CPU 散熱座性能測試臺之設計與製作及個案分析與改善

The design and fabrication of an apparatus of the CPU heat sink performance and the analysis and improvement of a case

鄭澤明¹ 何岳助² 林志賢³ 蘇世賢³
T. M. Jeng, Y. J. He, Z. X. Lin, S. X. Su,

¹ 空軍航空技術學院機械工程科副教授

² 空軍航空技術學院機械工程科助教

³ 空軍航空技術學院機械工程科二專學生

Department of Mechanical Engineering, Air Force Institute of Technology

摘要

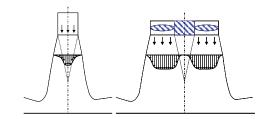
本研究成功設計並製造完成一簡易可信的散熱座性能測試臺,不但造價低廉,而且體積緊緻,且完全不須外接額外之昂貴儀器。利用此自製散熱座性能測試臺,本研究完成一系列之風扇-散熱座組合件之散熱性能實驗量測,採用固定之風扇與三種型式之散熱座,主要變動參數包括風扇與散熱座間之風管長度(H)及風扇上方之空隙距離(C),實驗結果顯示長片狀散熱鰭片之散熱能力優於短片狀,此外,加裝風管通道與固定扣夾對平均紐塞數(Nu)的影響極微小,而散熱座與加熱銅板之間不塗抹導熱膏時之 Nu 值僅為塗抹時的一半,最後,本研究之個案建議風扇上方之空隙距離(C)應為 12mm,此時既不影響整體散熱性能,又可以有較小之系統體積。

關鍵字:散熱座性能測試臺,風扇-散熱座組合件,熱傳遞,實驗

Abstract

This work successfully designed and fabricated a simple and reliable apparatus of heat-sink performance. This apparatus has not only a cheap cost, but also a small volume. Utilizing the self-fabricated apparatus, this work experimentally investigated the cooling performance of the fan-heat sink assembly. The fan was fixed. Three kinds of heat sinks were employed. The relevant variable parameters are the length of the channel between the fan and heat sink (H), and the distance of the space above the fan (C). The measured data indicates that the heat sink with longer plate-fins enhanced better cooling performance than that with shorter plate-fins. Additionally, the effects of the channel length (H) and the clasp on the average Nusselt number were negligible. Moreover, the thermal grease between the heat sink and the heated surface greatly reduced the contact thermal resistant. Finally, the case herein suggested that the optimal distance of the space above the fan (C) was 12 mm, while the average Nusselt number was sufficiently large and the system volume was small enough.

KeyWords: apparatus of heat-sink performance, fan-heat sink assembly, heat transfer, experiment


一、簡介

基於構造簡單與價格便宜的緣故,鋁擠 型的片狀鰭片散熱座與風扇的組合一直是廣 為風行的散熱裝置(如圖一所示)。一般而言 ,尺寸為 60×60mm×40mm、片狀鰭片數為 20 之鋁擠型散熱座,在 10CFM 的衝擊流冷 卻下,可對 1GHz 以下的 CPU 有效散熱; 但對 1.2+GHz 以上的 CPU,則恐怕較不理 想。目前市場上對此類高散熱需求的 CPU 多採用銅冷鍛製程之緻密鰭片散熱座進行風 扇衝擊冷卻,但其相對價格昂貴許多,如何 能繼續保有鋁擠型散熱座其構造簡單與價格 便宜的優勢,又可增強其冷卻性能,在產業 上有很大的市場價值,值得深入探討。由於 CPU 晶片面積已降至 12×9mm,再增大散 熱座的尺寸,也會受限於均熱板(spreader) 横向熱阻而無法將熱均勻傳至外側與角落的 鰭片,對冷卻性能增益有限,但卻大佔空間 ; 若無法加大散熱座的尺寸, 則必須增加鰭 片密度或高度,或選用單位體積內具較大之 延展面積之散熱座結構(例如發泡鋁材或金 屬網狀結構)。鋁擠型散熱座之鰭片密度與 高度是受製程限制的,以銅為材料,利用冷 鍛製程可得緻密之鰭片密度,但與發泡鋁材 或金屬網狀結構之散熱座一樣,都會使成本 增加許多;至於加大風扇轉數以獲得較大之 吹入風量,同樣有成本大幅增加的考量,而 且震動與噪音也會增大許多。因此,在固定 鋁擠型散熱座之尺寸與鰭片密度的前提下, 如何能藉由不同風扇位置的安排,達到冷卻 性能增益的效果,在散熱設計上是值得思考

的課題。本研究擬設計製造一簡易可信的散 熱座性能測試臺,可用來評估市售散熱座的 散熱性能,並針對個別鋁擠型散熱座,提出 改善方案,藉所設計製造之測試臺進行檢驗 ,以確認改善方案之效益。

圖一: Aopen 公司產品 (型號 AC610D)

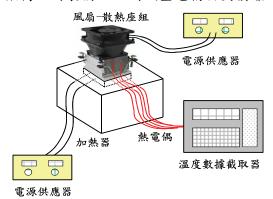
圖二:噴射衝擊流與風扇衝擊流之示意圖

有關噴射衝擊流與固體表面間之熱流 研究, Martin [1]、Polat 等人[2]與 Jambunathan 等人[3]都曾做過相當仔細的 回顧性文章,他們指出紐塞數的增益可以藉 由縮短噴口與加熱面之間的距離、增大雷諾 數、以及利用拋物線噴流出口速度分佈等方 法達成。也有很多學者針對噴射衝擊流與散 熱座之間的熱交換現象進行實驗、理論或數 值計算的探討,提出了許多的理論模式與參 數分析結論供熱控工程師設計產品時之指 導。像是 Ledezma 等人[4]以實驗、理論及 數值計算的方法探討在衝擊流下直行排列之 矩形柱狀鰭片之最佳間距,其散熱座係置於 吸式風洞中,改變的參數包括鰭片高度、鰭 片厚度、均熱板尺寸、普朗克常數與流速 等,並提出最佳間距的半經驗公式;Issa 與 Ortega [5]以實驗量測在非局限式噴射 衝擊流下直行排列之矩形柱狀鰭片之熱流特

性,改變的參數包括鰭片高度、鰭片厚度、 鰭片密度、散熱座與噴口之間距、及雷諾數 等,其結果顯示流阻會隨鰭片厚度與鰭片密 度之增加而變大,而隨鰭片高度與散熱座與 噴口之間距之增加而變小,熱阻則隨鰭片厚 度、鰭片密度與雷諾數之增加而變小; Maveety 與 Jung [6,7] 及 Maveety 與 Hendricks [8]也以實驗、理論及數值計算 的方法探討在非局限式噴射衝擊流下直行排 列之矩形柱狀鰭片之熱流特性,改變的參數 包括散熱座材質、散熱座構型(即鰭片高 度、鰭片厚度、鰭片密度)、散熱座與噴口 之間距、及雷諾數等,其結果顯示在 Re=4×10⁴~5×10⁴ 時,散熱座與噴口之間距 為 8~12 倍的鰭片厚度時有最佳的散熱表 現;Brignoni 與 Garimella [9,10]以實 驗量測在局限式噴射衝擊流下直行排列之圓 形柱狀鰭片之熱流特性,改變的參數包括噴 口數目、噴口管徑、流速、及散熱座與噴口 之間距,結果顯示流體之體積流率愈大或流 速愈大時會有較佳的熱傳率; Sparrow 與 Larson [11,12]及 Sparrow 等人[13]以實 驗法與理論模式探討在局限式衝擊流下直行 排列之圓形柱狀鰭片之熱流特性,改變的參 數包括流體入口狀況(於入口處加裝部份覆 蓋)、流體出口狀態(於出口處加裝基板延 展)、及散熱座構型(即鰭片高度與鰭片直徑 之比例、鰭片間距與鰭片直徑之比例),其 結果顯示在散熱座角落的鰭片比居於中央部 位的鰭片有較大的熱傳係數,而在入口處加 裝部份覆蓋則可使全部鰭片的熱傳係數值較 一致,至於出口處加裝基板延展只會對鰭片 間距較大的散熱座其最外側之鰭片有影響; Kondo 等人[14,15]以理論模式輔以實驗量 測與數值計算來探討在局限式衝擊流下直行 排列之片狀與圓形柱狀鰭片之熱流特性,他 們提出了所謂的 Zonal Model 的半經驗計 算模式,做為設計散熱座之鰭片構型最佳化 時的應用工具;Biber [16]以數值計算獲 得單一等溫壁渠道於衝擊流下之熱流數據, 並整理出壓降與熱傳之經驗公式,利用此公

式與流道長可預測片狀鰭片散熱座之散熱能 力;Sathe 等人[17]則以三維數值計算完整 模擬非局限式衝擊流下直行排列之矩形柱狀 鰭片之熱流特性。以上的研究均係針對噴射 衝擊流所做的探討,然而就目前市售之 CPU 冷卻產品而言,風扇-散熱座組合件仍是主 流。以風扇驅動之衝擊流與以噴口射出之衝 擊流比較,其流動狀態有極大的差異,如圖 二所示,噴口射出之衝擊流其主流在噴口之 下,而風扇驅動之衝擊流因馬達轉軸本體之 故,其主流呈同心圓狀向下吹出,馬達轉軸 本體下方與風扇外緣的風速都較小,且主流 並非正向衝擊於目標表面,而是呈現渦旋 狀,基於如此不同的衝擊流速分布,其下方 若置放一散熱座,包括散熱座材質、散熱座 構型(即鰭片高度、鰭片厚度、鰭片密度)、 散熱座與噴口之間距、及雷諾數等之最佳化 研究將會有不同的結果。

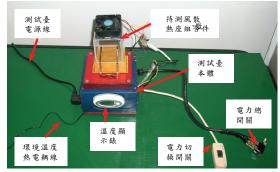
針對以風扇衝擊流與散熱座之間的熱 交換現象進行之研究,就目前所搜集到的資 料而言,實不如噴射衝擊流的研究來的豐 富,且風扇多直接置於鰭片散熱座正上方, 與鰭片頂端的間隙幾乎可以忽略不計,列舉 相關研究如后: Zheng 與 Wirtz [18]以實 驗探討在非局限式風扇衝擊流下方形陣列之 圓形柱狀鰭片之熱流特性,與噴射衝擊流比 較的結果顯示在相同流量下風扇衝擊流有較 小的壓降與熱傳率,他們同時也提出了摩擦 係數與紐塞數的經驗公式;Wirtz 等人[19] 另外也以實驗探討在非局限式風扇衝擊流下 方形陣列之圓形、矩形與菱形柱狀鰭片之散 熱特性,他們指出圓形柱狀鰭片會有最佳的 散熱表現,且在固定壓降時,鰭片間隙-直 徑之比例較大時散熱座會有較小的熱阻,在 固定風扇功率時,鰭片間隙-直徑之比例接 近 1 時散熱座會有最小的熱阻,整體而言, 鰭片愈高、或壓降愈大、或風扇功率愈大都 會使熱阻降低; Chen 等人[20]同樣以實驗 探討在非局限式風扇衝擊流下方形陣列之圓 形柱狀鰭片之散熱特性,他們指出鰭片密度 的改變,會在冷流的吹入與鰭片有效散熱面


積等兩方面產生相反的影響,因此會有產生最大散熱能力之最佳鰭片密度,其實驗結果顯示,在固定風扇功率時,鰭片間隙-直徑之比例接近約2時散熱座會有最小的熱阻,這與Wirtz等人[19]的結論不同,這應是與散熱座與風扇間之相對間距有關,Chen等人[20]之散熱座與風扇之間的通道顯然具旁通效應。

由以上文獻回顧可知,雖然在噴射衝擊 流與散熱座之間的熱流研究已相當完備,但 在風扇衝擊流部份則仍有許多值得探討之 處。本研究重點將放在以往學者未曾探討之 風扇位置的安排對冷卻性能增益之影響上, 根據 Fu 與 Huang [21]以單方程式模式模擬 不同型狀之球形堆積密實床材料置於自由溝 槽噴流下之散熱效能,他們的結果指出,主 要影響整體散熱性能的因素為接近加熱面之 流量多寡,這等於是說衝擊流愈能穿透鰭片 結構而達於加熱面,其散熱能力就愈好。本 研究將設計製造一簡易可信的散熱座性能測 試臺,在固定散熱座之尺寸與鰭片密度的前 提下,以實驗方式量測在不同風扇位置的安 排下之散熱能力,最後能建議較佳之風扇-散熱座組合構型。

二、散熱座性能測試臺之設計與製作

一般在實驗室中,散熱座性能測試之實驗系統圖如圖三,主要由四個部份所組成:a.風扇-散熱座組、b.測試臺本體、c.熱源供應裝置、d.溫度量測裝置。其中驅動風扇之直流電源供應、加熱用之直流電源供應器、與溫度量測裝置用之 T-type 熱電網與溫度數據記錄器都是額外之裝備,不但單價昂貴,而且頗佔空間,因此相關之散熱座性能測試要執行並不容易。

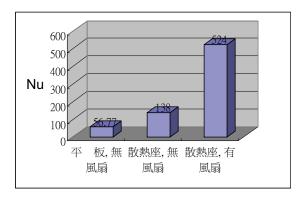

本研究設計採用一般電腦使用之電源供應器取代,可直接接至一般 110V 之交流電插座,經由電腦使用之電源供應器轉換為額定 5V 或 10V 之直流電,此直流電可用來驅動風扇進行冷卻;熱源供應裝置以不鏽鋼片自行割製成薄膜加熱片,本研究所割製之加熱片長與寬各為 5 公分、電阻值為 7.5 歐姆

圖三:實驗系統圖

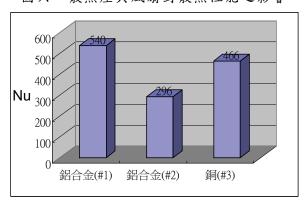
圖四:薄膜加熱片

圖五:本研究設計與製做之測試臺原型

三、風扇-散熱座組與基本測試


本研究所採用之風扇其外徑為 57 公釐、中心馬達外徑為 32 公釐,測試時測試臺將供給風扇 10.8V 之電壓、0.205A 之電流,因此風扇消耗功率為 2.214 瓦特,全部的測試均採用此風扇;此外,有三種散熱座在本研究中被測試,其詳細之規格如表一所示,三種散熱座之尺寸及延展之散熱面積大致接近。

表一: 本研究測試之散熱座規格


人 · 本州九州武之取然住沈怡			
散熱座	sample-	sample-	sample-
 材質	鋁合金	鋁合金	 銅
散熱座型式-長高面			
均 熱 板 長 [mm]	76	78	69
均 熱 板 寬 [mm]	60	58	59
均熱板高 [mm]	6	7	4.5
鮮 片 高 [mm]	34	40	32.5
緒 片 厚 [mm]	1	1	0.8
	2.1	2	1.5
鰭片數目- 寬高面	20	20	26
鰭片缺口 長 [mm]- 長高面	9	15	18
散 熱 總 面 積[mm ²]	95680	105324	90261

首先進行基本測試,測試例其散熱座 與加熱銅板之間均無導熱膏、也無固定扣夾 ,圖六顯示風扇-散熱座(sample-1)組合件 之散熱能力最好、散熱座(sample-1)而無風 扇者次之、僅銅板表面者最差,三者之散熱 能力以平均紐塞數(Nu)評估,比值為 9.23 : 2.43:1,其中風扇-散熱座組合件因為係 強制對流冷卻,另外兩種構型則為自然對流 冷卻,強制對流冷卻效果都優於自然對流, 而散熱座(sample-1)延展平面(5cm×5cm)散 熱面積約 38 倍,因此加裝散熱座對散熱絕 對有幫助。

而以風扇-散熱座組合件之構型,比較不同散熱座之散熱能力(如圖七),可以發現鋁合金 sample-1 之散熱能力最好、銅sample-3 次之、鋁合金 sample-2 最差,其平均紐塞數(Nu) 之比值為 1.82:1.57:1,一般而言,銅的熱傳導係數值高達 398 W/m/K,而鋁合金的熱傳導係數則為 164 W/m/K,因此銅製

圖六:散熱座與風扇對散熱性能之影響

圖七:散熱座材質與型式對散熱性能之影響

散熱座應該會比鋁合金製散熱座效果好,但 此處的結果則為相反,其原因應係散熱座之 型式所致,當散熱座鰭片為短片狀(接近柱 狀)時,風扇之強制冷風會提早從鰭片間之 空隙離開散熱座,因此降低整體冷卻能力, 所以同為鋁合金散熱座,sample-1 要比sample-2 高約 1 倍的散熱性能,也是因為這個緣故,所以選擇散熱座時,應挑選較高熱傳導係數值之金屬材質,例如銅,且長片狀散熱鰭片優於短片狀。

四、數據整理與不確定性分析

本研究所量測到的均熱板壁溫(Tw)數據 ,將利用下列方程式轉換為無因次之紐塞數 (Nu),用來評估散熱座之散熱性能。

$$Nu = \frac{q_c L}{(T_w - T_\infty)k_f} \tag{1}$$

其中 T_w 是均熱板壁溫; T_∞ 是環境溫度;L是加熱片之均熱板變長; k_f 是空氣的熱傳導係數; q_c 是由強制對流空氣所帶走的熱通量。 q_c 的估算須由加熱器總發熱量 (q_t) 減去由加熱片背面逃逸之熱損失 (q_{Loss}) :

 $q_c = q_t - q_{Loss} = V \times I - q_{Loss}$ (2) 上式中之 V 為輸入加熱片之熱壓,I 為輸入 之電流。熱損失 (q_{Loss}) 之估算則係在沒有安 裝風扇-散熱座組的構型下測定,在無風扇-散熱座組的構型下,電源所輸入加熱器的總 發熱量 (q_t) 可分成二部份:(1)由加熱片上方 之自然對流熱量 (q_{nc}) 與(2)由加熱片下方之 熱損失 (q_{Loss})

$$q_t = q_{nc} + q_{Loss} \tag{3}$$

$$q_t = V \times I / A \tag{4}$$

$$q_{nc} = h_{nc} \times (T_w - T_\infty) \tag{5}$$

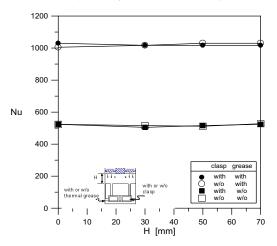
其中 hnc 是平板水平向上之自然對流係數; A 為加熱片之均熱板表面積。從文獻上可得 經驗公式為:

$$h_{nc} = 0.507 \times \left(\frac{T_w - T_\infty}{P_{wet}}\right)^{0.25} \tag{6}$$

$$P_{wet} = \frac{L \times L}{2(L+L)} \tag{7}$$

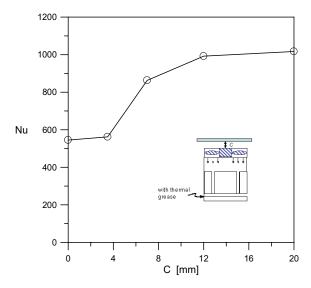
透過在無風扇-散熱座組的構型下之熱損實驗,輸入加熱器不同之總發熱量(qt),會導致不同之(Tw-T∞)溫度差,經由方程式(3)

到(7)則可以導出所對應之熱損失(qLoss),則可以獲得一熱損失公式 qLoss = $F(T_w-T_\infty)$,則後續計算有風扇-散熱座組的構型之紐塞數(Nu)時,便可應用此熱損失公式 qLoss = $F(T_w-T_\infty)$ 併同方程式(1)到(2)來計算紐塞數(Nu)。


本實驗量測之不確定性分析採用McClintock [22]與Moffat [23]所提出之標準單次量測不確定性分析法,儀表量測之溫度數據誤差為 ± 0.5 °C,長度數據量測之誤差為 ± 0.05 mm,對流熱通量(qc)之不確定度為 ± 4 %,因此紐塞數(Nu)的不確定度為 ± 5.1 %。

五、散熱座性能改善方案與測試結果

本研究將在固定散熱座之尺寸與鰭片 密度的前提下,以自製散熱座性能測試臺 量測在不同風扇位置的安排下之散熱性能 ,最後能建議較佳之風扇-散熱座組合構型 。根據 Fu 與 Huang [21]的數值研究結果 而來,他們以單方程式模式模擬不同型狀 之多孔介質散熱座置於自由溝槽噴流下之 散熱效能,結果指出主要影響整體散熱性 能的因素為接近加熱面之流量多寡。這等 於是說衝擊流愈能穿透鰭片結構而達於加 熱面,其散熱能力就愈好。利用上述的結 論,只要能讓風扇所產生的衝擊流愈能穿 透散熱座的鰭片結構而達於晶片上方之鰭 片根部,就愈能將晶片所發散出的熱量帶 走。不過從先前的文獻回顧可以看出,多 數學者均將研究重點放在鰭片密度之最佳 化,而本研究之構想則是在以現有鋁擠型 製程下能製作之片狀鰭片散熱座,如何藉 改變風扇位置來獲得較佳之散熱性能。本 研究依前述的概念與限制條件,提出風扇 與散熱座間加裝風管通道的構型,這款構 型藉由風管通道,讓因馬達轉軸本體之故 產生之同心圓狀主流能在吹入散熱座時形 成較均勻的流速分布,使更多的空氣能達 於加熱面。這款設計已出現於 Aopen 公司 之風扇-散熱座組合件產品 ACK7L 與 ACP4L 上,本研究的加裝風管通道的構型 如圖八所示,風管通道以 5mm 壓克力製 成,採用鋁合金 sample-1 散熱座,主要變 動參數為通道長度(H),圖九顯示通道長度 對散熱性能之影響,從結果可以看出加裝 風管通道似乎對平均紐塞數(Nu)的影響極 微小,從無風管到 70mm 風管,平均紐塞 數(Nu)無明顯改變,證明加裝風管通道並 無法有效提升散熱能力; 此外, 圖九也顯 示固定扣夾對散熱能力並無影響,顯然功 能僅止於固定用,但是否於散熱座與加熱 銅板之間塗抹導熱膏則對散熱能力影響甚 鉅,不塗抹導熱膏時,風扇-散熱座 (sample-1)組合件之平均紐塞數約 520, 但塗抹導熱膏後則約有 110,相差將近 1 倍,因此使用風扇-散熱座組合件時務必塗 抹導熱膏。


圖八:本研究加裝風管通道之構型照片

圖九:風管通道長度(H)、固定扣夾與導熱 膏對散熱能力之影響

圖十:本研究風扇上方加裝平板之構型照片

圖十一:風扇上方空隙(C)對散熱能力之影響

許多時候電子元件是裝置於一侷限空 間內,因此風扇-散熱座組合件其風扇上方 的空間可能不會很大,但上方空間過小會減 小風扇驅動氣流的風量,進而減小整體散熱 性能,本研究針對此一問題,設計一風扇上 方加裝平板之構型(照片如圖十所示),風管 通道高度為 70mm,採用鋁合金 sample-1 散熱座,散熱座有加裝固定扣夾,散熱座與 加熱銅板之間有塗抹導熱膏,主要變動參數 為上板與風扇間之距離(C),圖十一顯示上 板與風扇間之距離(C)對散熱性能之影響, 從結果可以看出風扇上方空隙(C)對平均紐 塞數(Nu)的影響很大,尤其是 C 值從 4mm 到 12mm 之間平均紐塞數(Nu)變化最大,C 值小於 4mm 時 Nu 約為 550, C 值大於 12mm 時 Nu 則約為 1100, 大致與完全開放 空間時相同,因此,本研究之個案建議風扇

上方之空隙高度應為 12mm,此時既不影響整體散熱性能,又可以有較小之系統體積。

六、結論

本研究成功設計並製造完成一簡易可信的散熱座性能測試臺,不但造價低廉,而且不須外接額外之昂貴儀器,底面積只有14平方公分、高度10公分(不含風扇-散熱座組合件時),完全不佔空間。利用此自製散熱座性能測試臺完成一系列之基本測試與改善方案測試,得到以下結論:

- (1) 風扇-散熱座(sample-1)組合件、散 熱座(sample-1)而無風扇、僅銅板表面等三 者之平均紐塞數(Nu)比值為 9.23:2.43:1 ,顯示加裝風扇-散熱座對散熱有很大幫助。
- (2)選擇散熱座時,應挑選較高熱傳導 係數值之金屬材質,例如銅,且長片狀散熱 鰭片之散熱能力優於短片狀。
- (3) 加裝風管通道與固定扣夾對平均紐 塞數(Nu)的影響極微小,而散熱座與加熱 銅板之間不塗抹導熱膏時之 Nu 值僅為塗抹 時的一半,因此使用風扇-散熱座組合件時 務必塗抹導熱膏。
- (4) 本研究之個案建議風扇上方之空隙 高度應為 12mm,此時既不影響整體散熱性 能,又可以有較小之系統體積。

七、謝誌

本研究承蒙國科會大專生專題研究經 費補助(編號: NSC 96-2815-C-344-001-E) , 特此誌謝。

八、參考文獻

- [1] Martin, H., "Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces," Advances in Heat Transfer, Academic Press, New York, Vol. 13, pp. 1-60 (1997).
- [2] Polat, S., Huang, B., Mujumdar, A. S., and Douglas, W. J. M., "Numerical Flow and Heat Transfer Under Impinge

- Jets: A Review," in:Annual Review of Numerical Fluid Mechanics and Heat Transfer, C. L. Tien and T. C. Chawia, eds., Vol. 2, Hemisphere Publishing Corp., pp. 157-197 (1989).
- [3] Jambunathan, K., Lai, E., Moss, M. A., and Button, B. L., "A Review of Heat Transfer Data for Single Circular Jet Impingement," Int. J. Heat and Fluid Flow, Vol. 13, No.2, pp. 106-115 (1992).
- [4] Ledezma, G, Morega, A. M., and Bejan, A.,"Optimal Spacing Between Pin Fins with Impinging Flow," ASME Journal of Heat Transfer, Vol. 118, pp. 570-577 (1996).
- [5] Issa, J. S. and Ortega, A., "Experimental Measurements of the Flow and Heat Transfer of a Square Jet Impinging on an Array of Square Pin Fins," IMECE 2002-34244, Proceedings to IMECE2002, ASME International Engineering Congress & Exposition, New Orleans, Louisiana, U.S.A., November 17-22 (2002).
- [6] Maveety, J. G. and Jung, H. H., "Design of an Optimal Pin-Fin Heat Sink with Air Impingement Cooling," Int. Comm. Heat Mass Transfer, Vol. 27, No. 2, pp.229-240 (2000).
- [7] Maveety, J. G. and Jung, H. H., "Heat Transfer from Square Pin-Fin Heat Sinks Using Air Impingement Cooling," IEEE Transactions on Components and Packaging Technologies, Vol. 25, No. 3, pp. 459-469 (2002).
- [8] Maveety, J. G. and Hendricks, J. F., "A Heat Sink Performance Study Considering Material, Geometry, Nozzle Placement, and Reynolds Number with Air Impingement," ASME Journal of Electronic Packaging, Vol. 121, pp.

- 156-161 (1999).
- [9] Brignoni, L. A. and Garimella, S. V., "Experimental Optimization of Confined Air Jet Impingement on a Pin Fin Heat Sink," IEEE Transactions on Components and Packaging Technologies, Vol. 22, No. 3, pp. 399-404 (1999).
- [10] Brignoni, L. A. and Garimella, S. V., "Performance Characteristics of Confined Impinging Air Jets with Surface Enhancement," ASME EEP-Vol. 26-2, Advances in Electronic Packaging, Vol. 2, pp. 2009-2014 (1999).
- [11] Sparrow, E. M. and Larson, E. D., "Heat Transfer from Pin-Fins Situated in an Oncoming Longitudinal Flow Which Turns to Crossflow," Int. J. Heat Mass Transfer, Vol. 25, No. 5, pp. 603-614 (1982).
- [12] Larson, E. D. and Sparrow, E. M., "Performance Comparisons among Geometrically Different Pin-Fin Arrays Situated in an Oncoming Longitudinal Flow," Int. J. Heat Mass Transfer, Vol. 25, No. 5, pp. 723-725 (1982).
- [13] Sparrow, E. M., Suopys, A. P., and Ansari, M. A., "Effect of Inlet, Exit, and Fin Geometry on Pin Fins Situated in a Turning Flow," Int. J. Heat Mass Transfer, Vol. 27, No. 7, pp. 1039-1054 (1984).
- [14] Kondo, Y., Behnia, M., Nakayama, W., and Matsushima, H., "Optimization of Finned Heat Sinks for Impingement Cooling of Electronic Packages," ASME Journal of Electronic Packaging, Vol. 120, pp. 259-266 (1998).
- [15] Kondo, Y., Matsushima, H., and Komatsu, T., "Optimization of Pin-Fin Heat Sinks for Impingement Cooling of Electronic Packages," ASME

- Journal of Electronic Packaging, Vol. 122, pp. 240-246 (2000).
- [16] Biber, C. R., "Pressure Drop and Heat Transfer in an Isothermal Channel with Impinging Flow," IEEE Transactions on Components, Packaging, and Manufacturing Technologies-Part A,, Vol. 20, No. 4, pp. 458-462 (1997).
- [17] Sathe, S., Kelkar, K. M., Karki, K. C., Tai, C., Lamb, C., and Patankar, S. V., "Numerical Prediction of Flow and Heat Transfer in an Impingement Heat Sink," ASME Journal of Electronic Packaging, Vol. 119, pp. 58-63 (1997).
- [18] Zheng, N. and Wirtz, A., "Cylinderical Pin-Fin Fan-Sink Heat Transfer and Pressure Drop Correlations," AJTE99-6197, Proceedings of the 5th ASME/JSME Joint Thermal Engineering Conference, San Diego, Califomia, U.S.A., March 15-19 (1999).
- [19] Wirtz, R. A., Sohal, R., and Wang, H, "Thermal Performance of Pin-Fin Fan-Sink Assemblies," ASME Journal of Electronic Packaging, Vol. 119, pp. 26-31 (1997).
- [20] Chen, H. C., Tseng, M. H., Wang, C. Y., Ke, W. W., and Chu, C. H., "The Development of Micro-Fins Heat Sink for Electronic Cooling Application," IPACK2001-15525, Proceedings of IPACK'01, The Pacific Rim/ASME International Electronic Packaging Technical Conference and Exhibition, Kauai, Hawaii, U.S.A., July 8-13 (2001).
- [21] Fu, W. S. and Huang, H. C., "Thermal Performances of Different Shape Porous Blocks under an Impinging Jet," Int. J. Heat Mass Transfer, Vol. 40, No. 10, pp. 2261-2272 (1997).

- [22] S.J. Kline, F.A. Mcclintock, Describing uncertainties in single-sample experiments, Mechanical Engineering, pp. 3-8 (1953).
- [23] R.J. Moffat, Contributions to the theory of single-sample uncertainty analysis.ASME Journal of Fluids Engineering 104, pp. 250-260 (1986)