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Abstract

Recently, by using the Stroh-like formalism, the analytical solutions of the 
relations for coupled stretching-bending problems, and the concentrated forces 
and moment problems can be obtained for infinite composite laminates. In this 
paper, we will be applying the Stroh-like formalism, we can get the general 
solutions for the problems applied by dislocation or point forces inside, outside, 
or on the interface of anisotropic elliptical inclusion and matrix and coupled 
stretching-bending problems. And according to different the concentrated forces 
and moment conditions are discussed and get the solutions of the problems. we 
like to separate three case that inplane concentrated forces 
Keywords: concentrated forces ,inclusion
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1.Introduction

The problem has addressed elastic 
inclusions embedded in an infinite matrix 
and dislocations or concentrated forces at 
points outside, inside or on the interface of 
an anisotropic elliptical inclusion, a 
general analytical solution has been 
obtained (Yen, Hwu and Liang, 1995), but 
the cited studies mostly consider two-
dimensional materials, whereas analytical 
solutions to problems of stretching and 
bending of general asymmetric composite 
laminates have not been found. 
  Solutions to problems of dislocations 
inside elliptical inclusions or circular 
isotropic matrices can be found in such 
studies as Dundurs and Mura (1964), 
Dundurs and Sendeckyj (1965), Stagni 
(1983) and Warren (1983). An analytical 
solution to the problem of concentrated 
forces acting on an anisotropic elastic 
matrix is provided in (Hwu and Ting, 
1989; Hwu and Yen, 1991).  

Recently, Hwu (2004) used the Stroh-
like formalism, to obtain Green’s function 
for infinite composite laminates. While 
two-dimensional problems are solved by 
analytical continuation, the use of Green’s 
functions for solving non-hole problems 
may help to yield Green’s functions for 
hole problems (Hwu, 2004). Hsieh and 
Hwu (2002) are obtained the analytical 
solutions for anisotropic plates with 
holes/cracks/inclusions subjected to out-
of-plane bending moments. This article 
quotes from the cited references, to study 
problems of dislocations or point forces 
inside, outside or on the interface of 
anisotropic elliptical inclusions and 
matrices. 

2. Green’s Functions for Composite 
Laminates Problems

Green’s Functions for infinite 
composite laminates (Hwu, 2004) are used 
to obtain analytical solutions for an 
infinite matrix that contains an anisotropic 
elastic elliptical inclusion, and 
dislocations or point forces inside, outside 
or on the interface of anisotropic elliptical 
inclusion and matrix.   

In the following sections, the method 
of analytical continuation is applied to 
obtain analytical solutions for the 
interaction of anisotropic elliptical 
inclusions and dislocations or point forces. 
Solutions to unperturbed non-hole 
problems must initially be known. This 
section firstly considers an infinite 
laminate that is subjected to a concentrated 

force 21
ˆ,ˆˆ fff  and moment 

21 ˆ,ˆˆ mmm  at point 21 ˆ,ˆˆ xxx . The 

elasticity solution of this problem can be 
used as a fundamental solution in the 
boundary element method and is generally 
called Green’s function. (Hwu, 2004; Hwu 
and Yen, 1993). The boundary conditions 
in each loading case are given by 

T

c dc d mmffdd ˆˆˆˆˆ,ˆ,ˆ 1221ppp

                                                                         (2.1) 
Through satisfaction of boundary conditions 

(2.1), the unknown complex function vector f (z)
has been determined to be (Hwu, 2004) 

ˆlog 1qf zzz (2.2a)
Where

for force ˆ
2
1

1 pAq T

i
         (2.2b) 
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for dislocation bBq ˆ
2
1

1
T

i
           (2.2c) 

and          

0
1
0
0

,

0
0
1
0

32 ii        (2.2d) 

The angular bracket stands for the diagonal matrix 
whose components vary according to the subscript 

 , =1,2,3,4, i.e. ],,,[ 4321 ffffdiagf

3. Interaction of the anisotropic elliptical
inclusion and dislocations or point forces
The relation about point forces or dislocation 

and inclusion can be divided into three parts 
which inside, outside or on the interface of 
inclusion. From some articles, the solution 
forms of the point forces and dislocations 
,we find that the governing mathematical 
forms are the same. These differ only in 
their boundary conditions.So we can choose 
one to discuss point forces or dislocation alone. 
We will discuss dislocation in the article. And 
using the solutions of the anisotropic elastic 
containing holes, try to get the necessary answer 
further.

Figure1.An elliptic inclusion in laminates 
subjected to concentrated forces 
and moments 

3.1 Elasticity Formulation an Elliptical Inclusion

By applying the Stroh’s formalism 
(Ting, 1996; Stroh, 1958), a general 
solution satisfying these equations may be 
expressed as (Hwu and Yen, 1993).
Consider the elliptical anisotropic 
inclusion imbedded in an infinite matrix, 
the elliptical inclusion boundary in the z-
plane will be mapped to four different 
slanted elliptical inclusion boundary in the 
z -planes for different 

eigenvalues 1,2,3,4, . It is not 

convenient to solve problems with 
elliptical boundary by using the argument 
z defined in )(zf . Therefore, to treat the 
problems with elliptical boundary, most of 
the solutions shown in the literature are 
expressed in terms of the transformed 

complex variable . These four different 

z -planes will be mapped to four different  

-planes for different eigenvalues ,

all four different slanted elliptical 
inclusion boundary into the same inclusion 
boundary in the shape of a unit circle 

1 . The relation between z and  is  

1,2,3,4,1
2
1 ibaibaz (3.1a) 

or inversely 

1,2,3,4,
2222

iba
bazz (3.1b)

where a2  and b2  are the lengths of the 
major and minor axes of the ellipse, 

respectively. The singular point ẑ  is the 

location of the dislocation or the point 
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force. The general solution to the inclusion 
problems may now be written as 

1

1011011

1011011 ,
u

S
d

d

ffBffB

ffAffA

                                                                       (3.2a) 
and           

2

2

*

012

*

022

2

*

012

*

022 ,
u

S
d

d

ffBffB

ffAffA

                                                                       (3.2b) 
 Where the subscripts 1 and 2 denote, 

respectively, the matrix and inclusion 0f and 0f
represent the function associated with the 
singularity behavior caused by the dislocation (or 
point force). 1f (or 2f )is the function 
corresponding to the flied of matrix (or inclusion) 
and is holomorphic in region S1 (or S2). S1 and S2

denote, respectively, the regions occupied by the 
matrix and inclusion. 

In general, the transformation function used in 
Eq. (3.1) is multi-valued. However, by choosing 
only the mapped points outside the unit circle, the 
transformation function will map the region 
outside the elliptic inclusion onto the exterior of a 
unit circle and is single valued outside the 
inclusion. The z  along the interface 
( sin,cos 21 bxax ) will then be mapped 
onto a unit circle ie . However, by 
choosing only the mapped points inside the unit 
circle, the transformation is still double-valued 
inside the inclusion. To have a one-to-one 
transformation inside the inclusion, a special 
choice has been made and a certain restriction 
should be satisfied for the function 2f  and the 
series form expression may be written as Hwu 
and Yen (1993) and Lekhnitskii (1968)    

10
2

k

k
k

k

k

k
k ccf             (3.3a) 

where
*

*

iba
iba

                         (3.3b) 

and *  is the material eigenvalues of the 

inclusion. The angular bracket stands for the 
diagonal matrix. 

(a) z -plane 

b

a x1

x2

S2

b

a

S1

S1

S2
S0

m
1

1

-1 

-1

(b) -plane 

Figure 2. Mapping from (a) z-plane to(b) 

-plane

3.2 Dislocation or Point Force Outside an 
Elliptical Inclusion 

Consider an infinite matrix which includes 
anisotropic elastic elliptical inclusion. One 

dislocation  with Burgers vector b̂ ( or point 

force p̂ ) located at point 21 ˆ,ˆx̂ xx  which is 
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outside the inclusion. If the inclusion and matrix 
are assumed to be perfectly bonded along the 
interface, the displacements and surface tractions 
across the interface should be continuous. That 
is,

21

21 uu
 along the interface               (3.4) 

An elasticity solution satisfying the 
dislocation singularity and the interface continuity 
condition has been found in [16].  

We consider that the dislocation or point force 
is located at the infinite matrix, (3.2) will be 
rewritten as 

1

1011011

1011011 ,
u

S
d

d

ffBffB

ffAffA

                                                                       (3.5a) 

2

21222

21222 ,u S
d

d

fBfB
fAfA         (3.5b) 

Where 0f  is the function that unperturbed 
elastic field of the matrix. 1f  is the 
holomorphic function corresponding to the 
perturbed field of the matrix and will be 
determined through satisfaction of the boundary 
conditions. Divide 0f  into two parts, one part 
is holomophic in 1S ( 0f ) and another part is 
holomophic in the 02 SS ( 0f ),Here, 0S
denotes the region inside the circle of 
radius m , 2f  chose the same as 1f ,
Express it as follows 

2020

120

222000

SSincholomorphiis,
Sincholomorphiis,

,

ff
ff

ffffff

                                                                       (3.5c) 

By using general solutions (3.5) ,the traction 
continuity condition of (3.4) 

222222

10011001

21

222222

10011001

21

ffBffB

fffBfffB

ffAffA

fffAfffA

uu

dd

dd

                                                                         (3.6) 
One of the important properties of 

holomorphic functions used in the method of 

analytic continuation is that if f  is 

holomorphic in 1S or 02 SS ,then 1f  is 

holomorphic in 02 SS or 1S . We may 

introduce a function which is holomorphic in the 
entire domain including the interface boundary, 
can be rewritten as 

202222011101

12222011101

1

SS,111

S,11

fAfAfAfAfA

fAfAfAfAfA

                                                                     (3.7a) 

202222011101

12222011101

2

SS,111

S,11

fBfBfBfBfB

fBfBfBfBfB

                                                                       (3.7b) 

1  and 2  are holomorphic in the 

whole -plane including the points at infinity. By 

Liouville's theorem we have 1  and 

2 constant. However, the constant function 

corresponds to rigid body motion which may be 

neglected.

Therefore 1 =0, 2 =0. With this 

result, (3.7) can get to 

1

2222011101

2222011101

S,
11

11

fBfBfBfBfB

fAfAfAfAfA

                                                      (3.8a) 
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20

2222011101

2222011101

SS,
111

111

fBfBfBfBfB

fAfAfAfAfA

                                                      (3.8b) 
Cancellation of 1f  between (3.8a) and 
(3.8b) leads to 

2022

1

12

1

1

22

1

12

1

101

1

11

1

1

122

1

12

1

1

22

1

12

1

101

1

11

1

1

,1

,
11

SS

S

fBBAA

fBBAAfBBAA
fBBAA

fBBAAfBBAA

                                                                      (3.9) 
we can have to put in order from (3.9)2

2,1,

1
1

2221222101

ki
i

kkk

T

ABM
fAMMfAMMfA

                                                                      (3.10) 

Because 0f  has already known, from (3.10) 
can get to solution for 2f . Using the 
conditions of (3.4) will be tried to get the function 
of 1f

We discuss the boundary conditions of 
different load situations (2.1), using the Green’s 
functions of composite laminates problems (2.2) , 
we can solve the general solutions of disloaction 
outside the elliptical inclusion,
    We consider the matrix function including 
singularity points, received the concentrated 
forces and concentrated moments in first and 

second coordinate axis. We may choose 0f  as 

ˆlog 10 qf zzz                           (2.2a) 

From (3.1) we know that 

logˆ1logˆlog 10 qf c

                                                                     (3.11) 

   As a result of 0f  is holomorphic in 1S  and 

0f  is holomorphic in 2S , we get

ˆlog

,ˆ1log

10

10

qf

qf
                  (3.12) 

The constant term clog  has been neglected 

since it corresponds to rigid body motion and has 
no contribution to the deformation. 

For easy to calculate, it can be represented by 
series expansion, 

1

1
10

ˆ1

ˆlog

qe

eqf

k

k

k

k

k

k

      (3.13) 

1
2

1
2 ,

k

k
k

k

k
k

k cfcf   (3.14) 

Take (3.13) and (3.14) into (3.10) we can get 

1
0

11
00 kkkkkk tGGtGGGGc (3.15a)

Where

k
T

k

k
k

i eAt
AMMGAMMG

1

2212210 ,     (3.15b) 

Having the solution of kc , function 1f
can now be obtained from (3.8) 

or

k

k
kk

k
k

k

k
kk

k
k

1
221

1
1

11

1
221

1
1

11

ˆ1log

ˆ1log

cBcBeBB

qf

cAcAeAA

qf
   (3.16) 

3.3 Dislocation or Point Force Inside an 
Elliptical Inclusion 

Consider the dislocation (or point force) is 
located at the point which is inside the inclusion. 
Because singularity points lies on the inculsion 
will cause holomorphic continuation conditions to 
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produce the question. So must consider getting rid 
of the singularity points on the choice of function 
in inclusion. And the choice of function in matrix 
must correlate with inclusion, even the same as 
singularity function. 

So we rewrite (3.2) of matrix and inclusion 
function as

1
1011011

1011011 , S
d

d

ffBffB
ffAffAu

                                                       (3.17a) 

2
2

*
012

*
022

2
*
012

*
022 , S

d

d

ffBffB
ffAffAu

                                                                     (3.17b) 

where             

0

**
0

*
0

*
0

222

p

p

ff
ffff

fff

                                                                    (3.17c) 

0f  and *

0f  represent functions 
associated with the singular behavior 
caused by the point forces or dislocation;  

p
*f  describes a singular phenomenon in 

the inclusion, and pf  is a singular 
phenomenon in the matrix 

Satisfying the point forces or 
dislocation singularity conditions and
applying the interface continuity condition 
(3.4), we can get  

22

**

0

*

02

22

**

0

*

02

101101

21

22

**

0

*

02

22

**

0

*

02

101101

21

fffffB

fffffB
ffBffB

fffffA

fffffA
ffAffA

uu

p

p

dd

p

p

dd

  (3.18) 

After comparing, can take the following 
equality , and therefore equality tries to get the 

solutions of singularity functions. 

*

2

*

2110101

*

2

*

2110101

pppp

pppp

fBfBfBfBfBfB

fAfAfAfAfAfA

                                                                       (3.19) 
Later used analytical continuation method to 

have

202222
*

02

*

0211

12222

*

02
*

0211

SS,111

S,11

fAfAfAfAfA

fAfAfAfAfA

                                                                    (3.20a) 

202222
*

02

*

0211

12222

*

02
*

0211

SS,111

S,11

fBfBfBfBfB

fBfBfBfBfB

                                                                     (3.20b) 
Cancellation of 1f  between (3.20a) and 
(3.20b) leads to 

2022

1

12

1

122

1

12

1

1

*

02

1

12

1

1

*

02

1

12

1

1

122

1

12

1

122

1

12

1

1

*

02

1

12

1

1

*

02

1

12

1

1

,1

1

,1

1

SS

S

fBBAAfBBAA

fBBAAfBBAA

fBBAAfBBAA

fBBAAfBBAA

                                                                       (3.21) 
we can have to put in order from (3.21)2

1

1

22212221

*

0221

*

0221

fAMMfAMM

fAMMfAMM

                                                                       (3.22) 
Because *

0f  has already known, From (3.22) 
can get to solution for 2f . Using the 
conditions of (3.20) will be tried to get the 
function of 1f

We discuss the boundary conditions of 
different load situations (2.1), using the Green’s 
functions of composite laminates problems (2.2) , 
we can solve the general solutions of disloaction 
inside the elliptical inclusion. 
When dislocations lies in elliptical inclusion, the 
influence that the singularity phenomenon of 
dislocations causes, will happen on elliptical 
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inclusion. By (3.17b) we will be divided into the 
perturbed and unperturbed function of inclusion. 
Where *

0f  is the function that unperturbed 
elastic field of the inclusion. 2f  is the 
holomorphic function corresponding to the 
perturbed field of the inclusion. In order to satsify 
the dislocation singularity and interface continuity 
conditions, we will choose *

0f  as the form of 
(2.2a) and change parameter z  into . Because 
consider that must holomorphic inside on 2S  , 
function is expressed as follows 

logˆ1logˆlog 1
*
0 qf c

                                                                 (3.23a) 
where             

nsdislocatiofor,ˆ
2
1

forcespointfor,ˆ
2
1

2

2

1

bB

pA
q

T

T

i

i

                                                                  (3.23b) 
 Known that *

0f  has singularity phenomenon 
by (3.17c), among *

0f  is holomorphic in 1S
and *

0f  is holomorphic in 2S , so (3.23a) 
make into 

1
*

*
0

1
*
0

log

log
ˆ

1logˆ1log

qf
0f

qf

p

c

                                                                    (3.24) 
Because of (3.24) can set matrix function as 

df log0                                  (3.25) 

substituting (3.24)3 and (3.25) into (3.19) we can 
get

ndislocatiofor,ˆ
2
1

forcespointfor,ˆ
2
1

1

1

bB

pA
d

T

T

i

i         (3.26) 

Function must be analyzed inside on the domain, 

So choose function as follows  

1
2

1
2

1

*
0

1

*
0

,

,

k

k
k

k

k
k

k

k

k
k

k

k
k

cfcf

dfef
 (3.27) 

Substituting (3.27) into (3.22) we get 

,

221221

2212210

1
0

11
00

kkk

k
k

kkkkkk

dAMMeAMMt
AMMGAMMG

tGGtGGGGc

                                                                       (3.28) 
using series expansion to substitute for the (3.24), 
we can get 

0,ˆ
ˆ1

log
ˆ

1logˆ1log

1

1

*
0

1

1
*
0

k

k

k
k

k

k
k

k

k
k

k

c

dqe

d0f

e

qf

                                                                     (3.29) 
Substituting (3.29) and (3.28) into (3.20) 
we can get solutions for 1f .

k

k
kk

k

k

k
kk

k

c

c

log
ˆ

1logˆ1log

or

log
ˆ

1logˆ1log

1
22

1
1

12
1

11

1
22

1
1

12
1

11

cBcBB

qBBf

cAcAA

qAAf

                                                      (3.30) 

3.4 Dislocation or Point Force on the 
Interface Between Inclusion and Matrix 

Sections 3.2 and 3.3 explore a singular 
point (point force or dislocation) on the  
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matrix or inclusion. This study further 
investigates singular point situations on 
the inclusion and matrix interface that 
were considered in (Yen, W. J., and Hwu, 
C., and Liang, Y. K., 1995) When 
singularity behaviors are exhibited at a 
point on the interface, the choice of 0f
and *

0f  is not as clear as in Sections 3.2 
and 3.3, because the singular point is 
covered by both the inclusion and the 
matrix. Hence, the singular term between 
the matrix and the inclusion in the same as 
Section 3.3 must be considered. A function 
(3.17) is chosen. Applying the singularity 
boundary conditions ,we can get solutions 

for dislocation singularity   
bu ˆ
0

d

d

d

d
   (3.31a) 

for point force singularity   
0

ˆ

d

d

d

d

u

p
   (3.31b) 

Continuity conditions are then applied to 
determine the unknown coefficient, which 
is substituted into the function to yield the 
unknown function 2f

We discuss the boundary conditions of 
different load situations (2.1), by (2.2) we can get 
the general solutions of disloaction on the 
interface of anisotropic elliptical inclusion and 
matrix.
Because singular point lies on the interface of 
matrix and inclusion at the same time, we can 
look for the forms of 0f  and *

0f  from 
general solutions of hole and elliptical plate 
problems , choose as follows  

logˆ1logˆlog

ˆlogˆlog

2
*
0

1
1

10

qf

qqf

c

                                     (3.32)

where 211 and,, qqq  are the unknown 
coefficients to be determined. 

General like section 3.3, in order to satisfy 
every region holomorphic, we are divided (3.32) 
into and influenced by singularity phenomenon 
and free of singularity phenomenon two parts, 
rewrite it as follows:

0dqe

qf

qqff

0df

eqf

k2

2
*

1
1

10

1

*
0

1
2

*
0

,ˆ
1

ˆlog

ˆlogˆlog

ˆ1log

k

k

p

p

k

k
k

k

k
k

k

                                                                   (3.33)
Like (3.19) comparing singular term and can 

have

0

0

22111122111

22111122111

qAqAqAqAqAqA

qAqAqAqAqAqA

                                                              (3.34a) 

0

0

22111122111

22111122111

qBqBqBqBqBqB

qBqBqBqBqBqB

                                                                (3.34b) 
Consider Eq.(3.31), the mapped points 

around x̂  may be expressed as 

0,ˆ ie  where  starts from the 

line tangent to the interface. Hence, the closed 
integrals may be expressed by 

2211 20 dddddd  and 

2211 20 dddddd uuuuu .

Subtituting (3.32) and (3.3a) into (3.2), the 
equilibrium and the singularity conditions shown 
in (3.31) now provide 
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0

ˆ1

22111122111

22111122111

qBqBqBqBqBqB

bqAqAqAqAqAqA
i

                                                          (3.35a) 
or

pqBqBqBqBqBqB

qAqAqAqAqAqA

ˆ1

0

22111122111

22111122111

i

                                                                  (3.35b) 
By (3.34) and (3.35) can unknown number 

211 and,, qqq  is solved out 
for dislocation

bBBBAABBAAq

bBBBAABBAAq

bBq

ˆ
2
1

ˆ
2
1

ˆ
2
1

11
1

11
1

1
1

2
1

12
1

12

11
1

21
1

2
1

1
1

21
1

21

11

T

T

T

i

i

i

                                                                   (3.36a) 
for point forces 

pABBAABBAAq

pABBAABBAAq

pAq

ˆ
2
1

ˆ
2
1

ˆ
2
1

11

1

11

1

1

1

2

1

12

1

12

11

1

21

1

2

1

1

1

21

1

21

11

T

T

T

i

i

i

                                                                   (3.36b) 
Like those described in (3.20), (3.21) and 
(3.22), by canceling 1f  and comparing the 
coefficients of corresponding terms, the 
unknown constants ck can be determined to 
have the same expression as (3.28) except  

ˆ
1

2221

221221

qAMM

dAMMeAMMt
k

kkk

k

                                                (3.37) 
Having the solution of ck, substituting 

(3.33) and (3.36) into (3.20) can get 

function 1f .

k

k
kk

k

k

k
kk

k

ˆ1log

or

ˆ1log

1
22

1
1

22
1

11

1
22

1
1

22
1

11

cBcBB

qBBf

cAcAA

qAAf

                                               (3.38) 

4. Discussion 

In order to verify that the obtained solutions 
is true. This paper considers two simple 
examples to verify the solutions.  
Case I: 

The simplest situation pertains when 
the matrix and the inclusion are composed 
of the same material, such that 

AAA 21 , BBB 21 , MMM 21

The solution herein is verified by dividing 
the proof into three parts. 

1. Point Force or Dislocation on the matrix 
From (3.15),(3.16) we can get 

k

k
k

k

k

k
kk

k
k

kk
T

kk i

1
1

1

11
11

11
0

ˆ1log

ˆ1log

cq

cAAceAAqf
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where              
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From (3.11),(3.13),(3.14) and (4.1) can get 
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                                                        (4.2) 
From (4.2), which are the same as are 
assumed for homogeneous materials 
2. Point Force or Dislocation on the 

inclusion 
Exchanging the condition for homogeneous 
materials for (3.28) yields  
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(4.3) 
From (3.17c), (3.24), (3.25) and (3.27) can 
get
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Where   
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Applying (4.4) yields the matrix function 
is the same as the inclusion function. 
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3. Point Force or Dislocation on the 
interface of matrix and inclusion 

(3.28) and (3.36) yield 
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Using (3.32) ,(3.33) and (3.38), we have 
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                                                        (4.7) 
Combining the results of (4.7), one may 
prove that 
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we can get the same to have the function 
value on matrix and inclusion. 

The result herein is therefore correct
for homogeneous materials. It is also 
appropriate for other materials, so the 
result herein has wide applicability. 
Case II: 

The second case, reduction of the 
inclusion to a hole, such that 

BBAA 11 , , MM1 , 0MBA 222

is considered. Again, the proof is divided 
into three parts. 
1. Point Force or Dislocation on the matrix 

From (3.15) we can get 
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From (3.8) 
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Subtituting (3.10) into (4.10) can get 
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The result thus obtained is the same as was 
obtained by (Hwu 2004) 

2. Point Force or Dislocation on the 
inclusion 
From (3.28), can get 
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Using (3.20),(3.25),(3.26) may result in 
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The result is the same as that the plates 
containing a hole   
3. Point Force or Dislocation on the 
interface of matrix and inclusion 
(3.28) and (3.36) yield  
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(4.14)             
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Using (3.32) ,(3.33) and (3.38) 
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The result thus obtained is similar to the 
plates containing a hole  

The verification yields the results in 
earlier papers. Therefore, the result 
derived herein has been proven to be 
correct. 

5. Conclusions 
In this paper, the anisotropic elastic 

materials of stretching and bending 
problems were considered. General 
solutions for dislocation or point forces 
inside, outside, or on the interface between 
an anisotropic elliptical inclusion and 
matrix, were obtained. The solution is 
obtained more conveniently and quickly 
than other solutions and the applicable 
range is more extensive. Simple solutions 
are obtained by combining numerical 
solution to the singular integral equation. 
The presented analytical solutions can be 
applied to solve the problem of a crack 
penetrating an inclusion or lying around 
the interface, as well as the problem the 
interaction between a crack and an 
inclusion. 
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