

航空管理

如何領防盜中危寒事件

空軍中校 蔡金倉

在所有交通運輸中,空中運輸對安全的要求算是最高的,實際上空中運輸也是相當安全的工具,但由於每次因飛航事故所造成的死傷人數與財物損失龐大,易引起媒體及公眾的矚目,造成大眾對航空安全失事率較高之錯誤印象,故如何確保飛航安全、如何預防飛航事故,將飛航事故降到零事故一直是民航發展最重要的課題。

目前我國飛航事故發生率雖較以前低,但每百萬小時飛航事故發生率仍高於世界平均值兩倍左右。因此,在國內飛航安全尚待精進之時,應從如何「預防」空中危安事件著手,建立飛安管理機制,最後還要具備「大處著眼、小處著手」態度,來建立各項「預防」飛航事故機制,以全面提升飛航安全。

鑑於國家航空器近年來發生空中危安事件比例偏高,本研究首先發掘影響飛航安全問題之因素,從蒐集國內外著名飛安問題發生之模式,個案資料研析,並研究其與飛安之關係,最後提出解決有關飛安問題策略方案與建議,進而降低空中危安事件。

關鍵詞:飛航事故、風險管理。

壹、前言

空中運輸是所有交通工具中提供最快速運輸服務的工具,帶給旅客極大的便利,對於注重時間效率的旅客而言,是目前最佳的選擇。然而隨著經濟快速成長與環境的變遷,國人出國旅遊或洽公機會增加,故多半選擇由空運來完成其目的,這更突顯航空器運輸上的重要性。根據行政院飛航安全委員會(Aviation Safety Coun-

cil)研究資料:「我國自1971年以來,航空器之失事率低於鐵路與公路,然因其背負無數財產與生命安全,姑且不論傷亡程度及原因為何,空中運輸過程中發生飛航事故總是令人震撼」。

在探究飛航事故發生過程中,不難發現許多事故皆由幾個環節相互影響所造成,飛安相關理論與文獻亦提出此類研究與論點,為防止類似的情況再度發生,交通部民用航空局(Civil Aeronautics Administration Ministry of Transportation and Communications, CAA)、國際航空運輸協會(International Air Transportation Association, IATA)國際民航組織(International Civil Aviation Organization, ICAO)及美國波音公司(The Boeing Company)曾提出解決方案,就潛在風險加以事前改善、「預防」,以將風險降到最低。

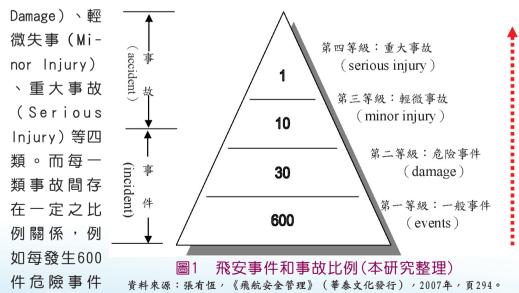
美國「飛航安全基金會」主席馬休茲(Mr. Stuart Matthews, the chairman of Flight Safety Foundation, in 51st IASS, 1998)提出警告表示 [[#1]:「近年來空難比率不再增加,但是在未來十二年到十五年內空中交通量將增為二倍,甚至有些地區是三倍,除非大幅提升飛行安全、降低失事率,否則未來我們將需面對更多的空難」!

目前台北飛航情報區(Taipei Flight Information Region, FIR)雖未因管制因素而直接造成飛航事故,然不乏因管制員疏失、飛航管制(Air Traffic Control)及戰術管制(Air Tactical Control)系統設備失效或其他航管相關因素之問題如無線電,而致使危險發生之案例。如管制單位與航機駕駛員溝通不良,促使駕駛員誤判飛航管制或戰術管制指令即造成危安因子;另與駕駛員溝通、提供航情諮詢並協助解決各種緊急狀況,於航空運輸體系中扮演舉足輕重之地位,無飛航管制戰術管制之協助,則必造成重大災難。

貳、飛航事故分類

飛航事故分類相關之研究以探討人為因素、人機互動關係為大多數,以我國而言,飛航事故相關研究多分散於各主題探討,而本研究針對國內外飛航事故相關之文獻進行回顧與彙析,包含系統、人為、訓練、制度、組織文化、環境等各個層面,並予以歸納,進而探 空中危安對飛安影響層面與方式為何,飛航事故統計方法與肇因分類,以國際民航組織失事預防策略(Accident Prevention Strategies,APS)及國際航空運輸協會及美國波音公司之事故與事件肇因分析最具代表性。本

註1 馬休茲 / < 美國飛航安全基金會> (Mr. Stuart Matthews, the chairman of Flight Safety Foundation 51st IASS) / 《第51 屆國際飛航安全年會論文集》, 1998, pp.12。


研究就較著名飛安理論及失事件分類,藉此瞭解影響飛安主要之層面,與其影響方 式為何及預防策略之意涵。

一、飛安問題發生模式:

(一)骨牌效應理論(Domino Sequence Theory): Heinrich(1931年)認為飛安事 故發生原因係因人、機、任務、管理及環境等五者間失調而產生異常狀況, 而導致失事的發生(交通部運輸研究所,1997年)[離2];理論以探討航空事 故發生之原因,航空運輸可能由於決策、管理及規劃之缺陷,機場設施、飛 航管制、飛機設計以及氣候的影響,逐漸地增強潛在危險性,因而致使災難 的發生。其預防之道即在排除先前失事原因(抽掉骨牌),使失誤停止而不 致連環效應,終致重大事故。該原理主要是追溯整個事故發生過程,分析失 事的原因或改善之道,以防類似事故在發生(張有恆,2005年)[#3]。

(二)錯誤鏈理論(Error Chain Rule):

- 1. 錯誤鏈理論乃由美國學者布蘭博士(Dr. Blame, 1990年)所提,安全事 故的發生並非僅由單一原因造成,是由一連串的失誤鏈串連而成。由於飛 航事故往往是由一個以上危險事件或疏忽環環相扣所造成,如正駕駛員未 遵守標準作業程序,而副駕駛未加以警告與糾正等,故其認為只要打斷其 中一個環節, 可防止事故的發生。
- 2. 布蘭博士(Dr. Blame)將航空事故分為一般事件(Event)、危險事件(

交通部運輸研究所,《航空安全相關法規與事故資料之分析研究》,1997年。

註3 張有恆,《飛航安全管理》(華泰文化發行),2005年,頁204。

後,可能會造成30件意外事件之發生,同時會導致10件之輕微失事案件、 與1件重大航空失事發生,其比例分別為600:30:10:1,各類事件之比

例如一座金字塔般堆積,如圖1所示(張有恆,2007年)「鱸」。

- (三)莫菲定律(Murphy's Law):此定律係為美國設計工程師空軍上尉莫菲(Murphy,1949年)所提,莫菲於美國加州愛德華空軍基地執行假人滑行測試,因獲取數據失敗後提出「凡是可能出錯的事均會出錯」(Anything that can go wrong will go wrong)。引申為「所有的程序都有缺陷」或「若缺陷有很多個可能性,則它必然會朝往令情況最壞的方向發展」。強調設計時應考慮操作時之安全觀念與措施,事先預防,避免出差錯。飛安乃由各個環節所組成,牽一髮動全身,為避免事故發生後的嚴重損失,事先防範實屬相當重要,應將任何可能造成錯誤的因素加以改善與預防才是「雖5」。
- (四)乳酪理論(Swiss Cheese Theory):乳酪理論(或稱起士理論)由Reason(1990年)所提,其以每片乳酪形容不同層級的飛安預防措施,不幸的是每個預防措施皆具漏洞,故當失誤發生時,光線便會穿過每片乳酪,危險會突破預防措施,當每片乳酪因光線穿透而串聯起來時,代表預防措施的不足以致無法阻止錯誤,而使事故發生。該理論之預防方法便在於將導致事故中之一的錯誤移走,以防範錯誤串聯而導致失事(張有恆,2005年)。
- (五) SHEL模式:SHEL模式(或SHELL模式),Hawkins(1984年)以英國Edwards(1972年)所提出。其發現飛航事故大多由人(Liveware-Liveware)、硬體(Hardware)、軟體(Software)、環境(Environment)及人與人(Livewires-Livewires)等主要因素所構成,又以「人」為中心。Edwards認為人為疏失為造成飛航事故最主要的原因,若能減少人為疏失便可減少事故的發生。因此必須瞭解人為與其他因素之相互影響關係,進而制定一套「失事預防策略」(APS)。無論科學對飛航管制中飛安風險因素探究技術再如何進步,航空作業環境依舊需要人為的設計與操作,而人更是制止危機發生的最終守護者,故除應瞭解人為對飛安所可能帶來之風險外,更應以適當措施加以避免(張有恆,2005年)。
- (六)誤失管理(Error Reduction Operation):誤失管理或稱為疏失管理(Error Management),根據國際航空運輸協會定義,疏失可分為顯性(Active Failure)及隱性(PassiveFailure)兩種(戎凱,1999年)[#6]。誤失管理旨

註4 張有恆,《航空運輸學》(華泰文化發行),2007年,頁294。

註5 維基百科2010年1月20日http://zh.wikipedia.org/zh-tw/%E6%91%A9%E8%8F%B2%E5%AE%9A%E7%90%86

如何預防空中危安事件

在應用所有可得之資料,瞭_{利益的目標}解誤失的原因,並採取適當

的行動,

圖2 航空公司營運之天平理論模型示意圖(本研究整理)

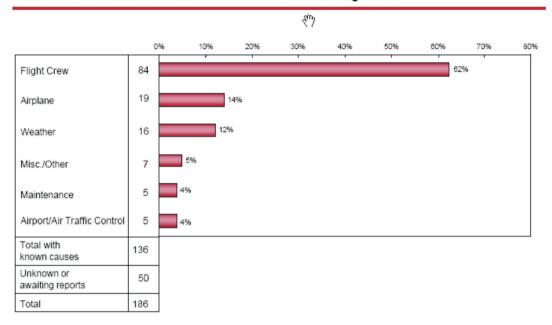
舉凡改變 資料來源:張有恆,《飛航安全管理》(華泰文化發行),2005年,頁206。

政策、程序及施以特殊的訓練等,藉以減低誤失的發生率,同時將誤失所產生之後果降低到最低程度(鄭振坤,2001年)「雖7」。

- (七)組員資源管理:組員資源管理(Crew Resources Management, CRM)係由座 艙資源管理演進而來,使原本涵蓋範圍僅有座艙組員擴伸至所有相關的飛航 組員。組員指除機艙內的座艙組員(機師、空服員),也包括地面飛航相關 人員,如航管、維修人員、工程師、簽派員及其他相關人員,而資源則概括 各種硬軟體、環境與人力資源等。依據特定的組織需求,訂定訓練內容,以 發展出理想的公司文化,強化整體環境之良性互動關係,提倡落實飛安是航 空體系的共同責任。非單一歸咎於第一線人員的疏失(戎凱,1999年)[據8]。
- (八)根據以上飛安理論,可以歸納出下列兩點結論:
 - 改善飛安並非要做到飛安零風險,而是要將風險降低到可以接受的狀態, 因為飛安不可能零風險。
 - 2. 飛航事故的產生是由許多的因子交互作用造成,非由單一因子造成;這種 觀念有別於國內現存的事故調查,僅列出事故的端點因子,如:人為因素 、航管失誤等。

二、飛安安全需求之差異:

- (一)國家航空器(State Aircraft):一般在執行戰、訓任務時,以達成目標為 導向,然而在執行訓練任務時,仍然必須考量在當時作業的基本安全。
- (二)民用航空器(Civil Aircraft):以安全為目標,根據天平理論:航空公司 之資源應被合理有效的分配在營運計畫與安全計畫上。安全和營利如同槓桿


註6 戎凱、郭兆書,〈國家資源管理-從人為因素觀點探討改善台灣飛安的方法〉,《民航季刊第一卷第四期》, 1999年12月,頁361-369。

註7 鄭振坤/<飛安事故的軌跡與危機因數偵測>/《中華民國第八屆運輸安全研討會》/2001年10月25日/頁466

註8 戎凱、郭兆書,〈國家資源管理-從人為因素觀點探討改善台灣飛安的方法〉,《民航季刊第一卷第四期》, 1999年12月, 頁361-369。

Accidents by Primary Cause

Hull Loss - Worldwide Commercial Jet Fleet - 1994 through 2003

圖3 全球民航機重大事故統計分析

資料來源:波音公司,2004年

之兩端,公司之資源即是槓桿,如何在安全之成本考量下,安全而又合理的 達成營運目標?始終是航空團體與業管機關互不相讓的區域,如圖2所示。

- 三、飛航事故預防策略:失事預防策略依美國波音公司2004年所公布的全球民航機重大飛航事故統計分析(如圖3所示),其指出一個失事事件的發生係由一連串的失誤相互影響所形成,若能打破其中一個環節,便可避免失事發生。
 - (一) 其失事預防策略定為七大類,計37項分別為:
 - 1. 飛航組員 (Crew)。
 - 2. 航空公司航務作業(Airline Flight Operations)。
 - 3. 飛航管制 (Air Traffic Control)。
 - 4.場站管理(Airport Management)。
 - 5. 航空氣象情報(Weather Information)。
 - 6.飛機設計與性能(Airplane Design/Performance)。
 - 7. 維修 (Maintenance)。
 - (二)該分類將飛航管制(Air Traffic Control)獨立於一類別,又探討兩個項目,分別為飛航管制系統之性能、飛航管制與飛行員間之溝通程度。其中飛航

管制系統之性能旨為除通訊用外,還有表1 航空器飛行模態作為失事統 培養在處理飛航管制硬體設備、系統性 計基礎 能、管理方向及管制人昌工作表現上所 面隔各種狀況的警覺性,以減少未來失 事發生的潛在風險; 而飛航管制與飛行 昌間之溝涌程度旨在增進飛航管制與飛 **航組員間於請求空域、辨認及數據等方** 面的充分溝涌 [離9]。

四、國際航空運輸協會失事分類:國 際航空運輸協會以七個航空器飛「 行模態作為失事統計基礎: 起飛 、爬升、巡航、下降、進場、著 陸、滑行(如表1),結果發現 起飛和降落是最常發牛失事之階 段。其將飛航事故肇因歸類為五 個主要因素構面,各構面分別包 含幾個項目,大體上而言,近年 來,飛航事故發生之原因計有「誰

10] ·

階段	失事分類
起飛階段	由開始起飛到完成第一階段爬升
爬升階段	距地面到爬升頂端
巡航階段	爬升頂端至下降頂端.
下降階段	下離地 3000 呎
進場階段	通過臨界點
著陸階段	完成滾轉到達適當滑行速度.
觸地階段	滑行或靜止但航員仍在座艙之中.

表2 飛航事故分類

等級	飛航事故內容
第一級	指非屬普通航空業之固定翼航空器飛航事故,
	造成人員死亡或傷害,及航空器實質損害者。
第二級	指非屬普通航空業之固定翼航空器飛航事故,
	造成人員死亡或傷害,而航空器無實質損害者。
第三級	指非屬普通航空業之固定翼航空器飛航事故,
	無人員死亡或傷害,但造成航空器實質損害者。
第四級	指旋翼航空器,普通航空業及工務航空器之固
	定翼航空器飛航事故,造成人員死亡或傷害,
	或航空器實質損害者。
第五級	指所有航空器發生符合「民用航空器及公務航
	空器飛航事故調查作業處理規則」第五條第四
	款至第二十款之狀況,經本會判定需進行調查
	者。
炒 1-111	比如如则此日於几下派和市儿

- (一)人為因素(Human):主要包括 「第六級|指超輕型載具發生之飛航事故。 了個人疏失、生理及心理狀況不佳、缺乏警覺性及不遵守規則等。
- (二)機械因素(Technical):飛機機型日新月異因此維修困難度增加、且機件 老舊之疲乏問題也漸侵蝕飛航安全。
- (三)環境因素(Environment):目飛航空域與航路衝突等歸為同一項目,並無 特別探討航管風險之型態和內容則包含外在的一些危險誘因。
- (四)組織因素(Organization):之內容為管理、訓練、溝通等。
- 五、我國飛航失事調查(Investigation of Accidents) [離1]:我國執行飛航事故 調查之依據為飛航事故調查法及其作業處理規定,然飛航事故調查時常涉及國 際事務,我國雖不是國際民航組織會員國,但為求與國際接動,在許多方面仍

註9 陸鵬舉等,「國籍航空器飛安事故模型建立及預測之研究」,國立成功大學航空太空研究所1996年三月。

註10 國際航空運輸協會 (IATA) Safety Report (Jet) 1997 Appendix A.

國際民用航空法第四章便利空中航行措施,第二十六條。

會參照ICAO規範,因而未與他國發生衝突之現象,如表2所示。

參、空軍風險管理與作業定義

一、空軍風險管理:

空軍的戰力,主要發揮在空中,而當今民航事業發達及空軍亦因新一代戰機而戰訓任務頻頻增加。經交通部民航局與國防部空軍司令部非正式統計,國家航空器、民用航器每日航行量約1600餘架次「#12」;故在如此複雜的空域環境中,大量增加的民航機數量與空軍既有飛訓需求之下,使現有「台北飛航情報區」呈現飽和的狀況。並且要在安全、迅速、有序的前提下,所有飛航安全實有賴於所有的參與者共同努力來維護。然而飛航安全的工作涵蓋範圍十分廣泛、影響亦深遠;其中任一環節如疏忽大意或維安思想不夠縝密,對飛航安全均足以導致嚴重的危害,因此為有效「預防」空中危安事件、確保飛航安全,平日各相關專業工作訓練踏實與否。再來由於兩岸直航政策開放,讓原本已狹窄之空域更顯不足,稍有不慎即可能發生飛航事件,究其原因係軍民航管制單位與飛行員間缺乏協調與聯繫所致,如能透過有效之組員資源管理,將可避免類案再生。

過去部隊重視技術層面,而忽略了人為因素所造成的影響,國家航空器飛行員、飛航管制及戰術管制單位經常在熟悉的環境下重複執行類似的任務,由於不段的重複,卻造成了心理鬆懈,忽略了風險因子。就以國家航空器過去數起飛安事件案例中,以未能確實掌握天氣狀況、忽視週遭環境狀況、疏忽當時飛機位置、無線電故障直接定向本場,以致發生重大飛危事件。歸納原因,實為缺乏安全認知與危機管理觀念所致。

二、風險管理定義:風險管理又名危機管理,是一個管理過程,包括對風險的定義 、測量、評估和發展因應風險的策略。目的是將可避免的風險、成本及損失極 小化。理想的風險管理,事先早已排定危機處理之優先次序,可以優先處理引 發最大損失及發生機率最高的事件,其次再處理風險相對較低的事件。實際狀 況中,因為風險與發生機率通常不一致,所以難以決定處理順序。故須衡量兩 者比重,做出最合適的決定。因為牽涉到機會成本(Opportunity Cost),風 險管理同時也要面對如何運用有效資源的難題。把資源用於風險管理可能會減 少運用在其他具有潛在報酬之活動的資源;理想的風險管理正是希望以最少的

資源化解最大的危機[#13]。

- 三、風險的之應用:各種管理活動每天都有不同的風險必須面對,但是對於風險的 定義至目前為止,尚未發展出一簡易明瞭及一致認同的說詞(鄭燦堂2008年) [#14]。普遍來說,風險的定義可分為下列數種(Lenz Jr. 1983):
 - (一)事故發生的不確定性(Uncertainty):不確定性包括發生與否(Whether)、何時(When)、狀況(Circumstance)與結果嚴重性(Consequence)等。
 - (二)事故發生遭受損失的機會(Chance of Loss)。
 - (三)風險=嚴重性×機率風險=嚴重性×機率×曝露率;曝露率乃指的是多久作業一次,若僅為一次性作業則無此項。

肆、飛安問題研析

- 一、各種飛安問題發生肇因統計:綜觀各種飛安問題,從經行政院飛安會統計資料來看,約有七成的飛安事件是由人為因素所造成,而機械因素則佔約二成,其他的因素(如天候環境)共佔約一成。在所有的因素中,以人為因素最難掌握,最能改進的為機械因素,影響飛航安全的因素分述如后。
 - (一)人為因素(Human):人類天性就會犯錯(To Err is Human)況且人是有情感的動物,不可能期待達到永不犯錯的境界;有關於人為因素之研究,愈來愈多文獻認為人為疏失僅非由個人操作不當所引起,故逐漸著重於探討人與其他介面之關係及影響作用,特別是「人/人」介面和「人/機」介面。其中涉及飛航管制案件增減之變動因素眾多,如業務量、航情之複雜度、作業程序改變、新型航空器、新空用裝備、突發事件、獎懲政策、通報制度、要求重點等(張國政,2005)[雖15]。
 - (二)機械因素(Technical):機械因素包括了發動機、機體結構(鏽蝕及疲勞)、次系統及航電裝置等,相關飛航事故少部份係由設計不良造成,大部份則是因維修不當所致(張國政,2005)[#16],在機械故障方面(如引擎故障或維修疏忽機件未復原),屬人為疏失或人為破壞等。
 - (三)環境因素(Environment):係指天候環境因素包括有低空風切、雷雨、雷擊、晴空亂流、颱風、低能見度等不良天候所組成。發生在較大尺度內的穩

註13 維基百科http://zh.wikipedia.org/zh-tw/%E9%A2%A8%E9%9A%AA%E7%AE%A1%E7%90%86日期2010年1月6日。

註14 鄭燦堂,《風險管理-理論與實務》(五南圖書出版股份有限公司),2008年。

註15 張國政,《航空運輸專論》(交通部民用航空局發行),2005年,頁103。

註16 張國政,《航空運輸專論》(交通部民用航空局發行),2005年,頁104。

定天氣現象(如颱風)較易預防而不致危及飛安。但小尺度短暫、突變的天氣因素仍需駕駛員對其充分瞭解並進行隨機應變的訓練,以增加事故處置能力(張國政,2005)[#17]。

- (四)組織因素(Organization):組織因素與系統因素之改善,也可降低人為疏失不錯之成效,王明揚等(2005年)^[並18]針對2001年所發生的國內飛行員與飛航管制人員溝通用語失誤之案例,用來分析可能產生飛安的問題,以就整體組合作業中乃屬溝通失誤最易生。
- 二、飛安問題研析:我國飛航管制聯合協調中心(ATC Joint Coordination Center, JCC)統計,2009年共計發生5起[#19] 飛航管制案件,經歸納發生肇因分析如后:

(一)主要肇因分析:

- 1. 戰術管制單位管制官與通資航聯隊之塔臺管制(Tower Control)、地面控制進場(Ground Control Approach, GCA)(以下簡稱管制單位),未能依照飛航管理程序(Air Traffic Management Procedures, ATMP)、飛航及管制辦法(Flight and Air Traffic Control Regulation)、台北飛航情報區飛航指南(Aeronautical Information Publication, AIP)、飛航管制手冊(Flight Administration Manual)及軍民航戰管工作協議書規範遂行管制作業,而國家航空器飛行員未遵守管制單位指示高度飛行,且遇有疑慮時卻未能儘速澄清未確實核對飛行員所覆誦資料。所以管制單位與空中的飛行員須達到地空狀況聯繫無虞才是。
- 2. 國家航空器飛行員與管制單位溝通語意失誤所產生的溝通問題,造成「飛行員的預期心理」、「聆聽與覆誦未確實執行」、「飛航管制術語之誤解」、「管制單位分心」、「不完整的覆誦」等失誤;另雙方未熟稔飛航通話術語,獲飛行員在未獲得管制單位許可下逕自行起飛,造成飛航管制事件。
- 3. 管制單位引導國家航空器執行戰演訓任務時,如未能保持既定之空城實施任務,使航空器不慎進入航管管制空域或航路時,在未及時協調或通知相關航管單位下而導致與其它航空器有接近趨勢時,又未能主動引導國家航

註17 張國政,《航空運輸專論》(交通部民用航空局發行),2005年,頁104。

註18 王明楊、蔡玟玲、徐翰、何左己/〈 航管通話風險: 構通失效案例分析〉/《第三屆危機管理國際學術研討會》/2005年11月25日。

註19 《戰航管巡迴研習彙編》(飛航管制聯合協調中心編訂),2009年,頁64。

空器採取避讓措施,將造成嚴重空中危安事件。

- 4. 管制單位對航管空域(A類、C類、D類與E類)及等相關作業規定不夠熟 稔,以致無法採取正確之方式遂行協調,除增加協調作業困擾外,亦間接 影響戰備仟務遂行,更容易導致空中交通紊亂。
- (二)如何預防空中危安事件:由上述飛航管制案件,經歸納發生肇因分析得知: 「仟何飛航事故其發牛危安事件或許僅只單純一項,卻可能是造成致命的風 險因子」。所以如何「預防」空中危安事件的發生或是影響飛安的因子產生 的作法,簡單說明如下:
 - 1. 任務前,各級管制單位於任務前應親白與國家航空器飛行員(領隊)實施 任務提示並充分溝通,以瞭解任務特性、執行相關規定與空域等限制,並 預擬突發狀況處置腹案,並明確律定出返航方式;對與有接近趨勢之航機 動態資料,應確時掌握,適時提供飛行員參考,並建議在執行任務時採取 有效之隔離措施;另僚機應全盤瞭解任務規劃,預擬各種突發狀況,詳閱 各項規定以促進飛行安全守則等。
 - 2. 管制單位發現軍機不正常飛航動態或可能對民航機造成引響時,主動提醒 並採取隔離或先行協調處置,先期改正;管制單位所下達各項指令如「 聽與覆誦未確實執行」、「飛航管制術語之誤解」、「不完整的覆誦」等 或發現「領知有誤」時,應立即修正,以避免空中危安事件。
 - 3. 出航過程與返航過程中須要求國家航空器飛行員確實保持標準儀器離場程 序(Standard Instrument Departure, SID)、標準儀器到場航線(Standard Terminal Arrival Route, STAR)、儀器飛航規則(Instrument Flight Rules, IFR)及目視飛航規則(Visual Flight Rules, VFR),並 遵守管制單位管給予之航向高度;如有懷疑應確認後再行動,任何下達指 令都需請長僚機複誦,並加強機外空域安全之顧慮。
 - 4. 管制單位平時利用專精課程及班前提示時,應不斷抽問各種狀況及規定, 尤其對本質學能稍差或警覺不足人員應加強輔導;另針對見習等級人員引 導任務時都需指派技優人員從旁輔導。

伍、結語

常今民航事業發展快速民用航空器及國家航空器任務頻繁之際,在有限的空域 裡,須容納諸多航行量。然飛安工作執行中如任一環節疏忽大意或不夠周密的話, 對飛行安全均足以釀成大禍。因此有效「預防」空中危安事件,確保飛行安全,端 賴平日各環節專業訓練踏實及相互配合與否。

然而杜絕飛航事故肇因根本之道,乃在於事先「預防」,各飛安相關理論先不管其著眼點如何?最終之目的都是在提醒所有執行空中任務的參與者對飛安「預防」之重要性是否瞭解,並是否在事前將可能發生之風險加以有效的控制和處理。再則,若能瞭解風險型態與影響方式為何?且如何降低或除去風險發生的機率,必定能降低空中為安事件。

總之,飛安改善工作,應不再侷限於失事調查、飛航紀錄器分析或法令規章修改等消極作為。而是採取主動作法,惟有透過教育、訓練、風險管理、領導統御及系統安全管理等作法,來即早辨識不良趨勢並消彌人為可能造成之風險,並達成飛安「零失事」之目標才是終極目標。以下為本研究結論:

- 一、安全是普世價值(Universal Value),空中運輸首重安全,安全是一項整體工作,國家航空器飛行員、飛航管制及戰術管制單位,在飛航安全中皆扮演著舉足輕重的角色所以任何人都需要視飛安為任務之上。即為求人人能用心,俾能消彌人為疏失的產生,進而降低失事率。
- 二、積極發掘影響飛行安全之各種潛在因素,事前的「預防」重於事後的「檢討」 、及時發掘影響安全的缺失適時改進,才能確保人員、裝備之安全。
- 三、各部門應分層負責,摒棄一切人為因素,對有安全顧慮之事物即實施檢查,並 將檢查所見缺點分析檢查,提供改進意見,作為安全教育及「預防」失事之參 考。
- 四、部分督導人員未重視飛安管理紀律,導致飛航人員投機取巧,不遵守標準作業程序(Standard Operation Procedures, SOP),容易上行下效而形成飛安隱憂。防範飛行失事於未然,達到「預防」行為的功效。
- 五、消弭及降低飛安事件,是我國家航空器重要之工作目標,亦是民航業者所追尋目標;然失事「預防」工作更為整體性、長期性及全面性的工作;其中成敗之關鍵乃在於「人」。故未來「預防」飛安工作之重點乃在於建立國軍安全文化,使人人均能恪遵規定並將失事「預防」視為已任,拋棄「因便就簡」及「鄉愿苟且」之錯誤心態,全力達成「零飛安」之目標。

參考文獻

一、一般書籍

- (一)李彌,《航空運輸學》(航安海洋用品有限公司附設出版部),2003年。
- (二)田楚成,《交通部民航局》(民航人員企劃組編印),2000年。
- (三)周茂林譯,《美國國防部風險管理作業指南》(國防大學編印),2007年12月。

如何預防空中危安事件

- (四)凌鳳儀著,《航空運輸管理概論》,(文笔書局),2000年。
- (五)凌鳳儀、林信得編著,《航空運輸學》,(文笔書局),1993年。
- (六)張國政,《航空運輸專論》(交通部民用航空局發行),2005年。
- (七)張有恆,《飛航安全管理》(華泰文化發行),2005年。
- (八)張有恆,《交通政策分析》(華泰文化發行),1998年。
- (九)張有恆,《航空運輸學》(華泰文化發行),2007年。
- (十)顏進儒,《運輸學》(五南圖書出版股份有限公司),2005年。
- (十一)鄭燦堂,《風險管理-理論與實務》(五南圖書出版股份有限公司),2008年。
- 二、學術論文
- (一)戎凱、郭兆書, < 國家資源管理-從人為因素觀點探討改善台灣飛安的方法> , 《民航季刊第一卷第四期》, 1999年12月, 頁361-369。
- (二)王明揚、蔡玟玲、徐翰、何立己、〈航管通話風險:溝通失效案例分析〉,《第三屆危機管理國際學術研討會》 ,2005年11月25日。
- (三)葉龍泉, < 我國飛航管制體系整合關鍵因素之研究>,《開南大學空運管理所碩士論文》,2006年。
- (四)蔡金倉,〈人為及環境因素對飛航安全之影響〉《空軍軍官雙月刊》,第145期,2009年4月。
- (五)蔡金倉,〈飛航管制服務品質與飛航服務滿意度之探討〉《空軍學術月刊》,第609期,2009年4月。
- (六)許尚華,〈由事故分析談人為因素對飛航安全之影響〉《航空安全研討會》,1994年 月,頁101-134。
- (七)國家科學委員會,〈飛航安全與人為因素研討會論文集〉,《工程科技推廣中心》,2001年。
- (八)馬休茲,〈美國飛航安全基金會〉(Mr. Stuart Matthews, the chairman of Flight Safety Foundation 51st IASS),《第51屆國際飛航安全年會論文集》,1998年。
- (九)陸鵬舉等, 〈國籍航空器飛安事故模型建立及預測之研究〉, 《國立成功大學航空太空研究所》, 1996年3月。
- (十)陳茅頲,〈飛航管制飛安風險因素之探究〉,《逢甲大學交通工程與管理學系碩士論文》,2006年。
- (十一)鄭振坤,〈飛安事故的軌跡與危機因數偵測〉,《中華民國第八屆運輸安全研討會》,2001年10月25日,頁
- 三、法規書籍
- (一)交通部民用航空局,《民用航空法》,2007年。
- (二)交通部民用航空局,《民航政策白皮書》,2000年。
- (三)交通部運輸研究所,《航空安全相關法規與事故資料之分析研究》,1997年。
- (四)行政院研究發展委員會,《風險管理作業手冊》,2006年,頁7-8。

四、網頁

- (一)交通部民用航空局民航人員訓練所網頁http://www.atc.gov.tw。
- (二)交通部民用航空局網頁http://www.caa.gov.tw。
- (三)交通部運輸研究所網頁http://iot.gov.tw。
- (四)飛航管制協會網頁http://www.rocatca.org.tw。
- (五)科學人雜誌網站http://sa.ylib.com/。
- (六)美國聯邦航空總局(FAA)網頁http://www.faa.gov。
- (七)國際民航組織(ICAO)網頁http://www.icao.org。
- (八)國際航空運輸協會網頁資料網頁http://www.iata.org/legal/index.htm
- (九)行政院研究發展委員會網頁http://www.risk.rdec.gov.tw/index.asp.

作者簡介

空軍中校 蔡金倉

學歷:空軍通校83年班、航校通參班89年班、空中大學91年班、開南大學空運管理研究所97年班、國防大學空軍指揮參謀學院98年班、資策會風險管理與飛安會飛安班完訓,經歷:欄管長、主任教官、曾參加民航局規劃空域分類、修訂儀航程序及國科會航太科技專案研究,現職:空軍戰術管制中心武器選派長。