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Abstract
In this paper, the vibration response of a swinging roller-follower cam with an angular acceleration is investigated. The follower rod is modeled as a Rayleigh beam. The roller end of the follower rod is restrained to the cam groove. The cycloidal displacement is employed to be the rise and fall segments of the cam profile for rise-dwell-fall-dwell motion. Hamilton’s principle and the assumed mode method are applied to formulate the system equations of motion. By using Runge-Kutta numerical integration method, the transverse vibration response of the follower is obtained and studied. The numerical results show the vibration responses are affected significantly by the cam rotational speed. When the rotational speed increases, the vibration response tends to enlarge during the rise, fall and dwell segments after several cycles. When the high angular acceleration is considered, the vibration response increases regularly from the beginning. The vibration responses are affected significantly by the cam rotational speed.
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摘要

本論文研究具角加速度之擺動滾子從動件凸輪的振動響應，其中從動件連桿模擬成雷利樑，而從動桿的滾子端受限於凸輪溝槽內。上昇-停滯-下降-停滯運動的凸輪輪廓，以擺線位移作為其上昇段與下降段的設計。使用漢彌頓原理及假設模態法來推導系統的運動方程式，並使用數值積分法求解從動件的側向振動響應。數值結果顯示振動響應受凸輪轉速的影響顯著，當轉速增加，在數週後，於上升、下降及停滯段，振動響應趨向增大。當從動件在上昇段及下降段振動較為顯著。當考量較大的角加速度，振動響應從一開始即規則地變大。振動響應很明顯受凸輪轉速的影響。

關鍵字：角加速度、凸輪、滾子從動件、擺動、振動。
I. INTRODUCTION
The kinematics, the dynamics and the design of cam driven mechanisms are introduced extensively in literature [1-3]. A cam is a common mechanism element that drives a mating component known as a follower. The unique feature of a cam is that it can impart a very distinct motion to its follower. Since the motion of a cam can be prescribed, it is well suited for applications where distinct displacements and timing are paramount. Cams are found in almost all machines, e.g. machine tools, internal-combustion engines, computers, and instruments. 

A considerable amount of work on the study of cams has been reported. The great majority of researchers paid attention to the design of cams using kinematics analysis [4-7]. Some researchers investigated the dynamics of cams. In the dynamic analysis of cam mechanisms, two different mathematical models are used. One is a discrete system which has finite degrees of freedom. The other is an elastic system which has infinite degrees of freedom. Mathematical model with infinite degrees of freedom is fitted to physical model. In the dynamic analysis of a cam mechanism, especially under a high rotation speed of a cam, this model can be used to solve the vibrations of a cam mechanism more exactly. However, only a few researchers took the infinite degrees of freedom into consideration. 

Pasin [8] studied a valve control mechanism of internal combustion engines. The longitudinal vibrations of the moving rod were neglected, and the rod was loaded by a variable axial force. The equation of bending vibrations of this rod was obtained using the classical bending theory and d’Alembert’s principle. Then the partial differential equation with variable coefficients was reduced to a system of ordinary differential equations of second order with periodic coefficients using Galerkin method. The stability of the rod and consequently of the cam mechanism was investigated according to the parameters of speed and stroke. Horeni [9] described the double-mass model of an elastic cam mechanism that gave a more realistic idea of the relationship in mass distribution in the mechanism as compared to the single-mass models. The model allowed not only to determine a suitable cam shape to suppress the natural oscillation of the mechanism but also to analyse more closely the forces acting on the cam. Ünlüsoy and Tümer [10] developed a non-linear one-degree-of-freedom model of a cam mechanism including Coulomb friction.  The effects of Coulomb friction at different cam speeds have been investigated using typical parameter values. A critical examination of the simulation of the dynamic behavior of the cam mechanism by using an equivalent viscous damper to replace the Coulomb friction was made. Yilmaz and Kocabas [11] studied the longitudinal vibrations of a follower which is the linear active component of a cam mechanism. The basic Bernoulli method was applied to solve the partial differential equation which was supplied by taking the viscous damping factor into consideration. Fabien, Brian [12] presented a new approach to designing dwell-rise-dwell profiles for cam follower systems. The cam profiles are designed such that perturbations in the system parameters have a reduced influence on the dynamic response. This is accomplished by minimizing the parameter sensitivity of output mass motion. Followers driven by high-speed, dwell-type, rotating disk cams can exhibit undesirable residual vibrations during dwell. Dresner and Barkan [13] provided the following: a brief review of the literature on the dynamic analysis of flexible cam-follower systems; a recommended method for the analysis of such systems; and an extension of this analysis method to multi-input systems. Coulomb dampers were shown to be important in modeling the behavior of flexible dynamic cam-follower systems because they remove significant vibration energy, particularly when approaching the critical seating event. Felszeghy [14] studied a cam with a translating roller follower. He idealized the follower structure as a single degree-of-freedom, spring-mass-dashpot, linear system. These residual vibrations were obtained with closed-form solutions to the steady-state vibrations obtained with a circular convolution integral. The steady-state vibrations, which can extend over the entire cam cycle, were periodic and continuous. Demeulenaere etc. [15] introduced a cam-based centrifugal pendulum (CBCP) and a design procedure for it which results in quasi-perfect balancing of inertial torques for any drive speed. For given design parameters (such as the link lengths and link inertial parameters), the cam design is governed by a nonlinear, second-order, explicit differential equation. The design parameters themselves are determined by means of an optimization problem, the goal of which is to minimize the (constant) equivalent inertia of the combined system, consisting of the original mechanism to be balanced and the CBCP. Wang and Jiang [16] studied the cam mechanisms which was developed on the equivalent concept and the method of lumped masses in dynamic modeling of cam mechanisms. The method of using double lumped equivalent masses located in two ends of a component to substitute the mass of it in modeling was put out and proved to be true. The proposed improved the accuracy of the dynamic model of cam mechanisms.

In this paper, a disk cam with a swinging roller follower is studied. The vibration response of the cam with an angular acceleration is studied. A continuous follower-rod model is established. The follower-rod is taken to be flexible using Rayleigh beam theory. The rod pinned with a roller which is restrained with a rigid rotating cam groove. The cam profile for rise-dwell-fall-dwell (RDFD) motion is considered. The cycloidal displacement is employed to be the rise and fall segments of such motion. Hamilton’s principle and the assumed mode method are applied to formulate the equation of motion of the system. The transverse deflection is expanded with the eigen-functions of a simply supported beam. The vibration response of the follower is obtained from the derived equation of motion applying Runge-Kutta integration method. The transverse vibration response of the follower rod is calculated.

II. FORMULATIONS OF PHYSICAL MODEL
The schematic of a disk cam with a swinging roller follower is shown in Fig. 1 and Fig. 2. The cam is assumed to be rigid. The roller follower consists of a follower rod that has a separate part, the roller, which is pinned to the follower stem. The follower rod is considered to be flexible with transverse deflection and described using Rayleigh beam theory.
The kinetic energy, the strain energy, and the gravity potential energy of the follower rod are formulated first. The assumed mode method is applied to expand the follower transverse deflection. Then, the governing equations of the flexible follower rod are derived by employing Hamilton’s principle. 
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Figure 1　Schematic of a swinging roller-follower cam.


[image: image2.emf]o

 

X

Y

E

A

t  

C

P

1

O

2

O

x

y

1

y

1

x

deformed

body rigid

Groove

P



v


Figure 2　Deformed configuration of the cam mechanism.
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Figure 3　The rise-dwell-fall-dwell (RDFD) motion.
II.1 The cam profile
The schematic of a cam mechanism is shown in Fig. 1. The angular displacement function of the follower rod when the cam rotates an angle 
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 is denoted as 
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. The rise-dwell-fall-dwell (RDFD) motion studied in this paper is described in Fig. 3. The cycloid is employed to be the rise and fall segments of the RDFD motion. The angular displacement function 
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 for the rise segment is given as the following function: (Chen [2])
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 is the period of the rise segment and 
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 is the total lift magnitude. In this study, 
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. The rise function is applicable to the fall with slight modification. To convert rise function to fall function, it is only necessary to subtract the rise angular displacement function 
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II.2 The energy of the follower rod
From the geometry relation of Fig. 1, the initial angular position of the follower rod before lift starts is designated by 
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 as derived below
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where 
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 is the distance between the pivot point of the swinging follower and the rotation center of the cam, 
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 is the length of the follower rod, 
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 is the base-circle radius of the cam, and 
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 is the roller radius.

A rotating frame 
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 fixed on the cam which rotates counterclockwise with a angular speed 
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 is shown in Fig. 2. A fixed frame 
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 is used and its unit coordinate vectors are denoted as 
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. The follower rod is described using Rayleigh beam model. The deformed configuration of the rod is also shown in Fig. 2. A local frame 
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 axis coincides with the centerline of the undeformed rod. 
An arbitrary point P on a cross-section of the follower rod is deformed to be the point
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¢

, as shown in Fig. 2. The transverse deflection at the end point P is denoted as 
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 which is function of x and t. The position vector 
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where the subscript of 
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 means taking partial derivative with respect to the variable x.

The velocity of the point 
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 is derived as 
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where the dot symbol means to take derivative with respect to time t and 
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The symbol 
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 denotes the mass density of the rod. The kinetic energy 
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 of the rod can be expressed as 
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where 
[image: image39.wmf]A

 and 
[image: image40.wmf]I

 are the cross-sectional area and area moment of inertia of the follower rod. The kinetic energy of the rod contains the rigid-body and the flexible translational and rotational energies, and the coupling components.

Using Lagrange strain and neglecting the higher order terms, one expresses the strains as 
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Applying the strain-stress relationship of Hook’s law, one has the strain energy 
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 of the rod as follows,
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where 
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 denotes Young’s modulus of beam material. The strain energy is due to the bending effect.

The potential energy of the follower rod due to gravity is given as
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II.3 Assumed mode method
The assumed mode method is applied to discretelize the transverse deflection. The both ends of the follower rod are hinged at the pivot point and pinned at the roller center. For satisfying the boundary conditions, the transverse deflection is expanded with the eigen-functions of simply supported beam and expressed as follows,
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where
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 is the i-th mode shape functions which is the eigen-function of a simply supported beam, and 
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 is the associated amplitude for the transverse deflection.

II.4 Hamilton’s principle
Applying Hamilton’s principle to the follower rod, one has the variation equation
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where 
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 are the kinetic energy, the strain energy, and the gravitational potential energy of the follower rod, respectively.
Substituting Eqs. (5), (7) and (8) into Eq. (10), one can derive the system equation of motion. The equation is expressed as
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where 
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, and 
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 are the mass matrix, the stiffness matrix, and the forcing vector, respectively. 

The Runge-Kutta fourth order method is applied to solve Eq. (11) to obtain the transverse deflection of the follower rod.

III. NUMERICAL RESULTS AND DISCUSSIONS
An example is studied to investigate the vibration behavior of the swinging roller-follower cam with an angular acceleration for the RDFD motion. The periods of the rise, dwell, fall, and dwell segment are all designed with the same value of 
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p

. A diagram to show the angular displacement curve of the follower rod with respect to the rotation angle of the cam is shown in Figure 3. The cycloidal displacement motion is used to model the rise and the fall displacement curves for the cam profile. The angular acceleration 
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 in this study is assumed to be constant, so the angular speed of the cam is given as
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where 
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 is the initial angular speed of the cam. 
The cross section of the follower rod is a circle with radius of 
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To check the numerical convergence of the applied assumed mode method, one, two, and three terms of the eigen-mode are used to discretelize the transverse deflection. The transverse vibration response of the follower output node for the cycloidal displacement motion with a constant speed 
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 is computed. The output node is set to be middle point of the follower rod in this study. Three vibration response curves for the three approximations are plotted in Fig. 4. As for the higher term approximation, the same results compared with the one-term approximation may be inferred from the values of the natural frequencies. The first three natural frequencies are calculated as 13288, 52650, and 116651
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.  It is noted that even the fundamental natural frequency is far higher than the rotation speed of the cam. Since the rotation speed of the cam is far lower the fundamental natural frequency, the excited vibration amplitude due to the higher modes may be neglected compared with that due to the first mode. That is the amplitude due to the higher mode would be excited under high rotation speed, however, the cam mechanism generally rotates with rotation speed far lower than the fundamental natural frequency. Since the coincidence of the results using one-term and higher term approximation for the studied example, the assumed modes number is taken to be 
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 in the following studies. It is worth noting that though the follower rod vibrates significantly only in the rise and fall segments, the vibration with high frequency which is close to the fundamental natural frequency still keeps during the dwell segment.
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Figure 4　The numerical convergence of the transverse vibration response of the follower output node.
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Figure 5　The vibration response of the swinging roller-follower cam at a constant angular speed 
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The vibration response of the swinging roller-follower cam with an angular acceleration is investigated. Four cases of angular accelerations including 0, 30, 60, and 120 
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are studied. The initial angular speed is given as 320rad/s. The transverse vibration responses of the output node for seven cam cycles are plotted. They are shown in Figures 5-8.  Figure 5 shows the vibration response curve of the swinging roller-follower cam at constant angular speed of 320rad/s. The amplitude of the vibration response of the follower is about the same order during the rise and fall segments. However, the amplitude is irregular for the different dwell intervals. 
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Figure 6　The vibration response of the swinging roller-follower cam with an angular acceleration 
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Figure 7　The vibration response of the swinging roller-follower cam with an angular acceleration 
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Figure 8　The vibration response of the swinging roller-follower cam with an angular acceleration 
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Figure 6 shows the vibration response of the system undergoing the angular acceleration of 30
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. The response at the rise and fall segments becomes larger as compared with that of Fig. 5, however, the incremental magnitude is slight. In the dwell interval, the follower vibration response increases regularly about after 1.5 cycles. When the angular acceleration gets large to be 60
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, the vibration response becomes larger as shown in Fig. 7, especially after 3 cycles. Figure 8 shows the vibration response of the system undergoing the angular acceleration of 120
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. It is found that the response amplitude enlarges as the angular speed increases from the beginning. The response gets large faster as the cam undergoes a larger angular acceleration. 

The cam rotational speed vs. the cam angle for the four angular accelerations is also plotted and shown in Fig. 9. Comparing Figures 5-8 with Fig. 9, it is shown that the vibration responses are affected significantly by the cam rotational speed. The response amplitude tends to increase as the rotational speed increases. 
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Figure 9　The cam rotational speed vs. the cam angle for three angular accelerations.

IV. CONCLUSIONS
The vibration response of a swinging roller-follower cam with an angular acceleration for RDFD motion has been investigated. The follower rod is modeled as a Rayleigh beam. The roller end of the follower rod is restrained to the cam groove. The cycloidal displacement is used to model the rise and fall segments of the cam profiles for RDFD motion. Hamilton’s principle and the assumed mode method are applied to formulate the equations of motion of the system. The transverse deflection is expanded with the eigen-functions of a simply supported beam. The equations of motion are solved to obtain the vibration response applying Runge-Kutta integration method. 

From the numerical studies, it is shown that the vibration responses are affected significantly by the cam rotational speed. When the rotational speed increases, the vibration response tends to enlarge during the rise, fall and dwell segments after several cycles. When the high angular acceleration is considered, the vibration response increases regularly from the beginning. The vibration responses are affected significantly by the cam rotational speed. 
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