	航空技術學院學報 第八卷 第一期 第81－88頁（民國九十八年）

Journal of Air Force Institute of Technology, Vol. 8, No. 1, pp. 81-88, 2009

航空技術學院學報 第八卷 第一期（民國九十八年）
吳嘉龍、婁德權、左豪官：快速RSA公開金鑰密碼系統演算法設計與運算複雜度分析研究

快速RSA公開金鑰密碼系統演算法設計與運算複雜度分析研究

Efficient Modular Arithmetic Algorithm Design for RSA Cryptosystems and Area-Time Complexity Analyses
吳嘉龍1婁德權2左豪官3

Chia-Long Wu1, Der-Chyuan Lou2, Ching-Yin Chen2
1空軍航空技術學院一般學科部航空通電系副教授兼任系主任
2國防大學理工學院電機學系教授

3陸軍專科學校電子工程科主任
1Department of Aeronotic Communication Electronics, Air Force Institute of Technology

2 Department of Electronic Engineering, Chung-Cheng Institute of Technology, NDU
3 Department of Electronics Engineering, Army Academy
摘要

在科技發展日新月異的今日，網際網路成功發展與快捷便利的特性，已讓網路和我們的日常生活緊密結合，而所影響的層面也正急遽快速的伸展開來。模指數的運算在數論與密碼學領域上一直都是令人感到興趣的研究議題，尤其是針對於現今密碼系統中應用了大數（例如指數Exponent 長度超過512 甚至1024 位元以上）的模指數運算，使得模指數的快速運算更加的引人注意與探討。而當我們運用將對摺指數部份加以記錄共同乘法的部份時，則可以改進傳統二元掃瞄演算法的運算效率，進而減少了模指數運算的計算複雜度。在今日，資訊安全學者與研究專家假設公開金鑰密碼系統的安全性是建立在幾乎無法由公開金鑰計算推導出秘密金鑰的基礎上，然而針對於資訊安全的觀點上，也就是靠這種計算不可行的特性才得以使此密碼系統保密，本論文將針對快速指數演算法設計與複雜度分析加以研究。分析發現，若配合使用高根位符號元編碼演算法，我們可以進而得到模指數運算最佳的整體計算複雜度。

關鍵字：複雜度分析、RSA公開金鑰密碼系統、數論分析研究、演算法設計。
Abstract

Modular multiplication is the fundamental and crucial operation in implementing circuits for cryptosystem, as the process of encrypting and decrypting a message requires modular exponentiation that can be decomposed into multiplications. Now there are still many novel methods issued in many computer security journals and reports for computer arithmetic operations and theoretical analyses. In the future, we can incorporate modular arithmetic and some advanced techniques to reduce the number of multiplications or accelerate the multiplication itself respectively for modern cryptographic applications.
Keywords: Complexity, cryptosystem, mathematics, algorithm design and analysis.
Introduction

The main goal of research time-efficient and space-efficient algorithms for modular exponentiation comes from the applications in cryptography, such as RSA cryptography and El-Gamal cryptography. Taking the RSA cryptography for example, the public and private keys are functions of a pair of prime numbers, and the encryption and decryption operations are accomplished by modular exponentiation. Fast modular exponentiation algorithms are often considered of practical significance in RSA cryptosystem. Since the “signed-digit recoding algorithm” has less occurrence probability of the nonzero digit than binary number representation. Taking this advantage, we can effectively decrease the amount of modular multiplications. By using the technique of recording the common parts in the folded substrings, the “folding-exponent algorithm” can improve the efficiency of the binary algorithm, thus can further decrease the computational complexity of modular exponentiation. This paper proposes a new algorithm for improving the speed of the exponentiation-based evaluation. As the modular squaring operation in finite field can be done by a simple shift operation when a normal basis is used, and the modular multiplications and modular squaring operations in our proposed signed-digit recoding scheme can be executed in parallel, by using our proposed generalized r-radix signed-digit folding algorithm, we can decrease the computational complexity.
In the rest of this paper, some methods which reduce the number of multiplications by using some novel software such as division algorithm for residue number system (RNS) [1] and Montgomery modular reduction number systems [2] are presented in Section 2. In Section 3, we present other methods which accelerate the multiplication itself by using some novel hardware such as addition chains. In Section 4, we will use tables for computational complexity analyses. Finally, some concise conclusions and future works are given in Section 5.

Software and Hardware Design

In this paper, we will concentrate on the first approach to effectively reduce the number of modular multiplications in modular exponentiation. The modular exponentiation is a common operation for most cryptosystems and smart card systems. The modular exponentiation is composed of repetition of modular multiplications. Most of cryptographic systems based on modular exponentiation. Modular exponentiation can be time consuming, and is often the dominant part of modern cryptographic algorithms for key exchange, electronic signature, and authentication. Generally, modular exponentiation is represented using a chain of modular multiplications. The performance of such cryptosystems is primarily determined by the implementation efficiency of the multiplication and the exponentiation.
Modular exponentiation and its complexity analyses are crucial in modular arithmetic, the modular evaluation can be considered as a series of modular square-and-multiply operation. In this section, we will describe binary method [3], sliding window method [4], and division for residue numbers [5].

Square-and-Multiply Method
The most commonly used algorithms for computing αr are the square-and-multiply methods [6]. The square-and-multiply methods (also called binary methods) scan the bits of exponent r either from right to left or from left to right. The right-to-left binary algorithm is based on the observation that
[image: image1.wmf]12

12

222

()()...()

m

m

r

rr

r

aaaa

=

, while the left-to-right binary algorithm follows from
[image: image2.wmf]12

21

2222

(...((()))...)

mmm

rrr

rr

r

aaaaaa

--

=

.

Algorithm 1: (Right-to-Left Square-and-Multiply binary algorithm) RL binary Method
INPUT: α, r = (rm, …, r1)2
OUTPUT: M=αr
M=1; S=α
for i from 1 to m do

if (ri=1) then M=M*S
S=S*S
end for;

return M;

end.

Algorithm 2: (Left-to-Right Square-and-Multiply binary algorithm) LR binary Method
INPUT: α, r = (rm, …, r1)2
OUTPUT: M=αr
M=1
for i from m downto 1 do
M=M*M
if (ri=1) then M=M*α
end for;

return M;

end.

A basic method for speeding up the multiplication operation by using minimal-hamming-weight signed digit recoding method and canonical recoding technique is presented in this paper. The Hamming weight of the multiplier plays an important role for the computational complexity. By performing both the complement representation and canonical recoding techniques, the minimal hamming weight of the multiplier B can be further reduced, i.e. the number of partial products can be reduced.

We notice that the Algorithm 2 requires two registers (for α and for M) and that the Right-to-Left Square-and-Multiply binary algorithm (Algorithm 1) requires one more register (for S). However, we note that S can be used for α if the value of α is not needed in future steps. Algorithm 1 presents the advantage to be parallelizable: one multiplier performs the multiplications M=M*S and another one performs the squarings S=S2. However, if only one multiplier is available, the LR algorithm may be preferred because the multiplications are always done by the fixed value α, M=M*α. So, if α has a special structure, these multiplications may be easier than multiplying two arbitrary numbers (see [7]).

Sliding Window Method
The sliding window method is used for accelerating long-word length modulo exponentiation. This method decomposes the bits of the exponent into m-bit words. The probability of a word of length m being zero is 2-m, assuming that the zero and one bits are produced with equal probability. A siding window method first decomposes E into zero and nonzero words (windows) Qi of length L(Qi).

We scan B from the least significant bit towards the most significant bit to sum them up and check if Ham(E) > k/2. Since the addition of k bits can generate an integer with magnitude of log(k) bit addition, the cost needs only (log(k)/k)k-bit additions. Let E=(EkEk-1Ek-2…E2E1) be the binary expansion of the exponent E, where n is the number of bits in the binary expansion of E. This representation of E is partitioned into n words of length d, such that nd=k. The exponent is padded with at most d-1 zeros, if d does not divide k. Her we define

[image: image3.wmf]1

12

0

(...)2

idj

d

j

iiddiddid

j

FEEEE

+

-

+-+-

=

==

å

 (1)

such that 0(Fi(2d-1 and
[image: image4.wmf]1

2

i

n

id

i

EF

=

=

å

.
The exponent E is then scanned d bits at a time from the most significant to the least significant. The sliding window method first computes the values of XW for W=2, 3, …, 2d-1.At each step, the partial result is raised to the 2d power and multiplied with
[image: image5.wmf]i

F

X

 where Fi is the current nonzero word. The sliding window method is described in Algorithm 3.
Algorithm 3 (The Sliding Window modular exponentiation algorithm)

Input:

Exponent E = (rnrn-1…r2r1)2
Message M
Output: Y = ME
Compute and store Ml for all l = 3, 5, 7, …, 2m-1.

Decompose E into zero and nonzero windows Qi of length L(Qi) for i = 1, 2, …, n.

[image: image6.wmf]n

Q

YM

=

for i = n-1 downto 1

[image: image7.wmf]()

2

LQ

i

YY

=

if Qi (0 then
[image: image8.wmf]*

i

Q

YYM

=

return Y.

Montgomery’s Reduction
Let the modulus M be an integer within the range [2n-1, 2n] and let R be 2n. Montgomery’s multiplication [8] algorithm 2 requires R and M to be relatively prime, i.e. gcd(R, M)=gcd(2n, M)=1, which is satisfied if M is odd as is required by the algorithm. By exploiting this property, the Montgomery reduction algorithm introduces an efficient multiplication scheme, which computes the modular product, P, of two given integers, A and B, as Equation (2).

P=<ABR-1>M, (2)
where R-1 is the inverse of R modulo M. The computation of the Montgomery multiplication is carried out as follows.

Algorithm 4: (Montgomery’s Multiplication)

{

T=AB
P=(T+<TM’>RM)/R
if P≧M then P=P-M
}
The algorithm uses the multiplication modulo R and the division by R, which are faster and simpler than the computation of AB mod M that involves division by M. The algorithm is only efficient when multiple operations are carried out, such as in the modular exponentiation operation once broken into modular multiplication operations.
Shortest Addition Chains
A simple procedure to compute C ≡ TE mod M is based on the paper-and-pencil method [9].Evaluate an addition chain of minimal length is very difficult. The generalized version of the addition chain is NP-complete while we try to find a chain that simultaneously forms each of a sequence of values,. It is clear that one should not compute TE then reduce the result modulo M as the space requirements to store TE is E*log2 M, which is huge. This method requires E-1 modular multiplications computing all powers of T: T →T2 ... → TE-1 →TE. The paper-and-pencil method computes more multiplications than necessary. For instance, to compute T8, it needs 7 multiplications, i.e. T→T2→T3→T4→T5→T6→T7→T8. However, T8 can be computed using only 3 multiplications T→T2→T4→T8. There are several efficient algorithms that can find a near optimal one. The addition chain attempts to find a chain of numbers such that the first number of the chain is 1 and the last is the exponent E and each number in this chain is the sum of two previous numbers. For instance, the longest addition chain is [1, 2, 3, …, E-2, E-1, E]. An addition chain of length l for an integer n is a sequence of integers [a0, a1, a2, …, al] such that a0=1, al=n and ak=ai+aj, 0 ≤i ≤j < k ≤ l. The Algorithm gives to compute the modular exponentiation C ≡ TE mod M.
Computing the minimal addition chain for a given exponent is a hard problem [10]. We used genetic algorithms to yield optimal addition chains for large exponents. We showed that the addition chains obtained using the evolutionary methodology is always very much better than those used by the traditional exponentiation methods.
The main operation of RSA public key cryptosystems is modular exponentiation. The modular exponentiation can be performed by a series of modular multiplications. Fast computations of the exponentiation can be classified into two approaches: one focuses on the faster multiplication designs and the other concerns the development of novel exponentiation algorithms. A novel method for speeding up the multiplication operation by using the complement representation method and canonical recoding technique is presented in this paper. The Hamming weight of the multiplier plays an important role for the computational complexity. By performing the complement representation and canonical recoding technique, the Hamming weight of the multiplier B can be reduced, i.e. the number of partial products can be reduced [11].
 To evaluate the exponentiation process in the RSA cryptosystem, we started with the RL binary method and adapted it to be used in the Montgomery reduction algorithm, which is used as shown in Algorithm 5. C is the cipher message, M is the plaintext and E is the public/private exponent that is k-bit in length. Ei shows the ith bit of the E exponent. N shows the modulus and Z stores the squaring results.
For each round squaring is performed, but multiplication is performed if and only if Ei = 1: Squaring is performed in parallel with the multiplication in the loop [12]. Algorithm 5 shows us that the main operation consists of the modular multiplication in line 5. Parameter powers consist of a vector with the same size as the addition chain provided. By the end of the iteration between lines 3 and 5, we will get the final result, TE mod M.
Since Montgomery’s modular multiplication algorithm is used for the exponentiation, steps 1.a. and 1.b. calculate the pre-computation values to make sure that results are always divisible by R since each multiplication result has the R factor. Step 3 calculates a post-computation to remove the R factor by multiplying the final result by 1. These calculations increase the encryption/decryption time, but in terms of the whole exponentiation process, it is not so crucial [13].

Table 1. Modular multiplications complexities analyses (k: exponent).

	Methods
	Multiplications

	LR or RL Binary
	1.5k

	Signed-digit Recoding Binary
	(29k/36)+3

	Minimal-hamming Recoding Binary
	1.292k

	Generalized CMM Binary
	1.292k

	CMM Binary
	1.375k+3

Area-Time Computational Complexity
Analyses
In this section, we will present the performance comparisons of many methods described as above and other methods. We distinguish two kinds of methods to compute the computational complexity. One is to reduce the number of multiplications and the other is to accelerate the multiplication itself.

Table 2. Comparisons of the area and the time for 128 bits.

	Author
	Area
	Time
	Size

	Srikanthan-Lam-Suman
	1061.61
	1.4ns
	128bits

	Nedjah-Mourelle
	3179
	3.3ns
	128bits

	Yeh-Reed-Truong
	2991
	2.5ns
	128bits

	Nedjah-Macedo
	259
	23ns
	128bits

We make a table for comparisons of different methods as shown in Table 1, where k is the bit length of the exponent and r is the radix. In order to measure the speed of the modular multiplication, modular exponentiation, etc., we use the numbers of modular multiplications to express the speed-up efficiency [14]. We use the area and the time to show the differences between methods [13, 15] as shown in Table 2 and Table 3.
Table 3. Comparisons of the area and the time for 512 bits.

	Methods
	Area
	Time
	Size

	Nedjah-Mourelle
	5122
	7.1ns
	512bits

	Blum-Paar
	2217
	19.5ns
	512bits

	Nedjah-Macedo
	492
	76ns
	512bits

Conclusions and Future Works

Modular exponentiation is an important operation in several public-key cryptosystems. An efficient computation of the modular exponentiation is very important and useful both in smart card and public-key cryptosystems. Modular exponentiation is an important operation in several public-key cryptosystems. It is performed by using successive modular multiplications. Exponentiation is to compute XE for a positive integer E and modular exponentiation is to compute XE mod M for positive integers E and M. When the lengths of the operators are at least 1024 binary representations, modular exponentiation can be time-consuming and is often the dominant part of the computation in many algebra systems. In this paper, we describe some methods, which use some software such as residue numbers and other methods, which also use some novel hardware such as systolic arrays. Most importantly, we also detailed analyze the computational complexities for two kinds of these methods respectively.
References
[1] C.-C. Chang and Y.-P. Lai, “A division algorithm for residue numbers,” Applied Mathematics and Computation, vol. 172, no. 1, pp. 368-378, Jan. 2006.

[2] B. J.Phillips, “Montgomery residue number systems,” Electronics Letters, vol. 37, no. 21, pp. 1286-1287, Oct 2001.

[3] M. Joye and S.-M. Yen, “Optimal left-to-right binary signed-digit recoding,” IEEE Transactions on Computers, vol. 49, no. 7, pp. 740-748, July 2000.

[4] C. K. Koç, “Analysis of sliding window techniques for exponentiation,” Computers & Mathematics with Applications, vol. 30, no. 10, pp. 17-24, Nov. 1995.

[5] D. Gamberger, “New approach to integer division in residue number systems,” Proceedings of 10th IEEE symposium on Computer Arithmetic, Grenoble, France, 1991, pp. 84-91.

[6] D. E. Knuth, The Art of Computer Programming, vol. II: Seminumerical Algorithms, 3rd Edition, MA: Addition-Wesley, 1997.

[7] A. J. Menezes, P. C. Oorschot, and S. A. Vanstone, Handbook of Applied Cryptography, CRC Press, 1997.

[8] O. Nibouche, A. Bouridane, and M. Nibouche, “Architectures for Montgomery's multiplication,” IEE Proceedings-Computers and Digital Techniques, vol. 150, no. 6, pp. 361-368, Nov. 2003.

[9] L. M. Mourelle and N. Nedjah, “Reconfigurable hardware for addition chains based modular exponentiation,” International Conference on Information Technology: Coding and Computing, vol. 1, April 2005, pp. 603-607.
[10] N. Nedjah and L. M. Mourelle, “Efficient pre-processing for large window-based modular exponentiation using genetic algorithms,” Proceedings of the 16th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems (IEA/AIE 2003), Loughborough, UK, LNAI 2718, Springer-Verlag, 2003, pp. 625-635.
[11] C. K. Koc, High-speed RSA Implementation, Technical report, RSA Laboratories, Redwood City, California, USA, Nov. 1994.

[12] D. Pearson, “A parallel implementation of RSA selected areas in cryptography,” (SAC ‘96), Kingston, Ontario, August 1996.

[13] N. Nedjah and L. M. Mourelle, “A review of modular multiplication methods and respective hardware implementations,” Informatica, vol. 30, no. 1, pp. 111-129, 2006.

[14] D.-C. Lou and C.-L. Wu, “Parallel exponentiation using common-multiplicand- multiplication and signed-digit-folding techniques,” International Journal of Computer Mathematics, vol. 81, no. 10, pp. 1187-1202, Oct. 2004.

[15] T.-W. Kwon, C.-S. You, W.-S. Heo, and et al, “Two implementation methods of a 1024-bit RSA cryptoprocessor based on modified Montgomery algorithm”, IEEE International Symposium on Circuit and Systems, pp. 650, 2001.
[16] W. N. Chelton and M. Benaissa,
“Fast Elliptic Curve Cryptography on FPGA,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 16, no. 2, pp. 198-205, Feb. 2008.

航空技術學院學報 第八卷 第一期（民國九十八年）

81
86
87

_1236534779.unknown

_1236536803.unknown

_1280297368.unknown

_1280297376.unknown

_1237057739.unknown

_1236534780.unknown

_1236168377.unknown

_1236168419.unknown

