中共各型戰車能力分析

本軍步兵營級反裝甲武器剋制中共戰車(步兵戰鬥車)能力分析表						
武器類別 戦車形式	66火箭彈	AT-4火箭彈	APILAS 火箭彈			
59式系列	V	V	V			
63 A 式	X	×	X			
69式系列	V	V	V			
79式	V	V	V			
80/88C式	×	×	0			
86B式	V	V	V			
85Ⅱ式	×	×	×			
85Ⅲ式	×	×	×			
90系列	×	×	0			
92式系列 (WZ55)	×	×	0			

93式	X	×	×
98式	×	×	×
VN-1	X	×	0

資料來源:研究小組自行整理

備註:

- 1.對剋制共軍現行主力戰車及步兵戰鬥車方面,本軍步兵營級現有配賦之 反裝甲火力稍嫌不足,然大口徑火箭彈如APILAS、新型AT-4火箭彈仍可 對其實施穿甲破壞。
- 本軍反裝甲部隊所配賦的拖式飛彈、標槍飛彈等武器,均為目前先進國家專為克制反應式及複合式等裝甲等類型所研發,對上述主力戰車及步兵戰鬥車均有破壞能力。
- 3. 陸航單位的AH-1W攻擊直升機所搭載地獄火飛彈同為剋制上述裝甲車最佳利器。
- 4. 可運用現行各型反裝甲武器依其射程長短、穿甲特性編組運用,使步兵 營級反裝甲火力效能最大化。

二中共營級部隊反裝甲火力現況分析(如附表五):

中共對於火箭彈及反裝甲飛彈的發展,起步比一般西方國家較晚。初期以仿製蘇聯RPG火箭發射器為主,其中包含69式40公厘、70式62公厘反裝甲火箭。經過多年努力,2000年中共正式研發出PF-98連、營用型火箭發射器(圖十二)^{並19},使中共部隊反裝甲火力獲得提升。

以中共兩棲機械化步兵師為例,整體反裝甲火力火箭彈發展技術,已達 技術成熟階段,與我相較之下確實較為完備如附表六。

圖十二:PF98 營用型火箭發射器

資料來源:王彥文,<共軍摩步師對濱海城鎮進攻戰法之研究>《陸軍步兵訓練指揮部暨步兵學校96年中共解放軍戰術戰法學術研討會論文集》,民國96年9月21日,頁32

^{誰19} 黄守銓, 下榮宣〈世界軍武發展史.輕兵器篇〉《第六章裝甲車輛的近程剋星—火箭筒》, 2004年3月, 頁 250

表五: 共軍反裝甲火箭彈性能分析

中共反裝甲火箭彈性能研析表							
武器名	有效射程(公尺)	穿 甲 厚 度 (公分)	編配單位				
69式40公厘火箭彈	500	30-35	班				
69式87公厘火箭彈	180	10-20	班				
70式62公厘火箭彈	300	10-20	班				
75式105公厘無座力磁	1096	40-50	連、營				
PF-89火箭彈	300	60	班				
PF-98火箭彈	800	80	連、營				

備考:

PF-98式反裝甲火箭筒擁有穿甲彈及多用途火箭彈二種,前者主要針對裝甲車輛,後者則具備殺傷、燃燒及局部穿甲之功能。主要射擊目標為輕型裝甲車輛多人操作武器及野戰工事等。

資料來源:

- 1. 陳信州《中共地面部隊反裝甲飛彈發展現況簡介》步兵學術季刊,2010 年2月9號。
- 2. 鄧坤誠,〈共軍登陸作戰主力—兩棲機械化步兵師簡介與我精進作為〉, 陸軍學術雙月刊,96年4月號,第43卷,第492期

三、綜析本軍步兵營級部隊反裝甲能力有以下現實問題存在:

→近程反裝甲火力功能單一,戰場生存力弱:

傳統的反裝甲火箭,主要是為了能達到破壞裝甲而多採用「化學能彈」 (彈體內部為「錐形裝藥」),本軍步兵營級反裝甲火箭彈從穿甲厚度分析, 其能力從25至110公分,似乎有相當大的彈性。然面對逐漸跳脫單一性,不 對稱的作戰環境。火箭彈除要能擊穿裝甲外,更要能破壞城鎮建築,消滅盤 據建築物內的敵人,且能遂行全天候作戰。隨著溫壓彈、高爆榴彈等彈藥逐 一出現,各式瞄準具的搭配,反觀本軍火箭彈多屬單一功能、且缺乏優異觀 瞄器材(多為傳統式瞄準具),多樣性明顯不足;再者,硬式發射的模式將 產生巨大聲響與發射形跡(筒後噴火),易為敵所偵測,嚴重威脅射手安全。

二中、遠程反裝甲火力配賦不足:

以美軍營級部隊反裝甲火力為例(如附表六),可得知其現況,有以下 重要特色:

1.以飛彈系統為主要建構核心:

美軍在排以上之單位,配賦了第三代的反裝甲飛彈,如掠奪者飛彈、標槍飛彈與拖式飛彈。因此,「反裝甲飛彈化」應是未來之主流思想

0

2. 反裝甲配置長短相輔:

針對武器裝備的特性(尤以穿甲厚度與有效射程),作一彈性運用配置。易言之,遠程目標首先考慮射程遠、穿甲能力大之武器,反之亦然。

表六:美軍營級部隊反裝甲武器能力分析

美軍營級部隊反裝甲武器能力分析表						
武器類別	有效射程	穿甲厚度	編配單位			
•	(公尺)	(公分)	. , ,			
SMAW火箭彈	500	60	班			
M136(AT-4 CS)火箭彈	400	40-70	班			
M-72系列火箭彈	300	30	班			
拖式飛彈	3. 750	102. 5	連(排)級以上			
標槍飛彈	2000	72	排			
掠奪者飛彈	700	無明確資料	排			
1	100	(據稱可擊穿先進戰車)	97F			

備考:

- 1. 掠奪者飛彈為美軍最新之近程反裝甲飛彈。
- 2. 國軍海軍陸戰隊向美國採購有SMAW火箭彈。

資料來源:

- 1.HEADQUARTERS DEPARTMENT OF THE ARMY, FM 3-21.91(FM 7-91), DECEMBER 2002《美軍反裝甲教則》。
- 2.研究小組自行整理。

然本軍步兵營級部隊除班內配賦66火箭彈之外,排級以上單位均未配賦 射程更遠、穿甲能力更高的反裝甲武器。當目標出現在300公尺以上之目標 ,排、連、營級單位並無有效的支援火力,而需依賴旅或軍團支援。儘管標 槍與拖式飛彈射程達2000公尺與3750以上,只是如此的配賦方式,在運用彈 性上,似乎缺乏全面性與有效的形成反裝甲作戰縱深。

(三)自製能力不足

目前我國僅能自製66火箭彈,且現有之AT-4與APILAS火箭彈,均將屆滿壽限,無論運用於訓練或戰鬥,武器效能均逐漸衰退。反觀軍事強國美國,對於66火箭彈同款的M-72A2式早已停產,而以性能提昇後各型改良款取代。如泰利防衛公司M-72A5穿甲厚度提昇為30公分以上,更針對摧毀防禦工事研發M72NE、M72HH熱鍛破片彈,儘管美軍早已具備強大的武力投射能力,但在考量經濟效益與部隊現實需求前提下,仍積極研發小口徑的反裝甲火箭可見一般。

目前中科院系製中心雖有針對穿甲能力及有效射程,進行新型火箭彈的 研發,然本國反裝甲能力的建立,仍是以外購為主,此一現實狀況,將影響 反裝甲火箭換裝,對戰力運用形成隱憂。

肆、建議:

一、積極研發第三代反裝甲火箭彈,強化部隊反裝甲能力

考量共軍地面武力配賦大量的戰甲車輛,未來我陸軍作戰環境將要有面對敵戰車威脅之心理準備。首先要完成的即是反裝甲能力的強化。尤其針對射程在500公尺以上,2000公尺以內之反裝甲武器的籌獲,更是當務之急。且為能因應未來城鎮作戰的需要^{並20},火箭彈除要能摧毀戰甲車輛外,同時必須要具備摧毀堅固工事、碉堡、建築物等功能。(即同類型之武器,能發射不同類型的彈藥);具備全天候作戰能力,亦是裝備未來發展所不可或缺之重要配件。因此,靈活運用地形、障礙設置與反裝甲武器相互配合,實施面或點的火力制壓,乘敵立足未穩之際,一舉將敵擊滅或打亂其戰鬥編組,以利我機步或裝甲部隊實施打擊,強化部隊的反裝甲戰力為一主要因素。

二、建立反裝甲飛彈化之終極目標:

反裝甲武器依其射程區分,近程1000公尺、中程2000~4000公尺、遠程4000公尺以上。儘管反裝甲火箭彈發展日新月異,然火箭與飛彈就性能與精準效益上有所差別。以美國為例,對於1000公尺以內之目標,也強調飛彈化的重要性。因此美國洛克希德公司於2003年正式成功發展掠奪者(Predator)反裝甲飛彈,2004年起正式出現在伊拉克戰場。該飛彈俱備了第三代反裝甲飛彈的先進特性(如射後不理、頂攻、軟式發射),英國基於美國之經驗,業以同時發展具備如掠奪者(Predator)反裝甲飛彈般性能之NLAW輕型反裝甲飛彈,而該飛彈亦主要在殲滅600公尺之目標。而為了要解決拖式飛彈線導控制之困擾(如天候、地形、火光、煙幕、水氣),並增加射程至4500公尺,美國雷神公司所研發之ITAS,即是針對拖式飛彈整體系統作精進與改良系統,其所使用之RF(射頻),取代線導模式。準此而言,反裝甲武器研發終究要向「飛彈化」邁進。

注20 汪立中《扇射火箭彈之戰術運用》,步兵學術雙月刊,179期,頁50第 14 頁,共 14 頁