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Abstract

Recently, by using the Stroh-like formalism, the analytical solutions of the
relations for coupled stretching-bending problems, and the concentrated forces
and moment problems can be obtained for infinite composite laminates. In this
paper, we will be applying the Stroh-like formalism, we can get the general
solutions for the problems applied by dislocation or point forces inside, outside,
or on the interface of anisotropic elliptical inclusion and matrix and coupled
stretching-bending problems. And according to different the concentrated forces
and moment conditions are discussed and get the solutions of the problems. we
like to separate three case that inplane concentrated forces
Keywords: concentrated forces ,inclusion
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1.Introduction

The problem has addressed elastic
inclusions embedded in an infinite matrix
and dislocations or concentrated forces at
points outside, inside or on the interface of
an inclusion, a
general analytical solution has been
obtained (Yen, Hwu and Liang, 1995), but
the cited

dimensional materials, whereas analytical

anisotropic elliptical

studies mostly consider two-
solutions to problems of stretching and
bending of general asymmetric composite
laminates have not been found.

of dislocations

Solutions to problems

inside elliptical inclusions or circular
isotropic matrices can be found in such
and Mura (1964),
Dundurs and Sendeckyj (1965), Stagni
(1983) and Warren (1983). An analytical

solution to the problem of concentrated

studies as Dundurs

forces acting on an anisotropic elastic
matrix is provided in (Hwu and Ting,
1989; Hwu and Yen, 1991).

Recently, Hwu (2004) used the Stroh-
like formalism, to obtain Green’s function
While

two-dimensional problems are solved by

for infinite composite laminates.

analytical continuation, the use of Green’s
functions for solving non-hole problems
may help to yield Green’s functions for
hole problems (Hwu, 2004). Hsieh and
Hwu (2002) are obtained the analytical
solutions for anisotropic plates with
holes/cracks/inclusions subjected to out-
This

quotes from the cited references, to study

of-plane bending moments. article

problems of dislocations or point forces

inside, outside or on the interface of
anisotropic  elliptical inclusions and
matrices.
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2. Green’s Functions for Composite
Laminates Problems
Green’s Functions for infinite

composite laminates (Hwu, 2004) are used

to obtain analytical solutions for an
infinite matrix that contains an anisotropic
elastic elliptical inclusion, and
dislocations or point forces inside, outside
or on the interface of anisotropic elliptical
inclusion and matrix.

In the following sections, the method
of analytical continuation is applied to
the

elliptical

analytical solutions for

of

inclusions and dislocations or point forces.

obtain

interaction anisotropic

Solutions to unperturbed non-hole

problems must initially be known. This

section firstly considers an infinite

laminate that is subjected to a concentrated

force f= (]}1 ,fz) and moment
m = (i, ,/M,) at point x=(%,%) . The

elasticity solution of this problem can be
in the
boundary element method and is generally
called Green’s function. (Hwu, 2004; Hwu
and Yen, 1993). The boundary conditions

in each loading case are given by
{db,=p. Jdu,=p. p=(/ /o iy~ )7
2.1

Through satisfaction of boundary conditions

used as a fundamental solution

(2.1), the unknown complex function vector f (z)
has been determined to be (Hwu, 2004)

f(z)=<log(z, - 2,)>q, (2.2a)
Where
for force q, = L A'p (2.2b)
27
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for dislocation ¢, =——B"b (2.2¢)
2
0 0
R

and I, = , ;= (2.2d)

0

0 0

The angular bracket stands for the diagonal matrix

whose components vary according to the subscript

a,a=12341ie. < f, >=diaglf , f,, 5, .

3. Interaction of the anisotropic elliptical
inclusion and dislocations or point forces
The relation about point forces or dislocation

and inclusion can be divided into three parts

which inside, outside or on the interface of
inclusion. From some articles, the solution
forms of the point forces and dislocations

,we find that the governing mathematical

forms are the same. These differ only in

their boundary conditions.So we can choose
one to discuss point forces or dislocation alone.

We will discuss dislocation in the article. And

using the solutions of the anisotropic elastic

containing holes, try to get the necessary answer
further.

Figurel.An elliptic inclusion in laminates
subjected to concentrated forces

and moments
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3.1 Elasticity Formulation an Elliptical Inclusion

By formalism

(Ting,

applying the Stroh’s
1996; Stroh, 1958),
solution satisfying these equations may be
(Hwu 1993).

elliptical anisotropic

a general

expressed as and Yen,
the

inclusion imbedded in an infinite matrix,

Consider

the elliptical inclusion boundary in the z-
plane will be mapped to four different
slanted elliptical inclusion boundary in the

z,-planes for different
eigenvalues u,,a=1,234 It is not
convenient to solve problems with

elliptical boundary by using the argument
z, defined in f(z). Therefore, to treat the

problems with elliptical boundary, most of
the solutions shown in the literature are

expressed in terms of the transformed
complex variable ¢, . These four different
z,-planes will be mapped to four different
¢, -planes for different eigenvalues u, ,

all different

inclusion boundary into the same inclusion

four slanted  elliptical

boundary in the shape of a unit circle

|§| =1. The relation between z, and &, is

2, —;{(a—ibya)cja +(a+ibya);} ,a=123403-13)

a

or inversely

Y RSN
g o=ZfatNZ T 7O e 1934 (3.1D)

“ a—ibu,

where 2a and 2b are the lengths of the

major and minor axes of the ellipse,

respectively. The singular point Z, is the

location of the dislocation or the point
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force. The general solution to the inclusion

problems may now be written as

ud,zfx[fo<c>+f,(c>1m[ﬂa+ﬂa]} ces
0, =B L)+ C)+B [00+0] | T

(3.2a)
and

u,=A £+ [£0+10) } res
0. =B.[£(0)+£0)]+B [£10)+£] 2
(3.2b)

Where the subscripts 1 and 2 denote,
respectively, the matrix and inclusion f and f;
represent the function associated with the
singularity behavior caused by the dislocation (or
f (or f )is the

corresponding to the flied of matrix (or inclusion)

point  force). function
and is holomorphic in region S; (or $,). S and S,
denote, respectively, the regions occupied by the
matrix and inclusion.

In general, the transformation function used in
Eq. (3.1) is multi-valued. However, by choosing
only the mapped points outside the unit circle, the
transformation function will map the region
outside the elliptic inclusion onto the exterior of a
unit circle and is single valued outside the
inclusion. The 2z, along the interface
(x, =acosy,x, =bsiny ) will then be mapped
onto a unit circle , =e” =0 . However, by
choosing only the mapped points inside the unit
circle, the transformation is still double-valued
inside the inclusion. To have a one-to-one
transformation inside the inclusion, a special
choice has been made and a certain restriction
should be satisfied for the function f, (é’ ) and the
series form expression may be written as Hwu

and Yen (1993) and Lekhnitskii (1968)

£,C)=Dc " +Y <y > (3.32)
k=0 k=1
a+ibu
where y,=——= (3.3b)
a—iby
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and ,u; is the material eigenvalues of the

inclusion. The angular bracket stands for the

diagonal matrix.

A X

X1

e =N
@

(a) z -plane

1

o
&

-1

(b) ¢, -plane
Figure 2. Mapping from (a) z-plane to(b)
¢, -plane
3.2 Dislocation or Point Force Outside an
Elliptical Inclusion

Consider an infinite matrix which includes

anisotropic elastic elliptical inclusion. One

dislocation with Burgers vector B( or point

force P ) located at point X = (%, , £,) which is
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outside the inclusion. If the inclusion and matrix
are assumed to be perfectly bonded along the
interface, the displacements and surface tractions
across the interface should be continuous. That
is,

u=u

2} along the interface (3.4)

¢1:¢2

An elasticity solution satisfying the
dislocation singularity and the interface continuity
condition has been found in [16].

We consider that the dislocation or point force
is located at the infinite matrix, (3.2) will be

rewritten as
u, = A [1)+A [T+
6, =B [1(0)+£(0)]+B[1{0)+1(0) } e
(3.52)

w, =A,[L)]+A [£(0)
¢, =B.[1(C )]+B £()
Where f; (C ) is the function that unperturbed

elastic field of the matrix. f (C ) is the
holomorphic

} CeS — (3.5b)

function corresponding to the
perturbed field of the matrix and will be
determined through satisfaction of the boundary
conditions. Divide f (C ) into two parts, one part
is holomophic in S, (f; (C )) and another part is
holomophic in the S, +.S; ( f(;(cj) ).Here, S,
denotes the region inside the circle of

radius \/m_a , £, (C) chose the same as f (C),

Express it as follows

fo (C) = f(: (C) + f(; (C) ’ fz (C) = f2+ (C) + fzi (C)
£'(¢),£;(¢) is holomorphic in S,
£ (0)f; (C) is holomorphic in S, +8S,

(3.5¢)

By using general solutions (3.5) ,the traction
continuity condition of (3.4)

A+ (O A TR+ T )
— A (0)+£ (0)]+ A (@) + ()]
ey
B[t (0)+1.(0)+f (o) + B[ (0)+ 1 (0)+1 (0)]

+fz*(0')]+§2 [f; o +fz’iai]
(3.6)
One of the properties  of

holomorphic functions used in the method of

important

analytic continuation is that if f(( ) is

holomorphic in S, (orS,+S, ) ,then f(l/f, is

holomorphic in S, +S, (Cor S, ) . We may

introduce a function which is holomorphic in the
entire domain including the interface boundary,

can be rewritten as

0()- ALWM({M‘E{ j te- [%]
_X‘f‘;[% _Kf%]_“( Jrad [%j (©). Ces,+s,
(3.72)
6.6)= Blﬂ(g)ﬂ;lf’i)&l@: )+B @ Ces,
Ef;[%]ﬁ,fl %}Blfﬂ’@) Ef[ J+Bf(§) Ces, +8,

(3.7b)

6,(¢) and 6,(¢) are holomorphic in the
whole {-plane including the points at infinity. By
Liouville's theorem we have 6,(¢) and
o, (é’ )Econstant. However, the constant function
corresponds to rigid body motion which may be

neglected.
Therefore 6,() =0, 6,(¢) =0. With this

result, (3.7) can get to

Alf(; (§)+A|f1 (§)+A|fu[lJ_ Azfz+ (§)+A2f2[

1

Bt (0Bt (§)+B1f0[ ]=Bzf;(c)+nzfz[

=
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(3.8b)
Cancellation of f (C) between (3.8a) and
(3.8b) leads to

(A A -B,B)f, (/7)=(A"A,-B'B,) £, (/7)
+(A|"AZ—B"'B2) £(0), cesS
(A,'A,-B,'B)£;(0)=(A'A,-B" ,)f’(()
+(A A, -B,B,) 1, (/). ¢eS,+S
(3.9)

we can have to put in order from (3.9),

—iAT; (0)= (M, + M)A () + (M, - M, JA, 15 (1/T)

M, =-iB,A; , k=12

5

(3.10)

Because f, (C ) has already known, from (3.10)
can get to solution for f, (C ) . Using the
conditions of (3.4) will be tried to get the function
of fi (C )

We discuss the boundary conditions of
different load situations (2.1), using the Green’s
functions of composite laminates problems (2.2) ,
we can solve the general solutions of disloaction
outside the elliptical inclusion,

We consider the matrix function including
singularity points, received the concentrated

forces and concentrated moments in first and

second coordinate axis. We may choose f; (C ) as

f,(z)=<log(z, -2,)>q, (2.2a)

From (3.1) we know that

Yo j+logca >q,

a

fo(g) =< log(ga - fa )+ log(l -

a

(3.11)

As a result of f; (£) is holomorphic in S, and

274

f, (C ) is holomorphic in S, , we get

7,

=>4 >
CJ

a

f()=< log(l— (3.12)

a

£, (¢)=<logl¢, ~¢.)>q
The constant term logc, has been neglected

since it corresponds to rigid body motion and has
no contribution to the deformation.
For easy to calculate, it can be represented by

series expansion,

f(0)=<togl¢, =& >0, =Y e

1 (3.13)
e =—%.4
=i<7};>ck5_k _C):ické’k (3.14)
k=1 k=1

Take (3.13) and (3.14) into (3.10) we can get

¢ ={G,-G,G,'G,[' [t,-G,G,'t,|  (3.150)
Where
G, =M +M,)A, . G =(M,-M,JA, <7/ > (3 15p)

t, =—iA]"e,
function f (C)

can now be obtained from (3.8)

Having the solution of ¢ _,

f (C)=_<10g(1_ 711* ]>q1
or St (3.16)
~A Z[Aek A, <) > —AgCH
f()=-<log1--L2|>q
©) og[ n@] q
B [Be -B, </ >¢,~Byg|¢

3.3 Dislocation or Point Force Inside an
Elliptical Inclusion

Consider the dislocation (or point force) is
located at the point which is inside the inclusion.
Because singularity points lies on the inculsion

will cause holomorphic continuation conditions to
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produce the question. So must consider getting rid
of the singularity points on the choice of function
in inclusion. And the choice of function in matrix
must correlate with inclusion, even the same as
singularity function.

So we rewrite (3.2) of matrix and inclusion

} ,GES,

function as

5,0+0)

(3.17a)
“dzZAz[f;(C)"'fz(C)]"'Kl f:@ﬁ% } ces
o IBZ[fg(C)+f2(()]+E1 fJ(C)Jraa ’ ’
(3.17b)
£,(0)=1;(0)+£ ()
where  £(0)=1,"()+57()+£,(C)
fo(g):fp(é:)
(3.17¢)
f(C) and f£({) represent functions
associated with the singular behavior

caused by the point forces or dislocation;
f;(() describes a singular phenomenon in
the inclusion, and fp(C) is a singular
phenomenon in the matrix

the
singularity

Satisfying point  forces or

dislocation conditions and
applying the interface continuity condition

(3.4), we can get
AL (0)+f (o) + AL, (0)+1 (o))
= A1 (0)+ 1 (0)+F (0)+1: (o) +1 (0)]
F AT (0)+ (0)+T (0)+1 (0)+1. (o) (3-18)
¢, =0,
B[f,(0)+f (0)]+ B[, (0)+1 (o))

=B,[1(0)+1 (0)+f (o) +1 (0)+1: (o)
+B.[f7(0)+1 (0)+ T (0)+1 (0)+1. (o)

After comparing, can take the following
equality , and therefore equality tries to get the
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solutions of singularity functions.
A1f0(6)+ Af(o)= Af (0')+ A, fpio- )= Azf;(0)+ Xzf;io- )
Bf (c)+Bf (c)=Bf (c)+Bf (c)=Bf (c)+B.f (o)

(3.19)
Later used analytical continuation method to
have

(3.20b)
Cancellation of f (C) between (3.20a) and
(3.20b) leads to

(A'A,-B,'B,) 17 (0)+ (A, A, -B'B,) (/7

=—(A"A,-B,"B,) £:(0)-(A"A, -B,"B,) £,(1/7) .Ces,
(A A, -B'B,) 1 (/0)+(A"A, -B'B,)f(0)
=—(A A, -B'B,)1:(/0)-(A"A,-B,'B,) £:(0) .C e85, +S,

(3.21)
we can have to put in order from (3.21),

—(M, -M,)A £ (1/0)- (M, + M)A £ (0)
=(M, + M)A £(0)+(M, - M)A, £ (1/7)

(3.22)
Because f, (C ) has already known, From (3.22)
can get to solution for f, (C ) . Using the

conditions of (3.20) will be tried to get the
function of f; (C )

We discuss the of
different load situations (2.1), using the Green’s

boundary conditions

functions of composite laminates problems (2.2) ,
we can solve the general solutions of disloaction
inside the elliptical inclusion.

When dislocations lies in elliptical inclusion, the
influence that the singularity phenomenon of
dislocations causes, will happen on elliptical
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inclusion. By (3.17b) we will be divided into the
perturbed and unperturbed function of inclusion.
Where f'(£) is the function that unperturbed
elastic field of the inclusion. f, (C ) is the
the
perturbed field of the inclusion. In order to satsify

holomorphic function corresponding to
the dislocation singularity and interface continuity
conditions, we will choose f, (C ) as the form of
(2.2a) and change parameter z, into §,. Because
consider that must holomorphic inside on S, ,

function is expressed as follows

£,(¢)=< log(éa -£, )+ log[l - ;‘ﬁ] +logc, >q,
(3.23a)
where
1 T A .

5 A,p , for point forces
q, = .

= B!b , for dislocations

27

(3.23b)
Known that f; (C ) has singularity phenomenon
by (3.17¢), among f,*({) is holomorphic in S,
and f;f(C) is holomorphic in S, , so (3.23a)

make into
f," (.{) =< 10g[1 - ?/"AJ + log[l - g"J +loge, >q,
é,aé,a é/a

f,7(¢)=0
f;(é,) =<log¢, >q,
(3.24)

Because of (3.24) can set matrix function as

f,(¢)=<log¢, >d

substituting (3.24); and (3.25) into (3.19) we can
get

(3.25)

1

—AJp , for point forces

d= 27111 (3.26)
—B’b , for dislocation
27

Function must be analyzed inside on the domain,
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So choose function as follows

£;(0)=ec* . £(0)=>dc¢
fj = ) (3.27)
50)=><r e, £()=Dcl"

Substituting (3.27) into (3.22) we get
— — -1 —_ —
¢, ={G,-G,G,'G,} {t,-G,G, %,

Ek :(Ml _MZ)KZ <77§ >

(3.28)
using series expansion to substitute for the (3.24),
we can get
f," (() =< log{l - y“AJ + log[l —é,“] +loge, >q,
a é/a a
= z € g « g

(3.29)
Substituting (3.29) and (3.28) into (3.20)
we can get solutions for f; (C)

f,(C)=A/A, <10g(1—7/‘1j+10{
Cala

+iA[l [A2 <yf>e, +Kzék]§*k
k=1

a}log{l_@
é’aé/a é/a

JriBl’1 [B2 <yt>e, +§zék]§’k
k=1

A

e

a

J-i— logc, >q,

or

f, (¢)=B,'B, <10g£1—

J +logc, >q,

(3.30)

3.4 Dislocation or Point Force on the
Interface Between Inclusion and Matrix

Sections 3.2 and 3.3 explore a singular

point (point force or dislocation) on the
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matrix or inclusion. This study further
investigates singular point situations on
the inclusion and matrix interface that
were considered in (Yen, W. J., and Hwu,
Y. K., 1995) When

singularity behaviors are exhibited at a

C., and Liang,

point on the interface, the choice of fO(C)
and f;(() is not as clear as in Sections 3.2
and 3.3, because the
covered by both the

matrix.

singular point is
inclusion and the
Hence, the singular term between
the matrix and the inclusion in the same as
Section 3.3 must be considered. A function
(3.17) is chosen. Applying the singularity
boundary conditions ,we can get solutions

4d =0 (3.31a)

i, =5
Jdb, =p
0

4dud =

Continuity conditions are then applied to

for dislocation singularity

for point force singularity (3.31b)

determine the unknown coefficient, which
is substituted into the function to yield the
unknown function f,(¢)

We discuss the boundary conditions of

different load situations (2.1), by (2.2) we can get
the general solutions of disloaction on the
interface of anisotropic elliptical inclusion and
matrix.
Because singular point lies on the interface of
matrix and inclusion at the same time, we can
look for the forms of f,(() and f;({) from
general solutions of hole and elliptical plate
problems , choose as follows

f,(¢)=<loglc, -2, )>q, +log(§;l —Ea]>qi

where q,,q/,andq, are the unknown
coefficients to be determined.

General like section 3.3, in order to satisfy
every region holomorphic, we are divided (3.32)
into and influenced by singularity phenomenon
and free of singularity phenomenon two parts,

rewrite it as follows:

£,7(¢) <10g( @@J Zekg

zki:dké’k:
£,(£)=1,(¢)=<logl¢, 5)>q1+log(§ 5)>qi

(3.33)
Like (3.19) comparing singular term and can
have

Aq+AQq-Aq+Aq+Aq-Aq =0

Aq-Aq-Aq -Aq+AQ+Aq, =

1711 1

(3.34b)
Consider Eq.(3.31), the mapped points

around X may be expressed as

A

£ =¢ +pe’,p—>0 where 0 starts from the

line tangent to the interface. Hence, the closed

integrals may be

ddb, =9, (7)-9,(0)+9,(27)-¢,.(z) and

Jau, =u,(7)~u,(0)+u,(27)-u,(z)

expressed by

* _ P 7(1
(¢ )—<1°g(4a—§a)+1°g[1— % J+logca>q28ubtituting (3.32) and (3.32) into (3.2), the

ada

(3.32)

equilibrium and the singularity conditions shown

in (3.31) now provide
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Aq, +A1q'+A2q2 _Klql _qu{ _quz = f)

8|~

Bq, +qu'+B2q2 -Bq, _Elq{ _Ezqz =0
(3.352)

or

Alql + Alq’ + A2q2 - qul - qull - XZEZ = O

qul + qu’ + B2q2 - qul - Elql' - §262 = _.f)
7
(3.35b)
By (3.34) and (3.35) can unknown number

q,.q,and q, is solved out
for dislocation

1 ~
q, = EBlrb
0= L&A, BB, ) (%%, BB, Bl
4= (& A, BB (&', BB B
(3.36a)
for point forces
L,
q, = EAIP
q - -(KA-BB)(EX-BBMAS
27
q, = L.(KI‘AZ -BB,)'(A’A -B'B )A’p
27
(3.36b)

Like those described in (3.20), (3.21) and
(3.22), by canceling fl(C) and comparing the
coefficients of corresponding terms, the
unknown constants ¢, can be determined to

have the same expression as (3.28) except

t, =— (Ml - M2 )Kzék - ( Ml + Mz)Azdk

k
:_(Ml _Mz)xz <_71(Z:aj >q,

a

(3.37)
Having the solution of ¢, substituting
(3.33) and (3.36) into (3.20) can get

f,(¢)

function

f(£)=AA, < log{l —7/—”1} >q,

+ iAfl [A2 <y>e, +KzEk]g“'k
k=1

or

f, (4) =B,'B, < 10{1 - }/aA J >q,

ada

+> B [B2 <yi>e, +1_326k];""
k=1
(3.38)
4. Discussion

In order to verify that the obtained solutions
is true. This paper considers two simple
examples to verify the solutions.

Case I:

The simplest situation pertains when
the matrix and the inclusion are composed
of the same material, such that
A =A,=A , B =B,=B, M\=M,=M
The solution herein is verified by dividing

the proof into three parts.

1. Point Force or Dislocation on the matrix
From (3.15),(3.16) we can get

¢, =G;'t, = [(M-#M)ATI(—iA’Te,{): e,

f, (():—<log[l— Yo ]>ql—i[A"Kék—<y§ >ck—A"KEk]§’k

aSa k=1

e S k —k
:—<log(1— ”ﬂj>q +Z<7a>c,(4‘
)

a%a k=1

(4.1a)
where
L_ATf) , for point force
=] 2 (4.1b)
—B’b , fordislocation
27

From (3.11),(3.13),(3.14) and (4.1) can get
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fo(C)+f1 (C)=< log(é,a _éca)>q1 +i<7§ > € éﬁk

=1 k=1

N k k

_zcké +Z<7a>cké/
=1 =l

(4.2)
From (4.2), which are the same as are
assumed for homogeneous materials
2. Point

inclusion

Force or Dislocation on the

Exchanging the condition for homogeneous
materials for (3.28) yields

G,=(M+M)A , G, =0 , t,=—(M+M)Ad,
=G;'t, =[M+M)A]'[-(M+M)Ad,|=-d,

(4.3)
From (3.17c¢), (3.24), (3.25) and (3.27) can
get

f,(¢)=<log, >q,

f, (é’) =< log(l —%’J + log[ —?J +logc, >q,

a

f5(§)=<10g(§a—§ +log(1— J+10gca >q,

Zc@ +Z<7 >e¢, 7 i (k§k+<7f>dk§’k):0
d =0 h
(4.4)
Where

L,Arf) , for point force

q, = 2111 ) (4.1b)
—B’b , for dislocation

27
Applying (4.4) yields the matrix function

is the same as the inclusion function.

f0(§)+fl(§):fg(§)+fz(§)
=< log(é’a —.;ca )+10g(1—7”1

a a

J+10gca >q,

(4.5)
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3. Point
interface of matrix and inclusion
(3.28) and (3.36) yield

Force or Dislocation on the

G,=(M+M)A , G, =0, t, =—(M+M)Ad,
=G5‘ t, = [(M"'M)A]_] [_(M+M)Adk]:_dk
1

q, =q, = TmATlA) , ;=0 for point force
q, =4, = éBTﬁ , q,=0 for dislocation
(4.6)

Using (3.32) ,(3.33) and (3.38), we have

f,(¢)=<logl¢, -, )>a,
£,(¢)=< log[l— }/2 J>qz +i [< 7h>e, +A1"Xzék]§’k

aSa

£(¢)=<loglg, - &, )+ log[l - g{}a]ﬂogca >q,

=Y e Y st =Y (@, <t > d, ) =0
=) k=1

¢, =d, =0

(4.7)
Combining the results of (4.7), one may
prove that
£,($)+1,(0)=1,($)+1,($)
:<log(§a—fa)>q1+<log[1—§7“ J>q2

ada

(4.8)
we can get the same to have the function
value on matrix and inclusion.

The result herein is therefore correct
for homogeneous materials. It is also
appropriate for other materials, so the
result herein has wide applicability.

Case II:

reduction of the
hole, such that
A=A,B=BM=M,A,=B,=M,=0

is considered. Again, the proof is divided

The second case,

inclusion to a

into three parts.
1. Point Force or Dislocation on the matrix

From (3.15) we can get
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G,=0 , G, =0, ¢, =0,t, =—iA"e, (4.9)

From (3.8)

for point force

()= —fg(;)—AlAfo[

N———

| =

f,(¢) fo*(g“)—B‘Bfo( J for dislocatio n

| —

(4.10)
Subtituting (3.10) into (4.10) can get

_ _ Ya TN a2 —
f,(¢)= <10g(1 gaéa}ql A A<log[§a Ca]>ql
(4.11a)

or
- _ e _B'B a_2 \aq
fl(g)— <10g[1 g“agca]>ql B B<log(é’a é’aj>q1

(4.11b)
The result thus obtained is the same as was
obtained by (Hwu 2004)

2. Point Force or Dislocation on the
inclusion

From (3.28), can get

G, =0,G=0,t=0,c=0, q=0 4.12)

Using (3.20),(3.25),(3.26) may result in
f,(§)=<log¢, >d
f,($)=1,¢)=1()

The result is the same as that the plates

? k

(4.13)

0

containing a hole
3.
interface of matrix and inclusion
(3.28) and (3.36) yield

Gy)=G,=0,t,=0,¢,=0, q,=q;=0

Point Force or Dislocation on the

(4.14)
L' A"p  for point force

q =14 (4.15)
—B'b  for dislocation
27

Using  (3.32)  ,(3.33) and  (3.38)
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f(¢)=<logl¢, - )>q,
f()=1()=1()=0

0 2
The result thus obtained is similar to the

(4.16)

plates containing a hole
The verification yields the results in
the

been proven to be

earlier papers. Therefore, result

derived herein has
correct.

5. Conclusions

In this paper,

of

were

the anisotropic elastic

materials stretching and bending

problems considered.  General
solutions for dislocation or point forces
inside, outside, or on the interface between
inclusion and

an anisotropic elliptical

matrix, were obtained. The solution is
obtained more conveniently and quickly
than other solutions and the applicable
range is more extensive. Simple solutions
are obtained by combining numerical
solution to the singular integral equation.
The presented analytical solutions can be
applied to solve the problem of a crack
penetrating an inclusion or lying around

the interface, as well as the problem the

interaction between a crack and an

inclusion.
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