

# 我國防核生化威脅體系之檢討

# 作者簡介



楊福助中校,陸官校80年班、國防醫學院藥學研究所86 年班、國防大學中正理工學院國科所98年班應用化學組 博士;曾任連長、教官、營長,現任職於陸軍司令部化 學兵處。

指導人:少將處長 曹君範

# 提要》》

- 一、核生化威脅業已跳脫純戰爭的常態,我們必須正視核生化災難可能造成的 戰略癱瘓,揚棄傳統狹隘的以中共核生化戰力為威脅之敵情研析,以及純 以作戰需求為建軍備戰之思維模式。
- 二、以「核生化防護與危機管理為最高指導原則,建構平戰一體、軍民兼容之 防護體系與能量」為國家核生化安全政策,並以「國土安全為架構、軍民 兼容為核心、國際制約為後盾」在國家核生化安全戰略之指導下,積極建 構整體化之「國土安全」防衛體系。
- 三、首應建全法規制度、調整專業組織、建置相關裝備;同時教育訓練應朝 完善災防機制,資訊優勢科技先導、遠景規劃系統設計、環境模擬趨近實 況、資源整合提高效益等四個方面發展,建構「平戰結合」、「軍民兼 容」、「量適、質精、快速、專業」的化學兵部隊,實為首要課題。

關鍵詞:戰略癱瘓、國土安全、災防機制

# 前 言

核生化武器之所以引人注目,在於它的巨大破壞能力,核武器驚人的爆炸威力和令人恐怖的核輻射,讓世人對之產生危懼感,思之不免不寒而慄。化學武器出現已經有百餘年的歷史,雖一直遭到世人的反對,但化學武器並沒有因此而退出戰爭舞臺,某些仍企圖擁有化學武器的國家,則繼續發展化學武器。生物武器的國家,則繼續發展化學武器。生物武器相對於核、化武器,其技術要求低、投入少、殺傷大、施放簡便、難於偵檢,在未來戰爭中,生物武器的潛在威脅可能增大的觀點,已為絕大多數國家所認同1。

我國面臨之核生化威脅依序為國內核生化災難、國際核生化恐怖主義與中共核生化武力。而國內核能的必需性與生化產業蓬勃發展,產量日益增大,生產與控制程序日趨複雜,加上國人對於各項操作程序與工安紀律欠嚴謹,人為疏失難以序與工安紀律欠嚴謹,人為疏失難以常來,災難發生率與風險性自然較高。此外,由於國土有限,廠區與住民地比鄰,本島防衛縱深短淺,國軍駐地與戰術位置幾乎多與工業區接鄰,一旦兩岸發生戰事,在中共以傳統武器、飛彈飽和攻擊下必定會遭受波及,間接導發核生化災難,除對國軍形成嚴重障礙外,更給百姓帶來立即性之重大危害。

此外,現今核子設施與生化產業多採 用電腦化自動控制,對資電系統依賴度日 益提高,一旦遭受網路恐怖主義或中共超 限戰資訊網路甚至電磁脈衝攻擊,恐將引 發破壞性連鎖反應,形成核子事故或生化 災難。因此,如何審慎面對與因應,積極 建構我國防核生化威脅體系,實為當今必 須嚴予重視的課題。

# 我國核生化防護組織與能力

周密的核生化防護(NBC Protective)應涵蓋:面對威脅之預防(源頭管理)、整備、減災;發生事故時之應變措施、損害管制與復原重建等<sup>2</sup>。我國核生化防護體系屬於國家整體災害防救體系一環,係以災難發生的原因類別作為分工的準據<sup>3</sup>。嚴格來說,至今除國軍外,全民核生化防護能力尚顯薄弱!

我國目前核生化防護係依核子、生物 (人與動植物不同)、毒性化學物質威脅 之不同種類,訂立不同的法規及責成相對 主管機關負責,較偏重於「災後處理」。 若依各種事件防救體系於災難中扮演的 角色劃分,概可分「事件防救與應變指 揮」、「整體應變資源與支援」與「軍事 防護」三個區塊<sup>4</sup>。

## 一、核生化事件防救與應變指揮體系 我國有關核生化事件防救與應變指揮

<sup>1</sup> 騰建群等著,《國際軍備控制與裁軍概論》(北京:世界知識出版社,2009年11月),頁232~340。

<sup>2</sup> 参考我國〈災害防救法〉第二條第二款對災害防救之定義及國際間對被動防禦之概念而定義。

<sup>3</sup> 依據我國〈災害防救法〉第二條第一款對災害之定義如下:風災、水災、震災、旱災、寒害、土石流災害等天然災害。重大火災、爆炸、公用氣體與油料管線、輸電線路災害、空難、海難與陸上交通事故、毒性化學物質災害等災害。

<sup>4</sup> 國家衛生研究院論壇,《重大健康危機事件之國家指揮體系及因應策略計畫書》(臺北:國家衛生研究院,2005年),頁89。



系統包含:災害防救、核子事故緊急應變、生物病原事件應變、毒性化學物質事件應變及國家反恐怖行動應變等體系(如表一)。

#### (一)災害防救體系

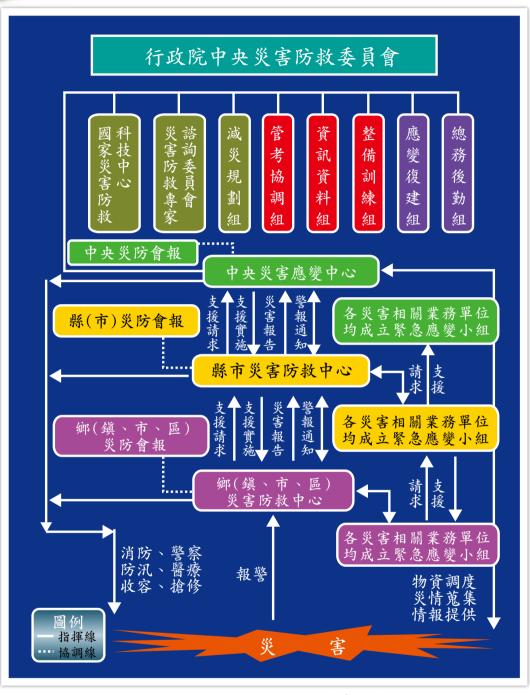
主管機關為「行政院」。《災害防救法》為主要法源依據,其目的乃在於健全災害防救體系、強化災害防救功能,以確保人民生命、身體、財產之安全及國土保全5。災害防救體系架構(如圖一)區分:平時行政院設中央災害防救委員會轄中央災害應變中心等9個中心(委員會或組),中央與地方各設災害防救會報;災

(變)時依災害類別,由中央災害應變中 心指揮、督導、協調及災害防救相關機關 執行災害防救,國防部主要負責防、救災 支援<sup>6</sup>。立法院於99年7月13日三讀通過修 正災害防救法,中央及地方設置災害防救 辦公室,執行災害防救,內政部消防署將 轉型為災害防救署,並規定國軍應主動救 災。

#### (二)核子事故緊急應變體系

主管機關為「原能會」。《核子事故緊急應變法》為主要法源依據;其目的 在有效遂行核子事故緊急應變、救災與復 原<sup>7</sup>。該法規劃的體系架構(如圖二)可

#### 表一 我國有關核生化事件防救與應變指揮系統分析表


| 體  |    | 系  | 法 源                     | 主管機關        | 納 編                | 單位                                  | 職                                                |
|----|----|----|-------------------------|-------------|--------------------|-------------------------------------|--------------------------------------------------|
| 災  | 害防 | 救  | 災害防救法                   | 行政院         |                    | 員會轄中央災害應變<br>中央與地方各設災害              |                                                  |
| 核· | 子事 | 故  | 核子事故緊<br>急應變法           | 原能會         |                    | 國防部、內政部、經<br>農委會、環保署、屏<br>高雄市及臺北市   | 遂行核子事故緊急應<br>變、救災與復原                             |
| 生生 | 物病 | 原  | 傳染病防治法                  | 衛生署         | 國防部、內政部<br>財政部、金融會 | 、經建會、交通部、<br><b>及國家安全局</b>          | 杜絕傳染病之發生、<br>傳染及蔓延,對動物<br>與植物傳染病、蟲害<br>之預防、防疫及檢疫 |
| 毒學 | 性物 | 化質 | 災害防救法                   | 環保署         | 國科會、勞委會            | 、內政部、農委會、<br>、經濟部、交通部、<br>直轄市及縣市政府  | 防制毒性化學物質污染環境或危害人體健<br>康                          |
| 反行 | 恐  | 怖動 | 行政院反恐<br>怖小組設置<br>要點等草案 | 國土安全<br>辦公室 | 部、交通部、經            | 政部、外交部、國防<br>濟部、衛生署、環保<br>、原能會、農委會及 | 統合政府相關部門執<br>行治安、查緝及防護<br>等措施                    |

資料來源:作者彙整。

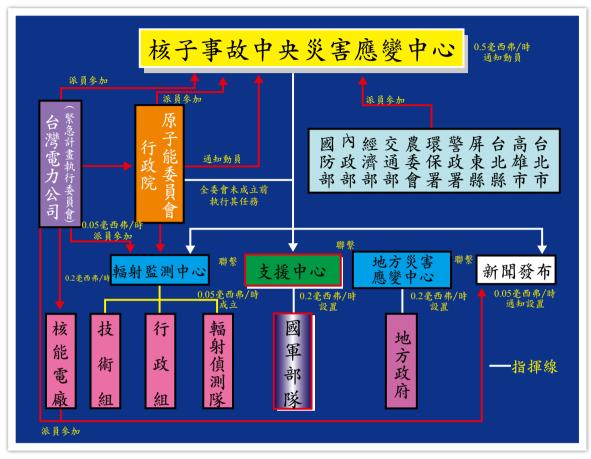
<sup>5</sup> 行政院災害防救委員會,《災害防救法規彙編》(臺北:行政院消防署,2004年),頁1。

<sup>6</sup> 同註5,頁1~3。

<sup>7</sup> 行政院災害防救委員會,〈核子事故緊急應變法〉《災害防救法規彙編》(臺北:行政院消防署,2004 年),頁1051~1056。



圖一 我國現行災害防救體系架構


資料來源:作者繪製,參考自http://www.npf.org.tw

分為行政組織與軍事組織兩部分,國軍部 隊負責緊急支援任務。

(三)生物病原事件應變體系

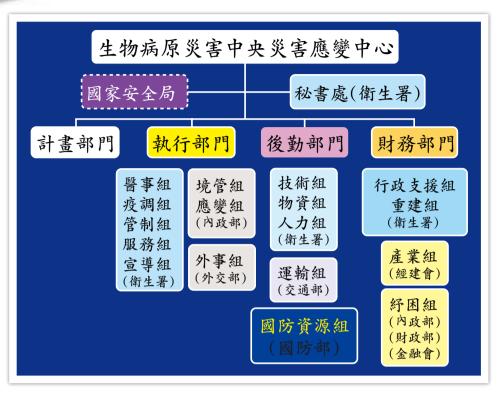
1.傳染病防治與災後防疫 主管機關為「衛生署」。《傳染病 防治法》為主要法源依據;其對象均屬





圖二 核子事故中央災害應變體系 資料來源:作者繪製,參考自註7。

人,其目的為杜絕傳染病之發生、傳染及 蔓延。執行機關分為衛生署、直轄市政府 及縣市政府<sup>8</sup>。傳染病防治法之體系架構 (如圖三)可分為三部分<sup>9</sup>,國防部負責 防疫物資支援任務。


2.動、植物傳染病防治

主管機關為「農委會」。法源依據 分別為《動物傳染病防治條例》與《植物 防疫檢疫法》;其目的旨在對動物與植物 傳染病、蟲害之預防、防疫及檢疫<sup>10</sup>。執 行機關則包括:農委會、直轄市政府及縣 市政府。

<sup>8</sup> 行政院災害防救委員會,〈傳染病防治法〉《災害防救法規彙編》(臺北:行政院消防署,2004年), 頁841。

<sup>9</sup> 同註8,頁843。

<sup>10</sup> 行政院災害防救委員會,〈動物傳染病防治法〉《災害防救法規彙編》(臺北:行政院消防署,2004年),頁688、689。



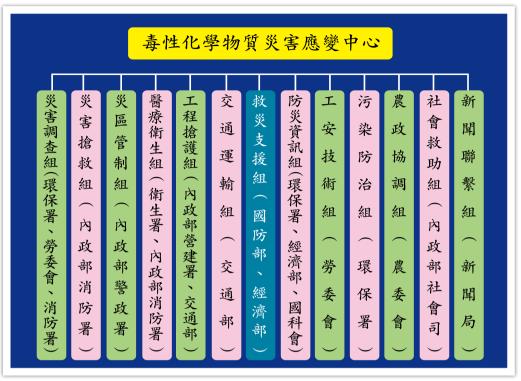
圖三 生物病原災害中央應變體系

資料來源:作者繪製,參考自http://www.cdc.gov.tw/index\_info\_info.asp?data\_id=1581

四毒性化學物質事件應變體系(如 圖四)

主管機關為「環保署」。《災害防救法》為主要法源依據;其目的在於防制毒性化學物質污染環境或危害人體健康。執行機關則包括環保署、直轄市及縣市政府<sup>11</sup>。國防部主要負責支援人力、設備投入支援救災工作<sup>12</sup>。

(五)國家反核生化恐怖行動體系


主管機關為「國土安全辦公室」。 法源依據為《行政院反恐怖小組設置要 點》、《反恐怖行動組織架構及運作機 制》及《反恐怖行動法》草案。其目的為防制國內外恐怖行動、維護國家安全、促進國際反恐合作。執行機關含括:國家安全局、內政部、外交部、國防部、交通部、經濟部、衛生署、環保署、海岸巡防署、原能會、農委會及科技顧問組等部會,國防部負責核生化反恐怖行動支援任務。

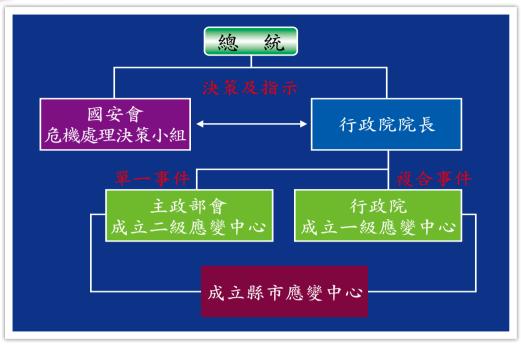
現行反恐怖行動體系架構(如圖 五、六),係當恐怖行動發生或有發生之 虞時,由行政院「行政院國土安全辦公 室」統合政府相關部門執行治安、查緝及

<sup>11</sup> 行政院災害防救委員會,〈毒性化學物質管理法〉《災害防救法規彙編》(臺北:行政院消防署,2004年),頁759。

<sup>12</sup> 行政院環境保護署,《毒性化學物質災害防救業務計畫》(臺北:行政院環保署,2004年),頁13~16。






毒性化學物質災害中央應變體系 圖四

資料來源:作者繪製,參考自http://www.epa.gov.tw/b/b0100.asp?Ct Code=03X0000111X0000495



我國反恐機制及架構——國安與行政體系「雙軌制」(平時) 圖五

資料來源:作者繪製,參考自〈行政院國土安全政策會報99年會議資料〉(臺北:行政院國土 安全辦公室,2010年3月11日),頁8。



圖六 我國反恐機制及架構——國安與行政體系「雙軌制」(變時) 資料來源:作者繪製,參考資料同圖五。

防護等措施;並由「反恐怖行動應變小組」指揮各級政府,依災害防救法相關規 定啟動防災機制。

#### 二、整體應變資源與支援體系

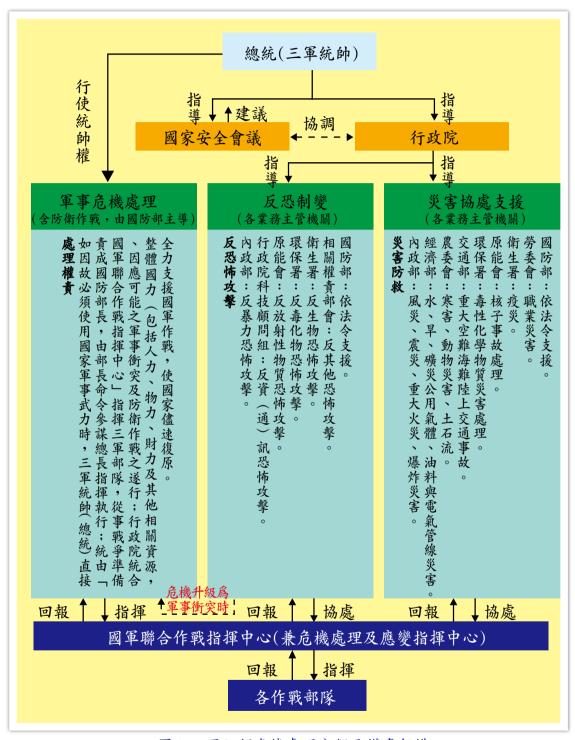
我國核生化防災、應變資源與支援體系(如圖七)總括包含:國家安全情報體系、消防體系、緊急醫療救護體系、民防體系(防救災支援)、國防體系(防救災支援)與全民防衛動員體系(如圖八)。

#### 三、軍事防護體系與能量

核生化防護整備為各國整體國防重要 的一環,其中軍事力量更為國家穩定的基 石與整體危機應變體系之重要環節。國軍 現階段致力於「核生化防護」整備,體系 概分機關與部隊兩層級,主管與指揮機構 為國防部。

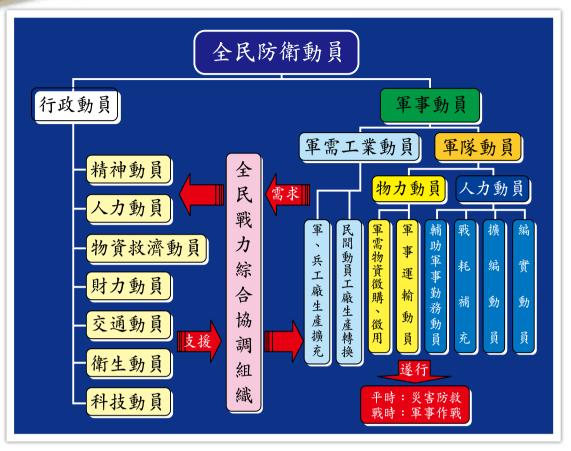
#### (一)國軍核生化防護機關

國軍現行與核生化防護機關,依其 功能與任務導向概分專業幕僚、科技研發 與生產製造、教育訓練三部分。


#### 1.專業幕僚

國防部除於參謀本部「作戰及計畫 次長室」編設化學兵幕僚,負責核生化防 護政策指導及戰備整備之規劃與訓練督導 外<sup>13</sup>,部本部「軍醫局」與聯合後勤司令 部「軍醫處」則負責國軍醫務、衛生勤務 與訓練事項<sup>14</sup>。另「軍事情報局」則為中 共核生化情報的主要來源。

<sup>13</sup> http://www.mnd.gov.tw/division/join/j3/default.htm, 2006年5月30日。


<sup>14</sup> http://mab.mnd.gov.tw/index.asp, 2006年5月30日。





國防部危機處理分類及權責架構 圖七

資料來源:作者繪製,參考自國防部,《中華民國98年國防報告書》(臺北:國防部,2009年),頁84 ~95 °



圖八 國家動員機制

資料來源:作者繪製,參考自國防部,《國軍聯合防衛作戰教則》(臺北:國防部,2006年1月1日),頁3-26。

陸軍司令部「化學兵處」不僅為陸 軍兵監之一,更是國軍唯一編制具有核生 化專業之幕僚機構<sup>15</sup>。

2.科技研發與生產製造

國軍核生化防護科技研發與裝備生 產製造單位,概為:

(1)國防部軍備局「中山科學研究院 化學研究所」

具備對各類化學戰劑進行毒理研

究、偵檢預警系統、防護裝備、消除技術、急救器材、化防設施整建等技術研究開發,可適時對國軍化學兵專業部隊提供技術支援,以及對各作戰區進行化學戰劑污染區的諮詢服務<sup>16</sup>。

(2)國防大學國防醫學院「預防醫學研究所」

專責從事預防醫學研究及教學工 作,任務涵蓋國軍官兵個人健康、保健及

<sup>15</sup> 参考全國法規資料庫:各軍種司令部辦事細則。

<sup>16</sup> http://cs.mnd.gov.tw/chemical.htm



傳染病之調查與防治;營區環境衛生、飲 食衛牛與膳食營養之調查研究;疫情及流 行病學之偵檢與調查研究;相關應用醫學 之研究發展<sup>17</sup>。

(3)陸軍化學兵學校「核生化防護研 究中心工

具核化檢測能力,可執行核射線、 化學戰劑污染、化學效期軍品及營區排放 水檢測與分析; 支援化學兵部隊執行輻 射、化學戰劑值檢、採樣、分析與研判作 業;提供部隊防護技術、核生化污染消除 建議、環境監測、環保評估作業服務與諮 詢。

(4)軍備局「生產製造中心204廠」

主要負責國軍牛化偵檢、消除與防 護裝備之產製18。

#### 3.教育訓練

「國防大學理工學院應用化學暨材 料科學系」為國內唯一培育化學防護、火 炸藥及軍用材料專長人才之系所,旨在培 養國軍所需火藥、化學防護方面之武器、 裝備生產製造、保養維修及研究發展之科 技軍官。

「陸軍化學兵學校」除培養三軍化 學兵中、基層幹部外,另負責化學兵新兵 專長訓練,與代訓警政、消防、民防等單 位,同時更兼負三軍化學兵部隊基地訓練 與測考任務。

#### (二)國軍核牛化專業部隊

陸軍化學兵部隊為遂行國軍核生化 防護之主要能量,其主要任務為遂行生物 戰劑取樣、核射線及化學戰劑偵檢,與污 染之消除, 並依令支援執行核生化之救 災;煙幕部隊則以長時間、大地區之煙幕 作業遮蔽重要設施,減低敵攻擊危害;並 可視需要指導一般部隊、民防與地方政府 遂行防護作為。

海軍所屬化學兵部隊為陸戰旅化學 兵連,其主要任務與陸軍同。另空軍聯隊 所屬偵消區隊能量有限,僅可遂行基地局 部偵消作業;聯合後勤司令部各地區指揮 部所屬衛生兵群,針對生物戰防護與化學 戰傷具有限度支援能量。

# 我國防核生化威脅體系 建構芻議

在地狹人稠的國十條件與有限可用的 資源下,考量我國特有的國情與安全需 求,著眼危機預防與預防戰爭、確保國土 安全、災害防救應變、維安反恐多層兼顧 的目標,即應以調整核牛化安全戰略、整 建防護(救)體系強化體質、調整軍事組 織擴增效能為重點,建構符合我國家安全 與利益之核生化防護網。

#### 一、調整我國核牛化安全政策與戰略

擬訂「以國十安全為架構、軍民兼容 為核心、國際制約為後盾」為我國核生化 安全戰略之具體方向。

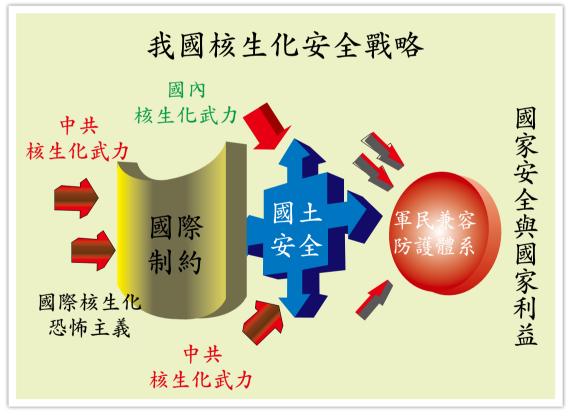
#### (一)以國土安全為架構

基於中華民國國情、安全威脅、國 家利益與環境情勢等因素考量,我國更應 以「國土安全」為戰略架構,方能涵蓋全 面。行政院於2004年已提出「國土安全 網」概念,其主要內涵乃在:「將現行災 害防救、傳染病防治、反恐怖行動等各項 緊急事故應變體系整合為國土安全網,以

http://library.ndmctsgh.edu.tw/sdi/preven-med.htm 17

<sup>18</sup> http://www.mnd.gov.tw/division/mnd/mpd/product.htm

有效整合及協調各項應變與支援體系,且 運用全民防衛動員準備體系作為國土安全 網之備援主軸<sup>19</sup>。」


#### (二)以軍民兼容為核心

我國現有國土面積狹小、人口密度 高、工業區與住民地比鄰、災難應變緩衝空間有限,以及作戰與防禦縱深短淺,無 論面臨何種形式之核生化事件,必定是軍 民同受其害。面對多面向的核生化威脅, 以我國現有能力與國情,必須在軍民兼容 為核心的戰略思維下,擬訂寓軍於民、平 戰結合的發展方針。

#### (三)以國際制約為後盾

由於核生化威脅非僅止於軍事層面,因此就核生化安全戰略(如圖九)而言,當務之急,即是以國土安全為架構、軍民兼容之防護體系為核心,將「危機預防」與「預防戰爭」理念灌輸於全民,內化為共識與共行。然而,能夠影響全球性、區域性戰略的國際公約並不止這些面向,如何全面性參與國際間反核生化武器擴散與反恐公約,更應為政府未來重視的方向。

#### 二、整建我國防護(救)體系強化體質



圖九 我國核生化安全戰略建構示意圖解 資料來源:作者繪製。

<sup>19</sup> http://www.gov.tw/PUBLIC/view.php3?id=33527&main=GOVNEWS&sub=64



我國地域與環境特殊,在核生化之重 大災難、跨國境威脅及恐怖攻擊與中共武 力衝擊下,國家安全的重心的確應緊密環 繞與聚焦在有效國土領域內之安全事務, 且置重點於防災應變、反恐制變與全民防 護。

#### (一)法規制度方面

應儘速修訂行政院組織法,整合國家防救災與反恐行動組織,確立因應不同事件之單一化法定責任單位;調整現行防救災法規之個別體系架構,採以複合型總體功能為導向,祛除現行法規重疊、重複與相互牽制之處,重新整合訂定基本法。進而整併、統合形成災防與反恐一元化、平時與戰(變)時兼容之全方位防災與危機應變核心機制與專責體系,以提升效率。

#### 仁)組織調整方面

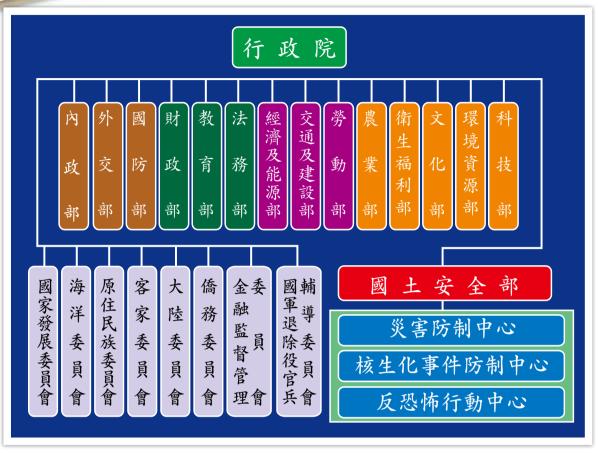
將現行行政院「國土安全辦公室」、「中央災害防救委員會」及「中央災害防救委員會」及「中央災害應變中心」,整合(併)成立「國土安全部」(如圖十),下轄災害防制、核生化事件防制及反恐怖行動中心,且提升至行政院部會層級之一級單位,使其與各部會具平行與平等地位,俾在緊急應變與危機事件時能統籌指揮與管制。另比照中央組織層級,在縣市地方政府,設立相對應之專責災防與危機應變組織,建構自主的防災與應變機制;以統一指管、分責執行的概念,整合全民災防資源,建構國土安全之區域聯防、全民核生化防護及災害防救應變體系。

#### (三)指揮機制方面

核生化事件防護需要諸多單位參 與,必須以中央與地方防災應變組織為核 心,建立完備之「統一指揮」與「聯合作 業」機制,藉整體完備的計畫、標準的作 業程序、通資電的優勢,使防救災與危機 應變系統運用、事件威脅評估、任務決心 下達、執行命令賦予、任務單位指揮等迅 速有效,以利任務達成。

#### 四通資整合方面

基於「統一指揮管制」要求,應優先整合與強化現有各個防救災通資電、應變指揮與溝通協調系統效能,充實防救災決策支援工具與地理空間資訊,開發「核生化事件決策支援系統」以提高決策精度、加速決策進行。若能更進一步與國軍C<sup>4</sup>ISR系統建立可連結之共同架構,確保軍民兼容之通用性與相容性,將可達通資電平戰結合目標。


#### (五)人才培育方面

「國家核生化事件因應體系」應以 現有國家相關教育與訓練能量,基礎教育 以培育初級應變幹部與人員為主;進修深 造教育以培育中、高級應變幹部、人員與 基礎教育、應變技術師資為主;國家研究 機構以培育政府防災應變、危機管理與後 果管理之主管部門人才,與核生化事件指 揮及高層管理幹部、人員,以及建立管理 師證照制度為主;應變技術則整合運用 產、官、學、研、軍各方資源,以訓練應 急應變幹部、技術人員與任務執行單位, 建立技術士證照制度為主。

#### (六)情報整備方面

為獲取即時有用之核生化情報,必 須積極從事國際情報交流、強化現有情報 作業能力、增強情資值搜力度與深度,以 及反應與處理之速度、研析的精確度。此 外,為利早期預警,應研究如何整合運用 環保署、原能會、工業局、中央氣象局、 大專院校、民間環境科技廠家與國軍等單 位,散布於本島各地之環境監測與警報系 統,建構成為全國性之核生化警監系統, 提供即時環境監控與警報發布。

#### (七)計畫整備方面



圖十 我國中央層級之災害暨危機防制專責機構擬案體系表資料來源:作者繪製,參考自行政院組織新架構(99.2.3總統令修正公布)。

中央應訂定周密之全國性核生化防災計畫、應變計畫、分項作業程序、行動準據與行動清單要項。各縣市區域防災組織則依地區特性,制定相對應之計畫、程序與應急備案。災害防救專業編組另依預想危害區域,完成個案分析,制定各個標準作業程序與精準化行動準據,藉務實之演訓驗證、嫻熟各項計畫及程序,俾以應變整備。

#### (八)基礎防護方面

落實源頭管理與預防性作為為治本 之道。故應界定國家基礎建設及其安全防 護範圍,強化安全防護政策規劃與指揮、 統合、協調機制,建構中央與地方間任務 分工、權責規劃與協調合作,有效運用人 力資源與科技設備,加強公私資源整合, 提升運作機能與效率,強化基礎建設之強 度,做好各項安全防護措施。

#### 三、強化軍事編裝與戰訓整備擴增效能

在現今新興安全環境中,非傳統與非軍事脅迫頻譜逐漸增大的情況下,世界各國軍隊必須擔負起如救災、反恐制變、維持治安、協助國家建設發展及愛民服務等「非戰爭性軍事行動」(Military Operations Other Than War, MOOTW)。國軍核生化部隊戰力乃國家無可替代的強大應變能量,「非戰爭性軍事行動」勢將成為國軍無可避免的常態性任務。



面對21世紀之核生化威脅更應以科學的頭腦,依「打、裝、編、訓」思維理則,檢討現行軍事組織,強化國軍救災、反恐機制與整體編裝,平時能適時投入支援應變行動,使國人生命財產獲得充分的保障;戰時能即時提供戰鬥部隊所需的防護支援,迅速開闢消除走廊,確保戰力持續發揮。

#### (一)法規制度方面

國防部應積極致力任務法制化,於 國家災害防救與反恐行動有關法規中,明 確賦予國軍執行非戰爭性軍事行動之責任 層級、法律位階及相對執法權,同時相關 法理納入軍事法學,制定《災害防救準 則》、《武裝衝突法》、《交戰規定》及 《非戰爭性軍事行動手冊》教育官兵、貫 徹遵行,保障權益、規範任務與行動準 據。

#### 二組織調整方面

為達到平戰結合、權責相輔,以及 指揮、管制、指導與兵監結合,將組織編 制提升,整併相關教育訓練機關,俾管 制、培育優秀專業核化災處理及指導人 員,並執行核化高階值檢、研判、防護、 消除等相關任務,以符合國防二法精神與 架構之目的。

#### (三)裝備整備方面

核生化裝備整備目的旨在提供國軍 於核生化環境下作戰與執行非戰爭性軍事 行動,所需之預防、保護與順利達成任務 的保障。

#### 1.「預警系統」方面

應改進現行核生化目標分析僅止於 軍事武器系統,與以美軍之軍事核生化參 數為運算分析樣本之不足,建置軍民兼容 之現代化、數位化「核生化易損性分析模 組」與「核生化戰情研判系統」,以利指 揮與決策。

#### 2.「防護系統」方面

應以核生化事件應變部隊與機構為 整備投資重點,發展肆應平時與戰時、軍 事任務與救災反恐,兼具集體防護、醫療 急救、快速機動之高效能核生化專用防護 裝備與系統。

#### 3.「偵檢系統」方面

針對核生化部隊整備需求,將配備 全車輻射防護、濾毒正壓,整合C<sup>4</sup>ISR與 數位化即時偵檢、分析、警報系統;車內 即可完成自動化遙測、偵檢、取樣、即時 分析、研判、標示等作業。

#### 4.「消除能量」方面

研製新型多功能消除系統,低污染、低腐蝕、非液化之消除藥劑,以及大地區放射性污染消除技術,提高國軍核生化部隊整體消除能量。並將政府與民間之消防、灑水、洗街、道路清潔車與洗車機、刨路機、遊民沐浴車、消防直升機、農藥噴灑飛機、農用噴霧器等,均納入應急消除裝備清單與動員計畫,妥適規劃運用。

#### 5.「醫療能量」方面

國軍核生化醫療除納入國家醫療衛 生體系,並以國家整體醫療衛生資源為綜 合考量外,更應建立獨立自主與無可替代 之核、生、化戰傷醫療技術與能量,自力 提升核生化專用醫療救護資源,擴大軍陣 醫學整備效果。

#### 四 教育訓練整備方面

教育訓練對於國軍是否能有效面對 核生化環境遂行軍事行動極為重要,教育 訓練使所有人員明瞭此種威脅、特性、應 變原則和所採取的行動。為契合全球軍事 教育訓練轉型與戰爭型態的改變而發展, 現代核生化教育訓練整備應著重並考量以 下內涵:

#### 1.資訊優勢、科技先導

資訊與科技相對也使得現代軍事 人才與部隊能力倍增,更導致軍事教育 與訓練產生劃時代的變革。目前使用與 發展中的核生化預警、防護、偵檢、 機、分析、測定之系統化裝備,大都結合 光電、化學、自動控制與資訊網路等 技,精密度、運用技術與單價均顯著提 高。因此相對必需改變核生化專業訓練 的深度與方法,轉變為以體能和技能 為重點的訓練,轉變為以聯合(協同) 作戰、智能、資訊、科技素質為主的培 養。

#### 2.遠景規劃、系統設計

由於威脅型態與組織功能的改變, 我國核生化軍事組織與教育訓練現今同樣 面臨轉型期。如何確保未來核生化威脅下 的國家安全,除了擬定前瞻、穩健的戰略 與建軍方向外,與其相關的近程、中程、 遠程的教育訓練目標亦應同時確立。國軍 若要達到未來全面而有系統的核生化環境 下聯合作戰與任務訓練,並與整體戰備相 結合,應在聯合(協同)作戰基準下,建 立虛擬網路化之核生化訓練與演習戰場環 境,通過近乎實戰的訓練使國軍具有知識 優勢與強大的肆應能力。

#### 3.環境模擬、趨近實況

模擬訓練乃運用實人、實物,建構如捷運、地鐵、公共場所地下室、樓層建築的特殊環境,甚至局部之生化運作廠家、輸具、儲存設施等空間與障礙,運用實體模擬或聲、光、電、電腦與虛擬實境等新技術,營造各種逼真的核生化戰場與事故環境、場景,選擇單項或組合、連續或不連續,由淺入深、由單純到領難,逐步提高訓練強度與難度,達到近乎實戰與實況的訓練要求與執行標準。藉由趨近於實情、實景的環境,透過狀況設計與流程控制,在安全的基礎下,實施反覆

訓練,為建立實況處置與應變能力的最佳 涂徑。

#### 4.資源整合、提高效益

國防資源有限、民間資源無窮!除以建立「國家核生化事件應變訓練中心」為發展目標外,更應注重國軍各層級核生化專業人才,為是類人才創造交織成長環境,發揮人才最大潛能;其次,憑藉國內民間教育與科研能量,並與政府有關單位建立建教及任務合作機制,培養軍民通用之專業人才,充實軍民通用之專業裝備,以實施資域上培訓專業的困難。最後,則透過國際間軍事與非軍事交流合作,藉派遣學者、參觀訪問、留學考察、學術研說之時,甚至舉行聯合防災,,其調觀察等活動,甚至舉行聯合防災,,技術與國際接軌的目標。

## 結 論

面對多重之核生化威脅與危機,為確 保國土安全,單靠軍事力量無法形成有利 之屏衛,必須擬定前瞻的國家核生化安全 戰略,引領未來國力整備方向與國家政策 推動;統合全國力量建構平戰一體、軍民 兼容之核生化防禦體系。

國家核生化防護總能量最具體呈現在國家災害防救、危機管理機制、人才培育與國防力量中。審視現行法規、機制與實務上缺失,確有必要在統一之國家資源管理與分配概念下,訂定新法規與計畫,建立單一型的核生化事件管理、災害防救與危機應變指揮體系,以及共通使用的指管與通資電平臺與標準作業程序,區分責任層級遂行應變整備;整合產、官、學、研、軍各方能力與能量,以知識及技術為中心,培育專業人才與應變組織,始能面對未來的挑戰!