	航空技術學院學報 第八卷 第一期 第69－80頁（民國九十八年）

Journal of Air Force Institute of Technology, Vol. 8, No. 1, pp. 69-80, 2009

航空技術學院學報 第八卷 第一期（民國九十八年）
臧意周、宋嘉宏：The Design of Network Processor-based Platform for IPv4/IPv6 Translation

The Design of Network Processor-based Platform
for IPv4/IPv6 Translation
臧意周1, 宋嘉宏2
Yih-Jou Tzang1, Chia-Hung Sung2
1空軍航空技術學院一般學科部通電系中校教師

2空軍航空技術學院一般學科部航電科中校助理教授
1Department of Aviation & Communication Electronics, Air Force Institute of Technology

2Department of Aeronautic Electronics Engineering, Air Force Institute of Technology
Abstract
The accelerating growth of the Internet has taxed the capabilities of the current Internet protocol (IPv4). IPv6 is the next generation of protocols designed to take the TCP/IP suite into the 21st century. New features of IPv6 included enhanced security, real time traffic flows, and expanded addressing capabilities. To announce the commercial availability and enhance the quality of service (QoS), a platform should be designed to improve the scalability, reliability, availability, and performance over the Internet. Although the layer 3 switch has supported a high performance, it could not realize the contents of URL and cookie, which enable reliable and secure e-commerce transactions and premium site services based on what content is being requested (URL/ file name/ file extension) and who is requesting it (user's cookie). To enhance the technologies of IPv6 and to continue the outstanding achievements of switching routers, This investigation presents a novel platform to design and implement a high performance and high layer IPv6 switch (content aware IPv6 switch). We propose a Translator that translates IPv4 applications to IPv4/IPv6 capable application. The platform can translate any NAT friendly applications (HTTP and TELNET) without modifying the source codes of the IPv4 applications.
Keywords: Network Processor, Translator, IPv6 (Internet Protocol Version 6), NAT (Network Address Translation)
摘要
近年來網際網路風迷了全世界，但也產生出IP定址方式即將不敷使用的問題。為此，IETF制定出新一代的網際網路協定IPv6，除了擴充了網路位址空間，也加強了網路安全與服務品質保證。而隨著目前網路的快速發展，網路上的商業服務越來越普遍，而使用者對於服務品質的要求也越來越多，目前第三層交換器雖然大幅度增加傳統網路的效能，但是目前越來越多的資訊是隱藏在更高層的網路封包中(例如HTTP request)，而傳統的第三層交換器無法分辨不同的高層服務內容，這些內容包括URL、cookie、security、QoS需求等。為了應付商業網路的需求與提高網路服務品質，必須提供更快速、可信賴與沒有錯誤的高層服務。本文即針對提升國內IPv6的研發技術，並延續國內現有對交換式路由器之研究成果，提出高效能之新一代網際網路通訊協定(IPv6)高層交換器的架構，而它是採用網路處理器為基礎，研製IPv6超高速網路交換平台，並支援高效能的IPv6封包分類(Packet Classification)技術，以達成提升網路高層次服務的效能。

關鍵字︰網路處理器、轉換器、下一代網路位址IPv6、網路位址轉換
1. Introduction
Both academia and industry agree that hardware switching is more effective than software routing. Moreover, because of the mature switching technology on layer 2, the switching technologies on layer 3 and layer 4 are proposed one by one, for example, IP switching of Ipsilon, tag switching of Cisco, ARIS of IBM and many more. Recently, the famous router manufacturers, such as Cisco, 3Com, IBM, Ipsilon and the more, keep producing the switch products on IP layer (layer 3) or higher layer, and these products are more competitive on both performance and price than the traditional routers. Consequently, the multi-layer switch [1] will be the main trend in the future market.
Facing the rapid development of current network, the commercial online services are more and more popular, including Web hosting, online, content, E-commerce. For processing the variety of internet application, the requirement of business application, and the demand for bandwidth of the Internet, the faster, reliable, and error free high level service must be provided.

Although the current layer 3/layer 4 switches substantially improve on the performance of the traditional network, more and more information is hid in the higher layer architecture (for example HTTP request), and the traditional layer 3/ layer 4 switch cannot know the HTTP requests with different contents which including URL, cookie, security, QoS request and many more. However, the content-based switches (layer 7 switches) can inspect deeply to the HTTP header and get the requested URL or the content of cookie, and then the data flow will be properly forwarded to the right server according to the content.

To achieve gigabit performance and multi-layer IPv6 packet processing [2-4], this investigation is based on network processor platform. The platform has gigabit Ethernet switching [5-7] interface with 8 ~ 16 ports, and has the capability of flexible network service with performance expansion. This platform provides the complete integration between high level network service and low level packets translation of IPv4/IPv6, and has accomplished by the most prospective next generation network technology.

In IPv4/IPv6 translation [8-10], a number of IPv4 addresses are required as IPv4 pool addresses. These are used to relate IPv6 hosts in the IPv4 network. These must be globally routable to this IPv4 network, that is, they must be part of IPv4 addressing space. It is advisable to have at least three pool addresses. One of these is required in order to identify the IPv6 DNS (Domain Name System) server from the IPv4 DNS system. Static mappings are used to create fixed associations between IPv6 hosts and an IPv4 alias address. These are necessary where an IPv4 host requires some type of permanently, statically configured, access to an IPv6 host. An example is a DNS server association where an IPv4 DNS server needs to delegate a DNS domain to an IPv6 DNS server. The IPv6 DNS server address is configured into the DNS tables of the IPv4 DNS server and thus an association must permanently exist between the static address in the DNS table and the IPv6 DNS server. The IPv4 address used for a static mapping must not appear elsewhere in the list of pool addresses.
NAT-PT [11] can be implemented in a router platform or Linux/ FreeBSD/ Windows computer platform. There are several available implementations for NAT-PT. This work presents a novel architecture, the NP-based (Network processor based) [12-15] platform, to support the NAT-PT mechanism including NAPT-PT and DNS Application Level Gateways (ALGs). Furthermore, NAPT-PT (Network Address Port Translation-Protocol Translation) takes the address translation a stage further by enabling the translation of port numbers as well. NAPT-PT makes it possible to re-use one IPv4 address and map this one IPv4 address to many IPv6 hosts. Cisco has implemented NAT-PT on its wide range of router models. Ericsson Telebit has developed NAT-PT on the AX11460 and the RX1820 research platforms. The protocol translator implementation distributed as part of the Microsoft IPv6 stack is another implementation of NAT-PT.
The rest of the paper is organized as follows. The design and implement of our platform is described in section 2. We discuss the DNS-ALG [16,17] of design and implement in section 3. We conclude the paper in section 4.
2. Design and Implement of platform
This investigation proposes a network development platform with a gigabit and high performance, and provides the network processor platform with the capability of high level switch technology of IPv6. For processing the NAT-PT of IPv4/IPv6 packets in fast and high performance, the investigation will port the NAT-PT technology to both the IXP1200 network processor [18] and the IQ2000 network processor [19]. Furthermore, we will implement the final result on the Chassis-Based multi-module gigabit network processor platform. Not only are we familiar with programming on hardware platform by developing NAT-PT, but we also deeply understand and implement the recognition and classification technologies which are needed during high level IPv6 packet switching [20-24]. During implementing the NAT-PT translation technology, the content of packets must be inspected in layer 2 to layer 7. Consequently, our investigation will have key technologies of the basic function of IPv6 switch platform when we complete the NAT-PT. The important issues related to implementation are described as follow.
2.1 Network Processor
Vitesse IQ2000, a network processor, possesses the capability for deep packet processing and supports high level service and the architecture of IQ2000 is shown in figure 1. The design of network processor IQ2000 can flexibly achieve deep packet processing in wire speed. Therefore, IQ2000 can handle the transfer rate in the range from NxDS0 to OC-48. Furthermore, the processing space of IQ2000 is sufficient for much calculation, evaluation, or arithmetic of time sensitive. Consequently, IQ2000 is suitable for developing applications related to core switch, core router, broadband product, gateway, and fiber transfer system.

[image: image1.png]Packet Inputs

PRISM
Architecture

SRAM

Fig 1 The Architecture of Vitesse Network Processor

The support includes hardware design and system development, such as the complete evaluation platform, and the library which software needs, the I/O module tools, and the reference code of layer 2 and layer 3. All these things are helpful to develop new network products in the market.

IQ2000 is the basic architecture of multi-processor, and it can accomplish high speed deep packet processing with the functions of wire speed routing, classification, filtering, state-oriented inspection, encryption, policy enforcement, traffic shaping, and multicast management. The features are as follow:

‧Four packet processing engines with 200MHz RISC CPU

‧ Powerful packet management system

‧32/64 bits interface connected to external MPIS CPU

‧ 32 bits asymmetric host interface

‧12.8 Gbps direct RamBus memory controller

‧ Two internal GigaMAC Ethernet links

‧ Four 16-bit (or two 32-bit) FOCUS peripheral internal link buses

‧ Hardware support for multicast

‧ Platform component of Sitera Network Acceleration

‧ Support many communication protocols and network interfaces, such like:

- Gigabit Ethernet, 10/100 Ethernet, and the fiber interface which can reach to OC-48

- Various WAN interfaces, such as FDDI, Token Ring, T1, T3 and the more

‧ For each output channel, a maximum of eight queues is supported

‧ Support QoS algorithms, such like:

- Weighted Fair Queuing (WFQ)

- Rate Limiting Queues

- (Weighted) Random Early Discard (WRED and RED per differentiated services)

2.2 Packet Processing Flow
In the system implementation, some basic functions mainly refer to Vitesse IQ2000 design manual, for example, the receiving and forwarding of packet, the initialization of thread and many more. Furthermore, the functions of packet translation and memory allocation are needed to discuss. Therefore, the requirement of whole system is complete of accomplishment. The data processing flow inside Vitesse IQ2000 is shown in figure 2 and the processing step is described as follow.
[image: image2.png]Ipv4 IPv6

MIPS CPU FOCUS Inputs PROM
In
FBC
P i -—
MPS Host Rambus
Interface Memory
Controller
—— Tupu
Out
FBe SRAM
Interface
FOCUS Outputs SRAM RDRAM

IPv4 IPv6

Fig 2. The Packet Processing Flow of Network Processor

‧ Step1: The packet gets into Vitesse IQ2000 through FOCUS Interface, and is received by Packet Input Module (PIM) from incoming port for further processing.

‧ Step2: PIM makes the received packets to the FCELL one by one, adds a 24 bytes IHD (Input Header Descriptor) in front of the first FCELL (header part), and sends them to Order Manager.

‧ Step3: OM checks and finds out the Packet Processing Engine (PPE) which state is idle, and allocates the FCELL form PIM to a header buffer.

‧ Step4: When the packet size exceeds the maximum of one FCELL, PIM will segment the packet into more than one FCELL, and send the FCELL except the first one（payloadpart）to RDRAM through Input Fusion Bus.

‧ Step5: PPE properly process the header in the header buffer, such like classification, scheduling, or translation.

‧ Step6: After the header is processed by PPE, the pavcket with OHD (Output Header Descriptor) will be sent to Smart Buffer (SB) and waited for output from IQ2000.

‧ Step7: Packet Output Module (POM) periodically detect the SB, whether there is packet waited for output in SB or not. When there is packet waited for output, the payload of RDRAM is get according to OHD in SB, and is integrated with header in SB to a complete packet. Finally, the packet is output from IQ2000.

2.3 Packet Translation
In the system, five packet translation formats are implemented: (1) Ethernet header; (2) ICMPv4/ICMPv6 header; (3) IPv4/IPv6 header; (4) TCP header; and (5) UDP header. Figure 3 and Figure 4 display the flowchart of IPv6 packet to IPv4 packet and IPv4 packet to IPv6 packet, respectively.
[image: image3.png]58 it Heade? others
W

ND Packet Process Header Translation Process

&>

Port 53 (P Typ
Pursing

Fig 3. Flowchart of IPv6 Packet Translating to IPv4 Packet

[image: image4.png]050800 m 0x0806
g P

Header Translation Process

Fig 4. Flowchart of IPv4 Packet Translating to IPv6 Packet
Among the translations, ARP and ND translation are listed in Table 1 and Table 2.

Table 1. ARP Translation

	Value of ARP Request
	Field
	Value of ARP Reply

	MAC Header

	0xFFFFFFFFFFFF
	Destination Address
	IPv4 node who sends the ARP Request

	The MAC address of IPv4 node who sends the ARP Request
	Source Address
	The MAC address of IPv6 node coming from IPv6- MAC table

	ARP Message

	1
	Operation
	2

	The MAC address of IPv4 node who sends the ARP Request
	Sender Ethernet Address
	The MAC address of IPv6 node coming from IPv6- MAC table

	The IP address of IPv4 node who sends the ARP Request
	Sender IP Address
	The MAC address of IPv4 node who sends the ARP Requesent

	0x000000000000
	Target Ethernet Address
	The MAC address of IOv4 node who sends the ARP Request

	The mapped IPv4 address of IPv6node
	Target IP Address
	The IP address of IPv4 node who sends the ARP Request

Table 2. ND Translation
	Value of NS
	Field
	Value of NS

	MAC Header

	0x34333PPXXXXXX (XX: the right most 12 bits of solicited node’s IPv6 Address)
	Destination Address
	The MAC address of who sends NS

	The MAC address of who sends NS
	Source Address
	The MAC address of solicited IPv4 node coming from IPv4- MAC table

	IPv6 Header

	The IPv6 address of who sends NS
	Source Address
	The solicited node’s IPv6 address

	FF02::FF:XX:XX:XX (XX: the right most 12 bites of solicited node’s IPv6 address)
	Destination Address
	The IPv6 address of who sends NS

	135
	Type
	136

	
	Checksum
	Re-Caculation

	
	RSO
	001

	The solicited node’s IPv6 address
	Target IP Address
	

	1
	Option Code
	2

	1
	Option Code Length
	1

	The MAC address of who sends the neighbor solicitation
	Sender/ Target Link Address
	The MAC address of solicited IPv4 node coming from IPv4- MAC table

2.4 Memory Allocation
In the system, we set the packet size (Header_Size) of header memory to 64 bytes. The header length of change for IPv4 and IPv6 header is transformed by NAT-PT. Therefore, the packet can avoid the problem that system is overloading when data transfers between header memory and main memory. When the Header_Size value is set to more than 84 bytes during IPv4 transforming into IPv6, the payload parts will be overflowed to main memory as shown in Figure 5. Because the IPv6 header by transforming in the header memory is increased, the doings/things will make a great deal of data in main memory moving downward, and then a system performance will be critically decreased.

[image: image5.png]24 Bytes

(HEADER_SIZE - X) Bytes

X Bytes

(128 -24 - HEADER _SIZE) Bytes < 20

Original Buffer Allocation

Later Buffer Allocation

24 Bytes

(HEADER_SIZE - X) Bytes

(X-Y) Bytes

(128 - 24 - HEADER SIZE + X) Bytes > 20

Header Butter tHeaderBufer
DM o Neder Bttt
o
Previous Previous
“Payload” “Payload”
Payload
s roou e 23108
Next
“Payload” Next
“Payload”
RORAM

RDRAM

¥ Bytes

Fig. 5. The Problem of Header_Size

To deal with the set of Header_Size, the allocated size of header memory before and after translating packet content is different respectively when IPv4 transforms into IPv6 and IPv6 transforms into IPv4.

‧ IPv4 to IPv6: in this case, the packet size will increase 20 bytes. FACET CPU does not need to move data between header memory and main memory (as shown in Figure 6).

‧ IPv6 to IPv4: in this case, the packet size will decrease 20 bytes. Due to the IPv6 packet translation, we have to modify Neighbor Solicitation packet, for every IPv6 packet entering NAT-PT. That is, FACET CPU will firmly move 32 bytes data from main memory to header memory for operation (as shown in Figure 7).

[image: image6.png]24 Bytes
14 Bytes

20 Bytes

30 Bytes

10 Bytes

‘Befre being translated

After being translated

Header Buffer

24 Bytes

14 Bytes

40 Bytes

30 Btes

20 Bytes

Fig. 6. The Translation of IPv4/IPv6 Header

[image: image7.png]Beore being traslaed

Aferbeing translated

24 Bytes 24 Bytes
14 Byes 14 Bytes
20 Bytes
40 Bytes
10 Bytes
10 Bytes 32 Bytes
40 Bytes 28 Bytes

Header Buffer Header Buffer ‘Header Buffer

Fig. 7.
The Memory Allocation of Translation of IPv4/IPv6 Header

2.5 Send Packet to Queue
To match up the set of Header_Size in mention in the previous section, when the packet translation is completed and ready to send to queue, the Packet Descriptor has to be properly modified. The algorithms are described as follow:

· IPv4 to IPv6
New_HLENGTH = Ori_HLENGTH + 20

New_PLENGTH = Ori_PLENGTH

PA = 0

BUFA = 0

· IPv6 to IPv4
IF Packet_Type = Header

// no payload in RDRAM //
New_HLEN = Ori_HLEN – 20

New_PLEN = 0
// no payload in RDRAM //
PA = 0

BUFA = 0

// There is more than 32 byte payload in RDRAM //
ELSE IF Packet_Type = Long

New_HLEN = Ori_HLEN + 12

// 32 – 20 = 12 //
New_PLEN = Ori_PLEN – 32

PA = 1

// change the address mode //
BUFA = 32
// offset from first DBP //
// Complete Type Below //

// there is payload remaining in RDRAM//
ELSE IF (Ori_PLEN – 32 >= 0)

New_HLEN = Ori_HLEN + 12

New_PLEN = Ori_PLEN – 32

PA = 1

BUFA = 32

ELSE
// there is no payload remaining in RDRAM //
New_HLEN = Ori_HLEN + Ori_PLEN – 20

· IPv4 to IPv6
The available length of storing data of one packet will be added 20 bytes. FACET CPU does not need to move data between header memory and main memory.
· IPv6 to IPv4
The available length of storing data of one packet will be reduced 20 bytes. Because it is IPv6 packet translation, we need to modify the packet length of Neighbor Solicitation. Therefore, to enter NAT-PT for translation in any IPv6 packet, FACET CPU must firstly to move 32 bytes data from main memory to header memory and then operate data.
3. Design and Implement of DNS-ALG
The function of DNS-ALG includes two parts: (1) DNS message translation and (2) address allocation. In the design and implementation of the system platform, the first function is achieved by data path, and the second one is achieved by control path. The detail of the two functions will be described in the following two sections. Figure 8 is the flowchart of DNS-ALG dealing with the DNS message.
[image: image8.png]DNS
Message

DNS-ALG

1 (A-Record)

’

0 (DNS Query) @ 1 (ONS Reply)

28 (AAAA-Record)

‘Translation
(A>AAAA)

Qtype

1 (A-Rec 28 (AAAA-Record)

Qtype

L2 2
‘Address Address
Translation ‘Translation
(IPv4>1Pv6) (Pv6->1Pv4)

Build New OHD

y

‘Transmitting Process

Fig. 8. The Flowchart of DNS-ALG Operation

The data field of DNS message is needed to be translated including ‘Qtype’, ‘Resource Length’, and ‘Resource Data’. When DNS query is received, only the ‘Qtype’ value has to be translated, and the DNS message length is unchanged. When DNS response is received, not only the ‘Qtype’ value, but also the locations of IPv4/IPv6 inside the ‘Resource Data’ have to be translated. Furthermore, the DNS message length is changed as follow:
· IPv4 → IPv6: DNS message length increases 96 bits (12 bytes), and the whole packet increases 32 bytes.

· IPv6 → IPv4: DNS message length decreases 96 bites (12 bytes), and the whole packet decreases 32 bytes.

Due to the change of length, the Packet Descriptor algorithms of the mention above have to be adopted in the buffer allocation.

Because there is no fixed mapping relationship of the translating location of IPv6 and IPv4, NAT-PT has to do the things of address allocation. As the Figure 8, the work is executed only when NAT-PT (DNS-ALG) receives the DNS response with ‘AAAA’ type. However, when the DNS response with ‘A’ type is received, the location translation is merely done by adding 96 bits of IPv6 prefix at the head of the IPv4 location.
4. Conclusion
The objective is to design a network processor-based planform to carry out NAT-PT order to study and understand the behaviors of IPv4-IPv6 protocol translation technique (NAT-PT) and analyze and report the installation and operational problems for the NAT-PT solution.

DNS requests and responses can be relayed across the NAT-PT device in preference to translation. If the NAT-PT device has a native connection or IPv6-over-IPv4 tunnel to other IPv6 network, the NAT-PT device will prefer to go through the direct connection rather than taking the path via IPv4 network.
If the NAT-PT does not have native IPv6 connectivity or tunnels to other IPv6 networks, the IPv6 AAAA record queries originating from the IPv6 network will always have to be translated. When the NAT-PT does have IPv6 connectivity or tunnels to other IPv6 networks, the IPv6 queries should prefer relay to translation. The IPv4 a record queries originating from the IPv6 to IPv4 hosts or IPv6/4 hosts may allow to be relayed across the NAT-PT. The IPv6 AAAA record queries originating from the IPv4 Internet do not need to be translated when passing the NAT-PT device. The IPv4 a record queries originating from the IPv4 Internet to IPv6 hosts cannot obtain IPv4 addresses, except for some hosts with static allocated IPv4 addresses, for the IPv6 hosts have no fixed IPv4 addresses.
NAT-PT provides a transition solution during the IPv6 deployment under the IPv4 environment. It is a bridge to connect two separate worlds: IPv6 and IPv4. The users from both worlds can access the resources on the different types of networks without changing anything on hosts. Since the number of IPv4 host-initiated sessions is equal to the number of addresses in the IPv4 pool, supporting greater volume of traffic will need to extent the address pool. As the IPv6 network grows to a similar scale as the IPv4 Internet, the traffic between the two types of networks may be significant. The NAT-PT capability will influence the service performance a great deal.
The project successfully ported the NAT-PT IPv6/IPv4 address translation technology on the network processor platform, and even more, implemented it on the Chassis-Based multi-module gigabit network processor platform to provide more expansibility and functionality. These members related to the project have already the capability to write program of network processor. The achievements of the project are as follow:
．Successfully developed NAT-PT on IQ2000 network processor platform.

．Successfully designed NAT-PT on Chassis-Based multi-module gigabit network processor platform.

．Successfully implemented DNS-ALG to support NAT-PT to inter-connect by Domain Name on Chassis-Based multi-module gigabit network processor platform.

．To possese the capability of writing the IPv6 packet inspection and classification technology to apply to network processor platform.

．To achieve the development experience of the approach on program integration of top and bottom level under network processor (Control path and data path).

．To understand the program integration and development on Chassis-Based multi-module gigabit network processor platform.

．To research various kind of ALG for IPv6/IPv4 translator needs.

The project successfully ported the NAT-PT IPv6/IPv4 translator with DNS-ALG technology on network processor platform, which has smaller machine size, faster packet switching rate, and higher performance. It is also implemented on the Chassis-based multi-module network processor platform to support the expansibility. Moreover, the system can successfully translate packet format form layer 2 to layer 4 (TCP/UDP/ICMP), and test the inter-communication capability between IPv6 and IPv4 network through many applications (WWW, Ping, Telnet, etc.). On the other hand, the project enhanced the capability of designer in IPv6 switching techonolgy, and also improved the efficiency of user to handle program design and operating flow under netwok processor. In the future work, we can add more functional modules to the Chassis-Based network processor platform, such as IDS, QoS, HA, Tunneling and many more, to accomplish the total solution for IPv4/IPv6 network switching. The project makes our team to have great advance in the research of IPv6 and network processor. Furthermore, the physical products of platform have also taken part in many important demonstrations, and get very great responses.
References
1.George A., David A., Vinod P., Prashant P., Debanjan S. “Design, Implementation and Performance of a Content-Based Switch,” INFOCOM’2000, pp.1117-1126.
2.S. Deering, R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification,” RFC2460, December 1998.
3.http://www.ipv6.org.tw/

4.N.F. Huang, Whai-En Chen, “Design of Multi-field IPv6 Packet Classifiers Using Ternary CAMs,” IEEE GLOBECOM 2001, San Antonio, Texas, USA, 2001.
5.N.F. Huang, Whai-En Chen, “Design and Implementation of Switch-based IPv6 Router (SIR),” Journal of Internet Technology (JIT), volume 2. no1, January 2001
6.N.F. Huang and S. M. Zhao, “A Novel IP Routing Lookup Scheme and Hardware Architecture for Multi-Gigabit Switching Routers,” IEEE Journal on Selected Areas in Communications, June 1999.
7.McAuley, P. Francis. “Fast Routing Lookup Using CAMs,” IEEE INFOCOM’93 1993, vol.3, pp1882-1391, 1993.
8.T. Narten, E. Nordmark, W. Simpson, “Neighbor Discovery for IP Version 6 (IPv6),” RFC2461, December 1998.
9.A. Conta, S. Deering, “Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6),” RFC2463, December 1998.
10.E. Nordmark, “Stateless IP/ICMP Translation Algorithm (SIIT),” RFC2765, February 2000.
11.Tsirtsis, G., Srisuresh, P., “Network Address Translation - Protocol Translation (NAT-PT),” RFC 2766, February 2000.
12.Y.Z. Chen. “A Network Processor based Fault-Tolerance Architecture for Network Equipments,” thesis, June 2003.
13.S.F. Wang. “The Design and Implementation of Gigabit IPv4/IPv6 Translator Based on Network Processor on Chassis-Based Platform,” thesis, June 2004.

14.F. Xiao. “The Design and Implementation
of an IPv6 NAPT-PT Gateway,” thesis, June 2004.
15.N.F. Huang, Ying-Tsuen Chen, Yi-Chung Chen, Chia-Nan Kao, Joe Chiou, “A Network Processor-based Fault-Tolerance Architecture for Critical Network Equipments,” International Conference on Information Networks (ICOIN2004), February 2004, Busan, Korea.
16.M. Allman, S. Ostermann, and C. Metz, “FTP Extensions for IPv6 and NATs (FTP_ALG),” RFC2428, September 1998.
17.Srisuresh, P., Tsirtsis, G., Akkiraju, P. and A. Heffernan, “DNS extensions to Network Address Translators (DNS_ALG),” RFC 2694, September 1999.
18.Intel Corperation,
http://developer.intel.com/design/network/
19.Vitesse Corperation,
 http://www.vitesse.com/

20.Y. Rekhter, T. Li. “An Architecture for IP Address Allocation with CIDR,” RFC 1518, September 1993.

21.W. Deoringer, G. Karjoth, and M. Nassehi. “Routing On Longest-Matching Prefixes,” IEEE/ACM Transactions on Networking , 4(1):86-97, Feb 1996.

22.P. Gupta， S. Lin， and N. McKeown. “Routing Lookup in Hardware at Memory Access Speed,” IEEE INFOCOM’98, 1998.

23.M. Walvogel, G. Varghese, J. Turner, B. Plattner. ”Scalable High Speed IP Routing Lookups,” ACM SIGCOMM’97, pp.25-36, 1997.

24.Lampson, V. Srinivasan, and, G. Varghese. “IP Lookups using Multiway And Multicolumn Search,” IEEE INFOCOM’98, Session 10B-2, 1998.

69
70
79

