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Abstract
This study presents a novel discretization method for converting an analogue controller into its corresponding counterpart for a discrete-time system. The proposed method is appropriate for the natural response curve and, thus, is more effective for certain digitally redesigned systems. Based on the mapping region of the transformation using the proposed method from the s-domain to the z-domain, a transformation involving a modulated parameter n is used to generate a corresponding stable discrete-time controller for a stable continuous-time controller. As a suitable modulated parameter in the proposed transformation is selected to digitalize an analogue controlled system, the new sampled-data controlled system achieves a precise discrete-time response, and also can tolerate a large sampling period for sample-data implementation. A simulated example is used to demonstrate the results.
Keywords: discretization, digital redesign, transformation.
摘要

這篇論文提出了一個新的控制器從類比轉換到離散的方法，因所提之方法是擷用系統響應曲線之特性，所以對某些數位重設計系統將顯得更為有效。根據所提方法其s到z領域的轉換關係式中，牽涉一調變參數，其可被使用去得到一穩定的離散控制器。當一適當的調變參數值被選取於所提之轉換關係式中，並去數位化一類比受控系統時，這新的取樣資料受控系統會是一個精確的離散時間響應，且其可容忍以相對較大的取樣週期去完成連續資料的被取樣。一個實例將被模擬去驗證這些結果。

關鍵詞：離散化、數位化重設計、轉換關係式。
1. Introduction

Most controller designs are based on the continuous-time model, for which numerous theories and practical methods have been devised [1]. These controllers must often be refit with digital tranceducers and digital electronics for implementation [2]. For effective digital implementation of the designed continuous-time controller, the continuous-time controller must be converted into an equivalent discrete-time controller, ensuring that the states of the redesigned equivalent digital system closely match those of the original system given the same inputs and initial conditions [3, 4]. The growing popularity of high performance and low cost microprocessors have increased the importance of the digital redesign problem in real engineering applications. However, the sampling operation modifies the characteristics of the digital responses. Furthermore, the sampling may influence system stability. Although a continuous-time system is stable, the digitally redesigned version of it will become unstable if the sampling period is not sufficiently small [2, 5]. In redesigning a practical control system, a larger sampling period is necessary because of device limitations or considerations of computational time and system cost. Consequently, an increased tolerance for using sampling period is a key problem in digitally redesigned systems, and the bounds of the applied sampling period in a redesign system are also an attractive subject for investigation. This study presents a modulated sine numerical integration method is presented for digitalizing a continuous-time controlled system. A transformation from the continuous domain to the discrete domain via the proposed method is achieved, and the mapping relationship of the stable region is also discussed. A simulation is performed to demonstrate the effectiveness of the proposed method, particularly in digitalizing an analogue system with a relatively large sampling period.
2. Mapping transformation for A digital model
Consider an analogue controller described by the transfer function 

[image: image140.wmf] 

2

A

 

e

 

d

 

a

 

c

 

kT

 

kT

+

T

 

y

(

t

)

 

t

 

b

 

1

A

 


　　　　　　(1)

where 
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 is constant. The above transfer function also can be represented as the following differential equation
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Suppose the sampling period T is utilized to determine the value of u(t), a difference equation from equation (2) then is obtained as
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Several well-known numerically integrated methods can obtain the value of each continuous-time integral term on the right-hand side of equation (3), for example the forward, backward and trapezoid (bilinear or Tustin transformation) numerical integration methods, and so on. The conventionally adopted bilinear method assumes that the sampled data always form a straight line in a continuous integration. Accordingly, in a continuous-time integration, if the most of the available sampled data form a straight line or a low-order curve, then applying the bilinear method will produce a smaller error in discrete processes and be effective in discretizing a continuous-time controller. Consequently, the bilinear integration method generally achieves good performance as a smaller sampling period is used to discretize a system than for other discretized methods; the performance is good because in a smaller sampling interval, the sampling data in a continuous-time integration forms a very slight curve, not so different to a straight line. Meanwhile, the bilinear integration method is unsuitable for systems with larger sampling periods since it will produce greater error in the discrete process. However, the actual sampled data in a continuous-time integration generally form an ark, the magnitude of which frequently varies owing to different system models and sampling periods. These arc curves obviously often resemble some part of a modulated sine function curve, since the modulated sine function significantly influences oscillation responses for stable systems.

Assuming a controlled system is described as shown in Fig. 1 
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Fig. 1   Compensated controlled system

where 
[image: image5.wmf])

(

t

r

 and 
[image: image6.wmf]()

yt

 are the input and output of the controlled system, and 
[image: image7.wmf]()

et

 and 
[image: image8.wmf]()

ut

 are the input and output of the controller, respectively. Based on the feedback control theorem, the transfer functions of 
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.The above equations can be used to derive the characteristic equation 
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, demonstrating that all of these equations share the same roots. If the controlled system is stable, the characteristic roots of the characteristic equation must be located in the left-half of the s-plane, and the negative real part of characteristic roots will cause the time-domain responses of 
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 to gradually converged with the exponent function. If the characteristic roots of the stable system have image part, the time-domain responses of 
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 gradually converge with an oscillation form. Scanning the whole convergent oscillation response process of 
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 with the viewpoint on the segmental curves reveals that the segmental responses of 
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 in most sampling intervals resemble an arc curve, as displayed in Fig. 2a.

Consequently, the precise integral area of 
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 in a sampling interval can be assessed by the proposed numerical integration method, as follows:
Let 
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 denote the time-domain response of a stable system. Considering the integral area of 
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Since the response factor in 
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 consists of the modulation sine function and convergent exponential function, the response of 
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 is contained in a sampled interval which generally forms an arc curve, and these arc curves frequently resemble the shrinkage of a sine function curve, a modulated sine function is applied for approaching these arc curves. For Fig. 2a, the continuous-time integration area of an arc curve sampling interval can be derived based on the rectangular area A1 (area abed) and the modulated sine area A2 (area bce with dash arc). Area 
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 and area A2 is assessed as follows: Let At denote the triangular area △bce which is particularly considered with A2 in Fig. 2b, and show a useful relation between modulated curve area A2 and At. The horizontal coordinate values of points b and e are with 
[image: image38.wmf]0

t

=

 and 
[image: image39.wmf]tT

=

, respectively, and let point c denote the corresponding point on a modulated sine function sin(nt) with 
[image: image40.wmf]tT

=

, where n is the modulated parameter. The triangular area At can be derived as
[image: image132.wmf] 

 

 

 

 

 

 

C

(

z

)

 

P

(

z

)

 

r

(

kT

)

 

+

 

_

 

y

(

kT

)

 

e

(

kT

)

 

u

(

kT

)

 

Fig.  2a An arc curve sampling internal response
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Fig. 2b  Modulated sine area 
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and the modulated sine area A2 is
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Moreover, the correlation of A2 and At yields
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Thus, in Fig. 2a, the area A2 is
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Based on the above geometric method, the continuous-time integration area of equation (3) is
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The z-transform of equation (6) is
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where 
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, and its discrete-time transfer function yields
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Comparing equation (1) and (8) reveals that the relationship between s and z is
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Equation (9) shows how the newly modulated sine function transformation from the continuous-time domain to the discrete-time domain can be derived.
Notably, the left half of the s-plane ( Re(s)<0 ) is mapped into the region
By substituting 
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Rearranging (10c) obtains
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where
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Clearly, the transformation using the modulated sine function method can map the left half of the s-plane into a circular region with center 
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, and the mapping region (with dash circle) of the z-plane is within the unit circle, as illustrated in Fig. 3.
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Fig. 3  The mapping region in z-plane (dash circle) via modulated sine transformation

Therefore, while satisfying the restricted condition of 
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, an appropriated modulated parameter n can be applied to the proposed transformation, which can be used to derive a stable discrete-time controller for a stable continuous-time controller.
3. Illustrative example

Consider the continuous-time controlled system using the designed compensator [6, 7] as shown in Fig. 1.

The reference input r(t) is a unit-step function, the controller is
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and the plant is
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According to the well-known bilinear transformation, the discrete-time controller is
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Also, by the proposed transformation in equation (9), the discrete-time controller is
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Another discrete-time controller based on the Boxer-Thaler transformation [8] is as follows:
Since the Boxer-Thaler integrators of powers 1 and 2, respectively, are
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C(s) can be rewritten as
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, and substituting the 
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Utilizing a zero-order hold, the discrete-time plant P(z) is 
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The equivalent discrete controlled system is shown in Fig. 4, and the output of the discrete controlled system is 
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Fig.4 The equivalent discrete controlled system

Substituting 
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 denotes the final sampling point in the response section. Respectively substituting 
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 of the three transform methods are evaluated to judge the performance of the sampled-data system. To look for the optimum modulated parameter n of the proposed method using the illustrated example, the value of 
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 must be calculated using different n for different sampling periods. In Table 1, the sampling sets (T=0.1, Kf=30), (T=0.15, Kf=20), (T=0.2, Kf=15), (T=0.25, Kf=12), (T=0.3, Kf=10), (T=0.35, Kf=10) and (T=0.4, Kf=10) are selected to calculate the 
[image: image102.wmf]p

J

 with n=1, 2, 3, 3.5, 3.6, 3.7, 4 and 5, respectively, and the sum of 
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 with n=3.6 has the least discretized error sum, so n=3.6 is the most suitable modulated parameter value of the proposed method for discretizing the illustrated system.

The proposed method with n=3.6 is compared with another two methods, and the simulated results are listed in Table 2. The same sampling sets as listed in Table 1 are also selected to calculated the three error sums; and the output responses of (T=0.1, Kf=15) and  (T=0.4, Kf=8) are, respectively, shown in Figs. 5 and 6 to provide a comparison with one another.
The three discrete output responses listed in Fig. 5 are similar. Furthermore, when a sufficiently small period (say 
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 sec) is used in the present example, the three discrete curves are exactly matched as one which is more close to the continuous curve.
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Fig. 5 Comparison of output response with the sampling period T=0.1(sec.)
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Fig. 6   Comparison of output responses with the sampling period T=0.4 (sec.)
Table 1  Error sum of 
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	T 
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	T=0.1

Kf=30
	T=0.15

Kf=20
	T=0.2

Kf=15
	T=0.25

Kf=12
	T=0.3

Kf=10
	T=0.35

Kf=10
	T=0.4

Kf=10
	Sum of 
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	n=1
	0.1356
	0.2417
	0.3593
	0.4639
	0.5883
	2.0223
	289.44
	293.2511

	n=2
	0.1365
	0.2437
	0.3662
	0.4821
	0.6192
	1.3126
	74.719
	77.8793

	n=3
	0.1367
	0.2471
	0.3784
	0.5162
	0.6917
	1.1456
	7.2383
	10.3540

	n=3.5
	0.1371
	0.2493
	0.3868
	0.5412
	0.7532
	1.2419
	3.6991
	7.0086

	n=3.6
	0.1372
	0.2498
	0.3887
	0.5469
	0.7684
	1.2752
	3.5874
	6.9536

	n=3.7
	0.1373
	0.2503
	0.3907
	0.5530
	0.7846
	1.3138
	3.5630
	6.9927

	n=4
	0.1376
	0.2520
	0.3971
	0.5730
	0.8407
	1.4659
	3.8793
	7.5456

	n=5
	0.1388
	0.2587
	0.4242
	0.6655
	1.1463
	2.6443
	9.9604
	10.0992


Table 2   Errors comparison with different sampling periods T (sec.)
	T 

Errors
	T=0.1

Kf=30
	T=0.15

Kf=20
	T=0.2

Kf=15
	T=0.25

Kf=12
	T=0.3

Kf=10
	T=0.35

Kf=10
	T=0.4

Kf=10
	Sum of Errors
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(n=3.6)
	0.1372
	0.2498
	0.3887
	0.5469
	0.7684
	1.2752
	3.5874
	6.9536
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	0.1355
	0.2411
	0.3570
	0.4581
	0.5802
	2.5318
	438.89
	443.1937
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	0.1396
	0.2555
	0.4001
	0.5692
	0.8101
	1.5868
	7.5630
	11.3243


It is interesting to gradually increase the sampling period T. As listed in Table 2, the three sampled-data output errors 
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 increase with the sampling period. The error 
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 is largest when sampling period 
[image: image118.wmf]0.3

T

<

 sec, followed by the error 
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 given 
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, and finally by error 
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. In this sampling interval, the system of sampling data via the bilinear transform method exhibits the best performance, followed by the modulated sine method and finally the Boxer-Thaler method. However, when 
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 with 
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. Thus, in this sampling interval, the proposed method performs best when applied to sample data, followed by the Boxer-Thaler method, and finally the bilinear method.

Fig. 6 (
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=

) shows that 
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 is divergent and 
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 is convergent and has a larger error than 
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 with 
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Fig. 5, Table 2 and Fig. 6 reveal that a discrete controlled system via the proposed transform method with a suitable n displays good performance in discrete-time response and tolerates a wider sampling period for sample-data implementation.
4. Conclusion

This study presents a novel modified bilinear integration algorithm based on the modulated sine function for digital redesign of an analogue controller for a sampled-data system. Because the proposed method better fits the actual response curves of a stable system, it is effective in digitalizing an implemented analogue system. The proposed method, the modulated sine numerical integration method and the user can select the value of the modulation parameter in accordance with the defined cost function with a least discretized error sum for a control system. Therefore, through simulation in advance of utilizing a suitable modulation parameter in the proposed method, the discrete-time mode will demonstrate a precise sampled-data response, and will also tolerate a wider sampling period for sampled-data implementation. In fact, the modulated parameter n of the proposed method also can be tuned in accordance with different sampling periods when applied to digitalize an analogue controlled system, and its corresponding sampled-data response is closer to the original analogue response than that of the bilinear and Boxer-Thaler methods.
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