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Abstract
This paper examines the problem of robust passive control for discrete-time uncertain multi-rate control models with interval time-varying delay and time-varying norm-bounded parameter uncertainties. For the robust passive problem, attention is focused on the design of remote and local state feedback controllers which guarantees the passivity of the closed-loop system for all admissible uncertainties. A linear matrix inequality (LMI) approach is developed to solve this problem, and delay-dependent passivity conditions for the solvability are obtained. It is shown that the desired remote and local state feedback controllers can be constructed by solving certain LMIs. Finally, a numerical example is given to illustrate the effectiveness and applicability.

Index Terms—Interval time-varying delay, linear matrix inequality, passive control, parameter uncertainty.

I.INTRODUCTION

Considering the passive control problem, robust passive control for uncertain systems has been investigated by [1]. The passivity theory intimately related to the circuit analysis methods [2] has received a lot of attention from the control community since 1970s [3]-[7]. The passivity theory provides a nice tool for analyzing the stability of systems, and has found applications in diverse areas such as stability [8],complexity [7], signal processing [9], chaos control and synchronization [10]-[11] and fuzzy control [12]. 

As is well known, in modern industrial systems, sensors, controllers and plants are often connected over network mediums [13], which are called networked control systems (NCSs). There are many advantages in NCSs, such as low cost, reduced weight and power requirements, simple installation and maintenance, and high reliability. Accordingly, increasing research interests have been paid to the study of the stability and stabilization of NCSs [13]-[16]. Recently, a dual-rate control scheme for Internet-based control systems has been proposed in [17]. A two-level hierarchy was used in the dual-rate control scheme. At the lower level a local controller which is implemented to control the plant at a higher frequency to stabilize the plant and guarantee the plant being under control even the network communication is lost for a long time. At the higher level a remote controller is employed to remotely regulate the desirable reference at a lower frequency to reduce the communication load and increase the possibility of receiving data over the Internet on time. The local and remote controllers are composed of some modes, which mode is enabled due to the time and state of the network. The mode may change at instant time 
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 and at each instant time only one mode of the controller is enabled. A typical dual-rate control scheme is demonstrated in a process control rig [18]-[19] and has shown a great potential to over Internet time-delay and bring this new generation of control systems into industries. One application of stabilization of remote robust control with delay-dependent results can be found in [20] via a linear matrix inequality (LMI) approach [21]. When switched systems appear in the gain switching matrices, a sufficient condition for the existence of the robust passive control was proposed in [22]. For time delay systems, stability criteria are usually classified into two types: delay-independent criteria and delay-dependent ones. In general, delay-independent criteria are conservative since they cannot handle the systems whose stability or stabilization depends on the size of time delay. However, it should be pointed out that the aforementioned results for [22] are delay-independent and can not design remote and local controllers to stabilize an unstable passive system. Although delay-dependent results on the stabilization of remote robust control systems were presented in [20], no delay-dependent remote and local passive control results on discrete-time uncertain Internet-based systems with interval time-varying delay are available in the literature, which motivates the present study.

 This paper deals with the problem of robust passive control for discrete-time uncertain Internet-based systems with interval time-varying delay. The parameter uncertainties are assumed to be time-varying but norm-bounded. The purpose is to construct remote and local state feedback controllers such that the resulting closed-loop system is robustly passive. Desired remote and local control gain matrices can be obtained by the solution to certain LMIs, which is dependent on the size of the delay. Finally, an illustrative example is provided to demonstrate the less conservatism and effectiveness of the proposed method.  
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 denote the sets of positive integer and nonnegative integer, respectively.

II.Problem Formulation

Consider a discrete-time system with interval time-varying delay described by 
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Moreover, 
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where 
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The system in (1)-(3) can be illustrated as in figure 1. Substituting (5) into (1) for 
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In addition to, when 
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with 
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Furthermore, consider the system in (11) with parameter uncertainties given by


[image: image59.wmf])

(

))

(

(

))

(

(

))

(

(

)

(

))

(

(

)

1

(

k

w

k

C

C

k

h

k

x

k

B

B

k

x

k

A

A

k

x

j

j

i

i

D

+

+

-

D

+

+

D

+

=

+

    　　　　　　　　　                  , (13)

where 
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The uncertain matrices 
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Remark 1: Note that a type multi-rate structure with remote controller and local controller can be shown as figure 1. From figure 1, it is assumed that, the sampling interval of remote controller is the 
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, only, and otherwise, it keeps invariable. In this paper, the sensor is assumed to be clock-driven, the controller and the actuator are even-driven.
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Fig. 1. Multi-rate network control loop with time-delays

In order to obtain our main results, the definition of passivity is given by

Definition 1 [23]: The system in (13) is called passive if there exists a scalar 
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where 
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 is some constants which depend on the initial condition of system.

III.Main Results

This section explores the robust passive control for the discrete-time Internet-based system with interval time-varying delay given in (13). An LMI approach is employed to design remote and local state feedback controllers such that robust passivity of the closed-loop system are guaranteed for all admissible uncertainties 
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 satisfying (13). The analysis commences by using the LMI approach to develop some results which are essential to introduce the following Lemma 1 for the development of our main theorem.

Lemma 1: Let 
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(b) For vectors 
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For any matrices 
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To study the robustly delay-dependent passive control problem for the discrete-time uncertain Internet-based system with interval time-varying delay, the following theorem reveals that such conditions can be expressed in terms of LMIs.

Theorem 1: Given scalars
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Proof: Choose the Lyapunov-Krasovskii functional candidate for the system in (13) as
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Defining the following new variables
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Incorporating (3) into (25) and combining (19)-(22) and (26)-(29), it yields
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Moreover,


[image: image221.wmf]å

-

-

-

+

-

=

k

k

h

k

j

T

j

x

j

x

S

k

1

)

(

))

1

(

)

(

(

)

(

2

h



[image: image222.wmf]å

-

-

-

-

+

£

+

-

=

-

k

k

h

k

j

T

T

T

j

x

j

x

Z

j

x

j

x

k

S

Z

S

k

1

)

(

1

1

1

2

))

1

(

)

(

(

)

)

1

(

)

(

(

)

(

)

(

h

h

t

,    　　　　　　　　　　　　　　　 (31)


[image: image223.wmf]å

-

-

-

-

+

-

=

)

(

1

2

))

1

(

)

(

(

)

(

2

k

h

k

h

k

j

T

j

x

j

x

H

k

h



[image: image224.wmf])

(

)

(

)

(

)

(

1

2

1

1

2

k

H

Z

Z

H

k

h

h

T

T

h

h

-

+

-

£



[image: image225.wmf]å

-

-

+

-

-

+

-

+

-

=

)

(

1

2

1

2

))

1

(

)

(

)(

(

)

)

1

(

)

(

(

k

h

k

h

k

j

T

j

x

j

x

Z

Z

j

x

j

x

,              
(32)


[image: image226.wmf]å

-

-

-

+

-

=

h

k

k

h

k

j

T

j

x

j

x

T

k

1

1

)

(

))

1

(

)

(

(

)

(

2

h



[image: image227.wmf]å

-

-

-

-

+

-

£

-

+

-

=

-

h

k

k

h

k

j

T

T

T

j

x

j

x

Z

j

x

j

x

k

T

Z

T

k

h

h

1

1

)

(

2

1

2

1

2

))

1

(

)

(

(

)

)

1

(

)

(

(

)

(

)

(

)

(

h

h

.     　　　　　　　　　　　　　 (33)
Following from Lemma 1 (a) results in


[image: image228.wmf](

)

)

(

)

(

))

(

(

)

(

)

(

)

(

)

(

2

k

w

k

C

k

h

k

x

k

B

k

x

k

A

H

k

j

i

T

D

+

-

D

+

D

h



[image: image229.wmf])

(

)

(

)

(

2

k

E

k

GMF

k

T

w

T

h

h

=



[image: image230.wmf])

(

)

(

)

(

)

(

1

k

E

E

k

k

G

M

GM

k

T

w

w

T

T

T

T

h

h

e

h

h

e

+

£

-

. 
                         (34)

Substituting (31)-(34) into (30) and arranging some items, it is not difficult to deduce that
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If 
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then 
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Using the Schur complement to the (36), it follows that
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, the inequality in (23) can be obtained by using Schur complements. 
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for 
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Since, (16) holds, and hence the system in (13) is robustly delay-dependent passivity condition in the sense of Definition 1. This completes the proof of Theorem 1. □

Remark 2: Theorem 1 provides a sufficient robust passive condition for the discrete-time uncertain Internet-based systems with interval time-varying delay given in (13), which is dependent on the size of the delay. Even for the lower bound 
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, the result in Theorem 1 may also keep the delay-dependent stability criteria. Recently, the results have been discussed in [20, 22] for the case that the range of the time-varying delay is from 0 to an upper bound. The time-varying delay often lies in a range, in which the lower bound is not 0. In this case, the results in [20, 22] may produce conservative results.

Remark 3: [20] only studied the stabilization of remote control systems. But additional information regarding the passivity conditions and local control has not been proposed in the literature.

Remark 4: It is noted that in the passive context, remote and local state feedback controllers are not designed in [22] for discrete-time uncertain Internet-based switching systems with constant time delay. In this paper, however, remote and local state feedback controllers are designed in the passive context. It is worth noting that delay-dependent conditions in this paper and delay-independent conditions in [22] have different properties, and needs to be dealt with separately. The results given in Theorem 1 provides an LMI approach to the design of remote and local state feedback controllers for discrete-time uncertain Internet-based systems with interval time-varying delay, which represents a contribution to Internet-based systems.  

A numerical example is now presented to demonstrate the usefulness of the proposed approach.

IV.Numerical Example

Example 1: Consider the following discrete-time uncertain Internet-based systems with interval time-varying delay with the following parameters
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In this example, the interval time-varying delay 
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Then, it can be shown that Theorem 2 in [20] and [22] when the switching rules are give by 
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 do not satisfy the robustly delay-dependent passivity conditions and obtain the remote and local state feedback controllers. Now, the purpose is to design remote and local state feedback controllers such that the resulting closed-loop system is robustly passive in the sense of Definition 1. For the purpose, using the Matlab LMI Control Toolbox to solve the LMI in (23) yields the solution as
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Therefore, by Theorem 1, it is easy to see that the robust passive problem is solvable, and the desired remote and local state feedback controllers can be constructed as
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Figure 2 gives the simulation results of the state response of the system and designed remote and local state feedback controllers. Thus the unstable system is stabilized by the remote and local controllers designed according to Theorem 1. 
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Fig. 2.  State response 
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V.Conclusions

The problem of robust passive control for discrete-time uncertain Internet-based systems with interval time-varying delay has been studied. A delay-dependent LMI based approach to design remote and local state feedback controllers, which ensure the passivity of the resulting closed-loop system for all admissible uncertainties, has been developed. A numerical illustrative example has been provided to demonstrate the effectiveness and applicability of the proposed approach.

References

[1] M. S. Mahmoud and A. Ismail, “Passivity and passification of time-delay systems,” J. Mathematical Analysis and Applications, vol. 292, pp. 247-258, 2004.

[2] V. Bevelevich, Classical Network Synthesis. New York: Van Nostrand, 1968.

[3] J. C. Willems, “Dissipative dynamical systems-Part I: General theory,” Arch. Ration. Mech. Anal., vol. 45, pp. 321-351, 1972.

[4] S. I. Niculescu and R. Lozano, “On the passivity of linear delay systems,” IEEE Trans. Automatic Control, vol. 46, pp. 460-464, 2001.

[5] D. Hill and P. Moylan, “The stability of nonlinear dissipative systems,” IEEE Trans. Automatic Control, vol. 21, pp. 708-711, 1976.

[6] L. O. Chua, “Passivity and complexity,” IEEE Trans. Circuits & Systems I, Fundam. Theory Appl., vol. 46, pp. 71-82, 1999.

[7] M. Vidyasagar, Nonlinear Systems Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1993.

[8] D. Hill and P. Moylan, “Stability results for nonlinear feedback systems,” Automatica, vol. 13, pp. 377-382, 1977.

[9] L. Xie, M. Fu and H. Li, “Passivity analysis and passification for uncertain signal processing systems,” IEEE Trans. Signal Process., vol. 46, pp. 2394-2403, 1998.

[10] W. Yu, Passive equivalence of chaos in Lorenz system,” IEEE Trans. Circuits & Systems I, Fundam. Theory Appl., vol. 46, pp. 876-878, 1999.

[11] A. Yu Pogromsky, “Passivity based design of synchronizing systems,” International J. Bifurc. Chaos, vol. 8, pp. 1257-1261, 2001.

[12] G. Calcev, “Passivity approach to fuzzy control systems,” Automatica, vol. 33, pp. 339-344, 1998.

[13] M. Chow and Y. Tipsuwan, “Network-based control systems: a tutorial,” In Proceedings of IECON’01: the 27th Annual Conference of the IEEE Industrial Electronics Society, pp. 1593-1602, 2001.

[14] J. Nilsson, B. Bernhardsson and B. Wittenmark, “Stochastic analysis and control of real-time systems with random time delays,” Automatica, vol. 34, pp. 57-64, 1998.

[15] G. Walsh, H. Ye and L. Bushnell, “Stability analysis of networked control systems,” IEEE Trans. Control Systems Technology, vol. 10, pp. 438-446, 2002.

[16] W. Zhang, M. Branicky and S. Phillips, “Stability of networked control systems,” IEEE Control Systems Magazine, vol. 21, pp. 84-99, 2001.

[17] S. H. Yang and C. Dai. Multi-rate control in Internet based control systems. In: Sahinkaya MN, Edge KA, editor. Proc UK Control 2004, Bath, UK, 2004, ID-053.

[18] S. H. Yang, X. Chen, L. Tan and L. Yang, “Time delay and data loss compensation for Internet-based process control systems,” Trans. Insti. Measur. Control, vol. 27, pp. 103-108, 2005.

[19] S. H. Yang, X. Chen and J. L. Alty, “Design issues and implementation of Internet-based process control systems,” Control Eng. Practice, vol. 11, pp. 709-720, 2003.

[20] Y. J. Pan, H. J. Marquez and T. Chen, “Stabilization of remote control systems with unknown time varying delays by LMI techniques,” International J. Control, vol. 79, pp. 752-763, 2006.

[21] S. Boyd, Lei Ghaoui, E. Feron and V. Balakrishnan. Linear Matrix Inequalities in System and Control Theory, Philadelphia, PA: SIAM, 1994.

[22] Z. H. Guan, H. Zhang and S. H. Yang, “Robust passive control for Internet-based switching systems with time-delay,” Chaos, Solitons and Fractals, vol. 36, pp. 479-486, 2008.































































































































































































































































































































































































































































































































































































































































209
214
213

_1279524627.unknown

_1279562540.unknown

_1279570269.unknown

_1280043543.unknown

_1282481108.unknown

_1282481300.unknown

_1282481697.unknown

_1309000079.unknown

_1309077288.unknown

_1282481790.unknown

_1282548478.unknown

_1282548520.unknown

_1282481844.unknown

_1282481759.unknown

_1282481614.unknown

_1282481644.unknown

_1282481350.unknown

_1282481211.unknown

_1282481263.unknown

_1282481170.unknown

_1280062601.unknown

_1282476904.unknown

_1282480555.unknown

_1280149934.unknown

_1281968048.unknown

_1280149898.unknown

_1280044420.unknown

_1280044757.unknown

_1280044883.unknown

_1280044906.unknown

_1280044611.unknown

_1280043693.unknown

_1280043703.unknown

_1280043712.unknown

_1280043553.unknown

_1279984527.unknown

_1280002745.unknown

_1280002762.unknown

_1280002945.unknown

_1280002755.unknown

_1279984547.unknown

_1279984562.unknown

_1280002735.unknown

_1279984555.unknown

_1279984539.unknown

_1279984139.unknown

_1279984308.unknown

_1279984378.unknown

_1279984426.unknown

_1279984471.unknown

_1279984404.unknown

_1279984327.unknown

_1279984252.unknown

_1279984285.unknown

_1279984232.unknown

_1279570961.unknown

_1279571433.unknown

_1279806569.unknown

_1279808517.unknown

_1279571297.unknown

_1279570414.unknown

_1279570902.unknown

_1279570286.unknown

_1279567324.unknown

_1279568294.unknown

_1279569790.unknown

_1279569928.unknown

_1279570010.unknown

_1279569831.unknown

_1279569121.unknown

_1279569177.unknown

_1279569106.unknown

_1279567453.unknown

_1279567888.unknown

_1279567961.unknown

_1279567791.unknown

_1279567390.unknown

_1279567430.unknown

_1279567354.unknown

_1279566550.unknown

_1279566944.unknown

_1279567254.unknown

_1279567284.unknown

_1279566997.unknown

_1279566625.unknown

_1279566858.unknown

_1279566589.unknown

_1279566168.unknown

_1279566316.unknown

_1279566337.unknown

_1279566250.unknown

_1279566272.unknown

_1279566186.unknown

_1279562562.unknown

_1279566029.unknown

_1279566073.unknown

_1279566010.unknown

_1279562552.unknown

_1279540317.unknown

_1279541875.unknown

_1279543485.unknown

_1279543834.unknown

_1279562050.unknown

_1279562200.unknown

_1279543869.unknown

_1279543584.unknown

_1279543698.unknown

_1279543717.unknown

_1279543548.unknown

_1279543135.unknown

_1279543369.unknown

_1279543473.unknown

_1279543178.unknown

_1279542239.unknown

_1279543079.unknown

_1279542662.unknown

_1279541947.unknown

_1279540910.unknown

_1279541303.unknown

_1279541580.unknown

_1279541632.unknown

_1279541517.unknown

_1279541101.unknown

_1279541180.unknown

_1279540923.unknown

_1279540784.unknown

_1279540829.unknown

_1279540878.unknown

_1279540813.unknown

_1279540435.unknown

_1279540772.unknown

_1279540423.unknown

_1279527085.unknown

_1279538667.unknown

_1279539480.unknown

_1279540061.unknown

_1279540201.unknown

_1279539972.unknown

_1279539327.unknown

_1279539467.unknown

_1279539320.unknown

_1279527479.unknown

_1279527536.unknown

_1279528018.unknown

_1279528175.unknown

_1279527543.unknown

_1279527527.unknown

_1279527514.unknown

_1279527106.unknown

_1279527319.unknown

_1279527470.unknown

_1279527232.unknown

_1279527098.unknown

_1279525211.unknown

_1279526500.unknown

_1279527050.unknown

_1279527066.unknown

_1279526893.unknown

_1279525654.unknown

_1279526434.unknown

_1279525258.unknown

_1279524715.unknown

_1279524847.unknown

_1279524857.unknown

_1279524811.unknown

_1279524656.unknown

_1279524703.unknown

_1279524635.unknown

_1279438641.unknown

_1279454624.unknown

_1279460155.unknown

_1279521153.unknown

_1279521240.unknown

_1279524604.unknown

_1279521184.unknown

_1279460206.unknown

_1279460619.unknown

_1279521110.unknown

_1279460696.unknown

_1279460302.unknown

_1279456817.unknown

_1279457519.unknown

_1279459248.unknown

_1279459265.unknown

_1279459279.unknown

_1279459171.unknown

_1279457317.unknown

_1279456787.unknown

_1279456800.unknown

_1279456652.unknown

_1279441043.unknown

_1279442330.unknown

_1279442421.unknown

_1279454075.unknown

_1279442367.unknown

_1279441678.unknown

_1279442245.unknown

_1279441649.unknown

_1279441415.unknown

_1279440022.unknown

_1279440386.unknown

_1279440992.unknown

_1279440353.unknown

_1279439079.unknown

_1279439992.unknown

_1279438980.unknown

_1279436311.unknown

_1279437436.unknown

_1279438295.unknown

_1279438595.unknown

_1279438626.unknown

_1279438381.unknown

_1279437714.unknown

_1279437830.unknown

_1279437589.unknown

_1279436450.unknown

_1279436852.unknown

_1279437374.unknown

_1279436479.unknown

_1279436352.unknown

_1279436359.unknown

_1279436345.unknown

_1279354327.unknown

_1279435005.unknown

_1279436271.unknown

_1279436284.unknown

_1279436164.unknown

_1279434826.unknown

_1279434992.unknown

_1279354375.unknown

_1197178760.unknown

_1236493098.unknown

_1279269053.unknown

_1279269102.unknown

_1239737358.unknown

_1265359423.unknown

_1274510936.unknown

_1246604413.unknown

_1236664309.unknown

_1236671650.unknown

_1236496656.unknown

_1205044809.unknown

_1209615294.unknown

_1209615354.unknown

_1209615369.unknown

_1209615317.unknown

_1209615331.unknown

_1205044830.unknown

_1205045360.unknown

_1205045376.unknown

_1205045311.unknown

_1205044817.unknown

_1205044785.unknown

_1205044798.unknown

_1205044611.unknown

_1205044695.unknown

_1152859350.unknown

_1152859469.unknown

_1152859529.unknown

_1152859374.unknown

_1152859300.unknown

_1152859333.unknown

_1152859267.unknown

