結合RFID與DATADOT技術

應用於旅指揮所風險管控之探討

結合RFID與DATADOT技術應用於 旅指揮所風險管控之探討

作者簡介

李武耀中校, 國防大學中 正理工學院資訊科學系86 年班、國防大學中正理工 學院電子工程研究所92年 班;曾任排長、資訊安全 官、資參官,現任職於10 軍團通資組資參官。

徐佩詩上尉, 南榮技術 學院電子工程系、通資 安全正規班14期;曾任 排長、組長、所長、隊 長,現任職於聯勤儲備 中心隊長。

提要 >>>

- 一、孫子兵法第十三章〈用間篇〉:「先知不可取于鬼神,不可象于事,不 可驗于度,必取于人,知敵之情者也。」意指人永遠是敵情刺探的首要目 標,掌握情資必須從人身上去獲取,包含所有參與其中知情的人,一兵一 卒,一草一木,憑著滲透與監控,研判敵可能行動。
- 二、旅指揮所平、戰時為情資匯集中心,也是敵刺探軍情之首要目標,如何自 動化管控敵對我人員滲透與提前預警機密情資洩露是相當困難的,本文藉 由RFID無線射頻身分識別系統與DATADOT鐳射微粒技術的介紹與闡述, 置重點於結合這兩項技術多層管控之思維,防範旅指揮所機密情資因人員 疏失肇生危安事件。
- 三、面對人員進出指揮所風險管控,我們提出RFID無線射頻身分識別系統。系 統採無線射頻訊號傳送軍品電子標籤 (Tag) 所記載之資訊記錄,達到人

員/物品進出管控自動化管理,提供追蹤、追溯、防偽、進出管制等功能。四、面對機密檔案保管風險管控,我們提出DATADOT高精密鐳射微粒技術, 散布在機密文件表面,達到辨識防竊目的。該技術以微粒形式貯存辨識資 訊,微粒僅能在低倍顯微鏡或者紫外線下辨識,利於隱藏部署,同時可作 機密文件辨識、追蹤與鑑識。

關鍵詞:RFID、DATADOT、微粒技術

前 言

指揮所、營區與重要軍事據點皆有刺 探蒐集軍情的人。以下是三個案例:

案例一¹:民國98年4月2日刑事局值 八隊值辦詐欺案時,查到某單位已退伍中 校裁判官私自收藏100片光碟和紙本軍事 資料,共計9萬件軍事機密電子檔案,內 容有歷年來的國軍作戰計畫、軍事演習、 戰情分析、研究報告、訓練、情報、地圖 等。

案例二:某單位士兵利用執勤或出差的機會,連續刺探非職務上所知悉之「單位砲陣地配置圖」、「守備區兵力部署及兵力駐地報告表」等「機密」級資料,記載於記事簿。

案例三:某單位士兵,擔任文書歸檔 行政工作。某日收到一份列為「機密」級 的「陸軍某演習探討之重大問題改進意見 及建議事項一覽表」及所附的「各作戰區 預期敵軍登陸民眾疏導路線圖」等文件, 在歸檔時,未經許可利用辦公室之影印機 影印攜出。

從以上案例可知,有心刺探蒐集軍情

者不在少數,利用其可能接觸機密資料的機會影印紙本、複製電子檔,或手寫便箋等夾帶攜出。孫子兵法第十三章〈用間篇〉:「先知不可取于鬼神,不可象于事,不可驗于度,必取于人,知敵之情者也。」可印證敵人對我情蒐無所不用其極,隻字片語都會導致危害。

因此,事後發現不如事前預防,本文 針對指揮所人員與機密風險管控研討其困 難度,並提出以RFID與DATADOT兩者結 合的高科技來思考管控機制,兼顧作業便 利性、情資安全性與管控自動化。

隨著人力精簡,國軍正式邁向量少質 精的時代。在精簡過程裡,各單位須更謹 慎看待所保管的機密文件、列管裝備、後 勤裝備與國有財產。因每年裝備檢查單位 調借遺失情事層出不窮,甚有不肖人員將 多餘料件攜出盜賣情事發生,加上單位裁 併隨意處置機密物件,容易肇生重大國安 事件。

同樣地,每年例行軍演在資安管控上 亦常出現漏洞,造成媒體未審先判的報 導,重傷國軍形象。有鑑於此,本文介紹 RFID與DATADOT兩項技術應用於旅指揮

¹ 周敏煌,〈中校洩軍機,疑是諜報集團〉(臺北:中國時報,2009年4月2日),C2版。

作戰訓練

結合RFID與DATADOT技術

應用於旅指揮所風險管控之探討

所人員與機密管控作為,期能有效防竊嚇 阳、便於追蹤鑑識,以減少軍品外流與情 資外洩之可能, 並期盼作為國軍未來風險 管制作為之參考。

RFID 無線射頻辨識系統技術

一、RFID原理介紹²

無線射頻身分識別系統之英文名稱為 Radio Frequency Identification System, 簡 稱RFID。RFID 基本的組成最主要包含電 子標籤(Tag)、讀取器(Reader)及應 用系統等三部分(如圖一)。RFID 工作 原理很簡單,將一個電子標籤內嵌在商品 中,透過無線電波的發射,將所需的資料 傳送到讀取器,利用射頻信號通過空間耦 合(交變磁場或電磁場)的原理,實現 無接觸資訊傳遞,再由後端的應用系統 (System Integration) 進行資訊判讀及運 用,進而達到辨識的目的。茲個別說明如 下:

一電子標籤3

電子標籤記憶體貯存待識別物品的 標識性資訊,由耦合元件及晶片組成, 每個標籤上的電子編碼(EPC)具有唯一 性,黏貼在物品上作為資料識別。當受無 線電射頻信號照射時,能反射攜帶有數位 字母編碼資訊的無線射頻信號,供讀取器 處理識別。

二讀取器4

發射無線射頻信號並接收由電子標 籤反射回來的無線射頻信號,經處理後獲 取標籤辨別資訊。

(三)應用系統

RFID 系統結合資料庫管理系統、 電腦網路與防火牆等技術,提供全自動安 全便利的即時監控系統功能。相關整合應 用包括產品自動化管控、倉儲管理、運輸 監控、保全管制及醫療管理等。

二、RFID技術應用⁵

RFID乃是針對接觸式識別系統之缺

RFID系統架構

資料來源:新浪部落Blog, http://www.program.com.tw/images/product2/mp500 3.gif

² 羅振錡,〈射頻辨識技術於國軍後勤之應用〉《聯合後勤季刊》(桃園:後勤學校,民國94年2月1 日),頁53。

³ 電子標籤與無線射頻識別技術,RFID中國論壇,http://www.rfidchina.org

RFID世界網編輯室, RFID世界網, http://www.rfidworld.com.cn/ 4

⁵ RFID系統開發商暨客戶應用-API開發套件發表會,民國96年10月9日, http://www.program.com.tw/

點加以改良,採用無線射頻訊號傳送數位 資料,因此識別卡不必與讀卡機接觸就能 讀寫數位資料,這種非接觸式之射頻身分 識別卡與讀卡機之間無方向性之要求,且 卡片可置於口袋、皮包內,不必取出而能 直接識別,免除現代人經常要從數張卡片 中找尋特定卡片的煩惱。

以物料射頻系統之工作原理為例(如圖二),商品從製造廠商出廠到經銷商、消費者、回收業者整個過程,皆是物料管控系統透過電子標籤來追蹤控管整個流程。

無線通訊科技的發展與進步正改變著人們的生活方式。當一位消費者在賣場挑選了滿滿一車商品結帳的時候,不需經過任何條碼掃瞄,在幾秒內,金額就會顯示

在螢幕上,消費者可以減少等待的時間, 臺北捷運悠遊卡亦具有RFID的技術,它 結合了車票、電子錢包、信用卡等功能, 讓乘客從搭乘公車、捷運到停車場停車, 都可一卡搞定。

三、旅指揮所人員進出控管系統6

如圖三所示,本系統包含三部分, 說明如下:

(一)門禁系統

須持有門禁識別證才能進出旅指揮 所,不管是人員或軍品進出隨時監控,非 正常進出時間可在第一時間通知相關人 員做處理,同時,衛兵可手持金屬感測 器來偵測人員是否攜帶儲存媒體或數位相 機。

二持續監控7

圖二 物料射頻系統

資料來源:臺灣NEC股份有限公司, http://www.nec.com.tw/solutions/rfid/image/o2-2.jpg

⁶ 唐亞屏,〈無線射頻技術應用於軍事物流管理之探討〉《國防雜誌》 (桃園:國防大學,民國94年10 月),頁108。

⁷ 於下頁。

作戰訓練

結合RFID與DATADOT技術

應用於旅指揮所風險管控之探討

人員/軍品進出追蹤識別系統

資料來源:ANSOAR, http://www.ansoar.com.tw/rfid/p11.jpg

應用RFID技術來達到人員或軍品 巡查與監控的目的。標籤可作為人員與軍 品的身分識別,透過黏貼於人員識別證或 軍品電子標籤來記錄進出資訊,達到統一 控管、追蹤、追溯、防偽、進出管制等功 能。

(三)精準巡查

利用手持式裝置作為電子化巡查可 準確掌控安全防護,破除以往使用紙本簽 到的弊端,更能精準查察軍品流向。

DATADOT 高精密鐳射微粒技術8

一、DATADOT原理介紹

DATADOT以微粒技術來製造獨特 的辨識代碼,散布在物體表面。目前與 防盗保安系統結合,減少人類犯罪的心 理。

產品包括聚酯基體微粒,以一粒沙的 大小,卻具有獨特的資訊被隱藏銘刻在其 中,就如同人類的DNA識別鑑定。這些 獨特的小點可應用在日常生活中財產的管 理及防竊上的一種技術。譬如汽車、摩托 車、筆記型電腦、電機設備、企業財產、 手機、高價設備器材等。

二、DATADOT起源

⁷ 錢樵清,〈無線射頻辨識應用於軍械及庫儲運管〉《聯合後勤季刊》 (桃園:後勤學校,民國95年8月1 日),頁66。

DataDot技術,臺灣微粒科技公司, http://www.datadot.com.tw/smarty/html/datadot-technology-content1.htm 8

圖四 DATADOT微粒示意圖

資料來源:DATADOT Technology Singapore, http://www.datadot.com.sg/index.php/the-technology/None

追溯史上運用「微粒技術」,源起於 40年代美國軍事人員開發用來秘密性標記 情報或辨認情報,對於當時的間諜活動, 這些微小晶片相當有用。這項微粒科技, 最多可以寫上百個英文字母,微粒狀的情 報非常容易傳遞及具高隱蔽性。直到90年 代初期的鐳射刻蝕技術,微粒成為一項可 行商品。

一名美國工程師開發一低成本技術, 能將數萬筆資訊記載於微粒上,這些革命 性的微粒,應用在博弈事業上,數以萬 計偽造的籌碼被大量製造並充斥全球賭 場,但在1995年法律裁定賭場籌碼必須 永久以微粒技術標識,明顯區分籌碼的真 假。

如今,DATADOT橫跨世界各行各業並觸及各項產品,應用到日常生活,並保護個人和商業財產防偽技術,同時開發革命性的噴灑技術,在短短數秒內將數以萬計的DATADOT噴灑於精密高價儀器或面積龐大的產品上。

三、DATADOT 技術9

DATADOT技術可應用於財產身分證 明之標誌技術,利用鐳射精密顯微裝置, 將DNA識別號碼記錄在直徑小於1mm的 粒子上(如圖五)。

以1萬顆微粒分子噴灑於引擎室10、 底盤、手機、筆記型電腦及各重要零 件, 遍布整個設備, 甚至達到細部零件 或無法觸及之處;DATADOT是由多價醇 與多鹽基酸形成之高分子化合物,不易磨 損。在噴灑時採用美國研發的高附著力專 利膠水,具有高黏著性,更是不易被刮 除,竊賊即使刮除,其高達5000~10,000 數量與過程將耗費大量心力,不符合經濟 效益。其黏著力通過酸鹼及溫度測試長 達20年之久,具有特殊螢光劑,配合紫 外線燈源,可立即顯現出DATADOT所在 位置, 並能立即辨識該設備的正確身分。 實際上DATADOT賦予設計師所設計的作 品獨一無二的身分,讓仿冒者無法輕易地 拷貝他的作品。例如:在服裝設計上面,

⁹ DataTraceDNA簡介,臺灣微粒科技公司,http://www.datadot.com.tw/index-2.php


^{10 〈}臺版CSI破汽車解體工廠,防竊微粒奏效,活逮贓車集團〉,台視新聞,2009年5月29日。

作戰訓練

結合RFID與DATADOT技術

應用於旅指揮所風險管控之探討

DNA DATADOT (tm) 示意圖

資料來源:DATADOT Technology Singapore, http://www.datadot.com.sg/index.php/the-technology/None.

證明您所設計的服裝是一個特殊品牌,將 DATADOT¹¹運用在衣物標籤,仿冒品即 使能複製服裝及品牌標籤,但卻無法生產 DATADOT,使仿冒品無法突破這項技術 成為真品。

四、旅指揮所機密/軍品進出控管系統

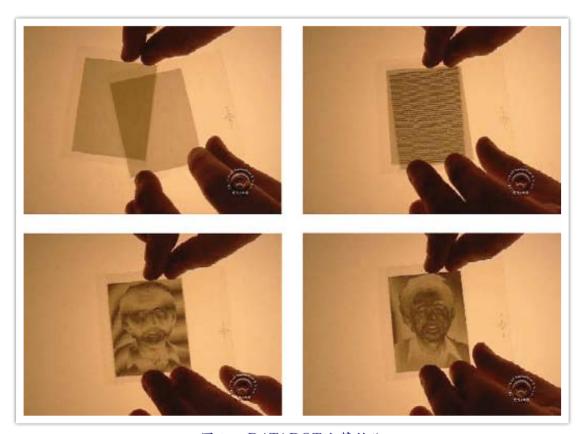
DATADOT運用在旅指揮所內機密文 件的防竊與軍品外流盜賣後的追查與鑑 識,DATADOT技術能保護機密文件原文 的真實性與降低軍品被拆解無法辨識之風 險,有利警方查緝贓品,進而產生嚇阳並 降低軍品的失竊率。

同時,為了釐清物品歸屬, DATADOT 進出控管系統必須上網於資 料庫內註冊所賦予的DNA辨識碼,有助 於警方在資料庫裡查詢,尋獲遺失的軍 品,找到原擁有者並歸還12。該產品獨特 的DNA辨識碼已刻印在數千個細小微粒 上,再以特殊技術將微粒噴塗於機密或軍 品上,只要以紫外線照射即可辨讀機密等 級與軍品所屬單位(如圖六),由於微粒 清除不易,提高竊賊銷贓之困難度,進而 降低機密與軍品失竊風險。

五、 DATADOT防偽技術

DATADOT如同二維條碼的技術,使 一份文件或資料達到防偽的功效。例如一 份文件經由第三人轉送,若應用此技術, 便能防止資料遭人竊取、更換,並且防範 遭人更改或替換。如圖七所示,左上圖是 兩張DATADOT暗藏條碼之底片,右上圖 與左下圖將兩張底片調整配合,右下圖則 形成一人臉照片。也就是兩張底片分開時 不具有任何意義,只有條碼存在,但是 當使用同一種DATADOT中的DNA辨識碼 時,同一份文件則可利用其密文辨識碼來 解密。

六、辨識技術的演進(以汽車為例)(如 表一)。


¹¹ DataTraceDNA簡介,臺灣微粒科技公司,http://www.datadot.com.tw/index-2.php

¹² 李若慈, 〈DNA辨識系統, 阻銷贓防愛車遭竊〉, TVBS NEWS, 2007年2月25日。

圖六 精密高價軍品的辨識與隱藏

資料來源: UNIVERSAL PRETECTION COMPLEX, http://www.DATADOT.ru/eng/technology.php?id=4

圖七 DATADOT暗藏技術

資料來源:UNIVERSAL PRETECTION COMPLEX,http://www.DATADOT.ru/eng/technology.php?id=4

RFID結合DATADOT 旅指揮所應用

指揮所是匯集大量情資的軍事要點, 也是敵首要目標。針對人員與情資管 制,難以全面管控,特別是有心人士刻

結合RFID與DATADOT技術

應用於旅指揮所風險管控之探討

表一 DATADOT辨識碼與傳統貼紙比較表

產 品	貼 紙 式	D A T A D O T	說 明
施工數量	15處	5,000處以上全車涵蓋	DATADOT全車噴塗駐記
美觀 (成品)	如OK繃大小貼紙	1mm 直徑微粒	
施工位置	只限鈑金件	可全車施工	DATADOT通過國外使用車廠耐 久測試認證
防偽能力等級	低(網路可輕易取得)	高(全世界只有一組)	DATADOT全世界僅能生產單一 組號碼,無法重複生產及偽造
國外原廠採用	無	有 (BMW、Lexus、Audi)	DATADOT產品已有30餘國家的 車廠標配使用
價格	低 (售價約250~500元)	高(Honda零售價12,000元)	具高附加價值,協助原廠保固零 件辨識及二手車籍辨識
施工方式	人力施工	氣壓工具快速噴塗	DATADOT以氣動工具噴塗於任 何車輛零件上
附加價值	滿足交通法規最低門檻	提升車輛價值	DATADOT國外產險有折扣,提 高二手車市場行情

資料來源:DataTraceDNA簡介,臺灣微粒科技公司,http://www.DATADOT.com.tw/index-2.php

意蒐集與記錄情資情況下,難有解決之 道。

同時,近年來人員精簡、調動頻繁、管理不當、交接不實及種種人員因素,常使機密裝備遺失,國軍的戰備整備、戰力保存的成效值得省思。如能在裝備上加入DATADOT微粒防竊辨識技術,使每項裝備在遺失後還能循線找回,便能減少軍品外流的事件發生。

國軍可應用DATADOT與無線射頻識別RFID這兩種技術,在指揮所進出門口裝置RFID讀取器,利用讀取器自動接收貼有RFID標籤晶片之械彈與機敏文件,可確認槍械、彈藥與機密文件的進出狀況、庫存追蹤資料記錄與彈藥的儲存位置及庫存量。若為合法取出卻造成遺失,仍可利用DATADOT連線找出不法分子,加

強單位內部械彈管理、門禁管制及安全設施、人員考核等防範措施,以確保國家社會安全。

惟RFID在技術面來看,易受金屬阻擋及雜訊干擾,一般而言,幾乎都無法通過金屬,而家電用品及火砲彈藥高,化砂彈藥高,大型類率或與作,尤其頻率越屬外質製作,於了金屬外質製作。除了金屬外數度的重要標籤接收數度的重要數值,越高頻的無線信號越容易的實力。因此加入DATADOT技術過量對精密儀器可達到等不僅對精密儀器可達到的防護,不僅對精密儀器可達到主該與大不僅對精密儀器可達到主該與大學,亦可讓軍警連線迅速辨識出對與的真實身分,可大幅提升竊賊銷贓的

困難度與風險,進而徹底讓宵小打消盜 賣的意願,這就是微粒防竊辨識碼的特 色與優勢。

另外,在國軍中最重要的莫過於軍事機密,在現今資訊科技的時代,輕便的手提電腦、公用隨身碟變成一大漏洞。利用DATADOT DNA技術將DNA塗抹於電腦硬碟、公用之隨身碟或筆記型電腦之中,再結合RFID,經評估資產管理中心應具有裝備清點、環境偵測、安全監控等三大功能,方能有效管控。為了達到此三大功能,我們以個人電腦為核心,藉由實務上相關應用方案,連接周邊裝置,以逐步訂出管理中心的架構。以下將從功能面分別說明如下:

一、管理中心架構

(-)身分確認

為保護管理中心資產物料存放安 全,及加強管制人員進出情況,在人員 管制方面,現行國軍人員均配有軍人身 分證與單位識別證,若國軍軍人身分證 與識別證合而為一,以RFID之標籤替 代,一則不易毀損,且身分校正快速有 效,可減少人力及繕寫錯誤之機會;二 則人員識別卡片可即時比對國軍資料庫 之照片及身分是否為正確的持有人,避 免有心人士冒用軍人身分,並於裝備領 取、存入的認證做記錄查核。因此可設計 於區域的出入口處均裝設RFID讀取器, 以自動門鎖完成門禁管制作業,確認進 出管理中心人員情形,並於人員借用或 歸還時管制記錄備查;其運作係以兩套 RFID讀取器管制,乙套控制人員進入記 錄,另乙套為離去時記錄,可透過資料 庫中記錄及顯示人員基本資料,以利中 心管理者核對身分,以管理人員進出記

錄,並於裝備進出時管制是否已完成借 用程序或檢查是否有私自將裝備攜出入 情形。

二資產清點

在每個資訊媒體表面均貼上RFID標籤(亦可用內嵌方式處理),在區域的出入口處裝設RFID讀取器,以獲得區域人員攜出入資訊媒體情形,當設備通過RFID讀取器時,即可產生一組ID碼(每個設備都有一個獨一無二的設備編號),透過連結可將此ID字串自動納入管理中心的資料庫中,當設備要存放或取出的時候,亦透過RFID讀取器管制,從資料庫中異動該項存量,如此一來,動態資料庫即可達到即時清點的目的。一旦發生洩密情事時,便可從大門的出入資料中逐一追查哪些設備曾經被攜出。

二、使用者登入作業

本系統人員權限管理設定為管理者及 使用者兩種,管理者負有設備點收、進出 管理、人員出入管理、環境監控等責任, 使用者則授予出入申請、領取、歸還等作 業。

當使用者欲進入物料管理中心,使用身分識別卡片,管理中心也會收到來自使用者的ID卡碼,可進行身分驗證及記錄,經由管理識別確認後始可放行通過門禁,以確實達到管理使用者的要求。確認後將自動登入資料庫管理中心系統,並顯示人員借用、攜出入設備之關係與服務,經由點選,可知該項設備目前為何人所使用或現在位置(儲位),達成資產管理之要求。

就演習指揮所為例,若我們在指揮 所或機密性較高之出入口設置RFID,再 配合人員的識別證。在機敏文件的管制

結合RFID與DATADOT技術

應用於旅指揮所風險管控之探討

方面,可運用DATADOT技術,在文件上加入其機密等級及於機敏文件中封裝RFID標籤,並規範機密文件不可攜出的區域,利用RFID來控管經手人員及文件流向。只要有機密文件被攜出所限定的區域,或有經手人員權限不符等違反保密原則的情況出現,系統便自動向相關人員發出警報,銷毀時也必須在特定人員及區域下完成銷毀動作,不得流入市面回收廠。

惟在指揮所裡為了作業便利,可能隨 手一張便箋就記錄了機密資訊,或於指揮 所中設置印表機、列印機等器材,在未加 入DATADOT及RFID封裝的文件就難以防 範。為改善類似問題,微粒公司與CSIRO (澳洲政府的科學和工業研究組織)的 合作,已經發展另一項稱為DataTrace DNA的新技術,包含一種非常安全的方 法來辨識體積龐大的原料和工業產品。 DataTrace DNA不僅能將同質的東西混入 固體或液體裡,也能應用於固體的材料和 產品的表面。故若將這技術加入紙張的製 作中,每批紙張中都有著不同的DNA, 再賦予各個指揮所或機密層級較高的單位 此類紙張,在使用者未知的情況下使用, 機密資料外洩可縮小範圍來追查。若使用 者知其紙張中所賦予暗藏的技術,也將有 強大的嚇阻力,可有效降低機密外洩的可 能性。

在RFID無線射頻技術中,標籤上的數據可反覆修改,可以即時更新資料訊息及追蹤資料流向。但因資料可重複修改,故易遭竄改為此技術之缺點。而DATADOT雖具有防偽、防竊之強大效果及嚇阻作用,卻無法追蹤其流向,所以運用DATADOT及RFID這兩項技術的結合,

不僅可以運用在國軍,甚至應用於總統府 或更高層以上之機構,使其在國家安全 上,能建構更「安全」與「信賴」的環 境,使國家的戰力更為強盛。

結 論

指揮所的風險管控宜重視事先的預防 及偵測,才能更勝於事後的補強。因為 大部分人都是在出事後才想到要加強管 控,但通常為時已晚,因此每個部隊都 應該改變心態,把管控機制由事後的補救 改為事先的防範。第一線的固守單位亦 可在管理策略上,一開始就引進最起碼 的管控技術,以降低日後所造成的災害 與損失。

國軍軍品設施,加速全面科技化,利 用鐳射精密顯微裝置,將一個身分識別 號碼記錄在直徑小於1mm的粒子上,以 1萬顆微粒分子噴灑於國軍重要裝備上。 再加上由雷達科技衍生的無線辨識系統強 化庫儲管理作業,建置嚴格控管,以有 效掌握補給品流向,降低失竊及外流風 險。DATADOT已成為最受注目的科技, 它的重要性在於能使物件與物件之間進 行資料的溝通及辨識,而且其量輕型 小、具備數位資訊及隱藏技術的能力, 使得系統應用範圍廣泛。不可諱言的, RFID無線射頻帶給國防的影響,不僅僅 是大幅提升後勤效率,即時掌握營區的 狀況,同時運用此兩項科技在國軍上將能 有效掌握補給品流向,降低失竊及外流風 險,也必能減少人為弊端,提升軍紀安 全。

收件:99年3月16日 接受:99年3月17日