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ABSTRACT 
 

 The main purpose of this research is to solve a military investment problem by applying 
heuristic algorithms to a mean-variance risk model. This problem is essential to national defense not 
only in investing a yearly budget efficiently but also in maintaining a stable armed force. Decision 
makers need a strategic method in order to maximize the military capability and minimize the risk as 
well. This paper presents a new definition on military investment assets to construct the portfolio 
selection model. We compare the results of three heuristics based on genetic algorithm, tabu search 
and simulated annealing, and explain how the asset allocations are affected by the risk. The empirical 
results show that our heuristics are efficient methods in terms of solving the defined military 
investment problem. 
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摘要 
本研究的主要目的是應用啟發式方法在均異風險模式，以求解軍事投資問題。在年度預算

的有效投資與穩固武力的維持上這是國防的重要議題。決策者需要一個策略方法促使軍事能力

的最大化與風險的最小化。本文給予軍事投資資產一個新定義以建構資產配置選擇模式。我們

比較基因演算、限制搜尋與模擬退火三種演算法的結果，並說明風險對投資配置所造成的影響。

對求解該軍事投資問題而言，結果顯示我們的啟發式演算法是一個有效的方法。 
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1 I. INTRODUCTION In this paper we apply heuristics approach 
in order to trace out the efficient frontier 
associated to  the portfolio selection problem, 
which assume that the return of a portfolio can 
be described using the annual amount of budget 
and the measure of effectiveness between 
military investment assets. In addition, the 
mean-variance model is extended to include 
cardinality constraints. These constraints ensure 
that a given number of different assets are 
invested in the portfolio as well as the 
proportion of the entire money to be invested in 
each asset. 

National defense budget has been 
considered as necessary expense for the national 
security, but each country allocates amount of 
budget expenditure depending on own needs. In 
general, a government or firm always prefers to 
have the profit on its portfolio as large as 
possible. At the same time, the risk should be as 
small as possible. However, a high return always 
accompanied with a higher risk. How can we 
have either less risk than others for a given level 
of return, or have more return than others for the 
same risk? It is necessary to find a solution of 
weighted allocation method for military 
investment assets in a risk scenario and to 
provide an objective fact for decision makers in 
investment options. Under this trend, the 
government sectors and large enterprises 
gradually use more reasonable investment tools 
to manage investment assets. It is difficult to 
present a steady, rational and positive 
investment policy for military or large 
enterprises in diversified environment. 
Therefore these observations motivate authors’ 
efforts to give a new definition of effectiveness 
measure for the military investment assets and 
discuss the portfolio selection problem. 

The rest of the paper is organized as 
follows. First, we present the standard 
mean-variance model formulation with 
cardinality constraints for the portfolio selection 
problem in Section II. Then in Section III we 
employ heuristic algorithms to solve the 
mean-variance model with military investment 
assets. In Section IV we provide return data of a 
portfolio, which is effectiveness measure divide 
by budget. In Section V, we used data sets 
collected in the military investment returns to 
illustrate the optimization idea and experimental 
results. Finally, we draw some conclusions in 
Section VI. 

The purpose of this paper is to consider 
military investment assets can be successfully 
solved by the heuristic algorithms if we use the 
mean-variance model. Portfolio selection is an 
optimization problem that plays a vital part in 
financial management and investment 
decision-making. It discusses the problem of 
how to allocate one’s capital to a large number 
of securities so that the investment can bring a 
most profitable return. In past times, investors 
talked about risk without a measurable term to 
define it. Until 1952, Markowitz [1] stated that 
variance could be regarded as risk and numerous 
models have been developed based on this 
measurement afterward [2-4]. The standard 
mean-variance model assumed that the total 
return of a portfolio can be described using the 
mean return of the assets and the variance of 
return (risk) between these assets. The portfolios 
that offer the minimum risk for a given level of 
return form what is called an efficient frontier. 
For every level of desired mean return, this 
efficient frontier gives us the best way of 
investing our money. 

2 II. MEAN-VARIANCE MODEL 
FOR PORTFOLIO SELECTION 

PROBLEM 
The mean variance model is based upon 

assumptions that an investor is risk averse, the 
distribution of the rate of return is multivariate 
normal and the utility of the investor is quadratic 
function of the rate of return. 

First of all, let us review the popular 
Markowitz mean-variance model [1] for 
portfolio selection problem. Let  be the 
number of different assets, 

N
iμ  be the mean 

return of asset i, ijσ  be the covariance between 
returns assets i and j, }∈ 1,0{λ  be the risk 
aversion parameter. The decision variable  is 
the proportion ( 0

iw
1≤≤ iw ) of the portfolio held 

in asset i. Using this notation, the mean-variance 
model for the portfolio selection problem is 
formulated as follows. 

Minimize 
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= 0 otherwise 
Equation (5) ensures that the proportions 

add to one. Equation (6) ensures that exactly K 
assets are held. Equation (7) constraints define 
lower and upper limits on the proportion of each 
asset which can be held in the portfolio. It 
ensures that if any of assets i is held ( 1=iz

i

) its 
proportion  must lie betweeniw ε and iδ , 
while if none of asset i is held ( 0=iz ) its 
proportion  is zero. Equation (8) is 
integrality constraint. By a risk aversion 
parameter

iw

λ , we could use this program 
(equations (4)-(8)) to trace out the cardinality 
constrained efficient frontier (CCEF) in an 
exactly analogous way. 

10 ≤≤ iw ,                 (3)
    

Ni ...,,1=

In equation (1), the case 0=λ  represents 
maximum expected return (without considering 
the variance) and 1=λ  represents minimum 
risk (regardless of the mean returns). Values of 
λ  satisfying 10 << λ  represent an explicit 
tradeoff between risk and return, generating 
solutions between the two extremes 0=λ  and 

1=λ . By solving the above equations (1)-(3) 
for varying values of λ , we can trace out the 
efficient frontier. This efficient frontier is a 
curve that lies between the global minimum risk 
portfolio and the maximum return portfolio. In 
other words, the portfolio optimization problem 
is to find all the efficient portfolios along this 
frontier. 

The portfolio selection problem is an 
instance from the family of quadratic 
programming problems when the standard 
Markowitz mean-variance model is considered. 
But if this model is generalized to include 
cardinality constraints, then the portfolio 
selection problem becomes a mixed quadratic 
and integer programming problem. Although 
exact algorithms can be tackled using linear 
and/or integer programming, the form of the 
objective function and/or the constraints of the 
optimization problems are restricted (usually 
linear) due to the limiting of these exact 
algorithms. For other non-linear problems, the 
formulations are also required to be 
differentiable in order to apply calculus-based 
method. These limitations prevent us from 
building more realistic models to simulate the 
real world problems. Therefore, in recent years 
many researchers have emphasized heuristic 
methods to overcome the disadvantage of those 
classical approaches. The cardinality constrained 
portfolio selection problem, as far as we are 
aware, has no exact algorithm reported in the 
literature. On the other hand, some heuristic 
methods based mainly on genetic algorithm 
(GA), tabu search (TS) and simulated annealing 
(SA) have been well developed and widely 
applied in portfolio selection optimization 
problems [5, 7, 8]. 

With the purpose of generalizing the 
standard mean-variance model, we use a similar 
formulation to include cardinality constraints [5, 
6]. 
Minimize 
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In addition to those notations previously 
defined, let 
K   is the desired number of different assets in 

the portfolio with no null investment 
iε   is the minimum proportion that must be 

held of asset i ( Ni ...,,1= ) if any of assets 
i is held 
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III. HEURISTIC ALGORITHMS 
A heuristic algorithm is a technique which 

seeks good solutions at a reasonable 
computational cost without being able to 
guarantee either feasibility or optimality, or even 
in many cases state how close to optimality a 
particular feasible solution is. Here we present 
three well-known heuristic algorithms which are 
GA, TS and SA. There can trace out the CCEF 
for the mean-variance model concerning 
military investment assets. 

3.1 Genetic Algorithm 
Based on the Darwin principle “the fittest 

survive” in nature, Genetic algorithm was first 
initiated by Holland’s [9] and has rapidly 
become the best-known evolutionary techniques 
[10, 11]. Since the pioneering method by 
Holland, numerous related GA-based portfolio 
selection approaches have been published. 
Arnone, Loraschi and Tettamanzi [12] presented 
a GA for the unconstrained portfolio 
optimization problem with the risk associated 
with the portfolio being measured by downside 
risk. Kyong, Tae and Sungky [13] also used GA 
to support portfolio optimization for index fund 
management. Lin and Liu [14] proposed that GA 
for portfolio selection problems with minimum 
transaction lots. Recently, GA has attracted 
much attention in portfolio optimization 
problems. 

In GA, the decision variables of a problem 
are usually represented by genes. The possible 
outcomes of a variable are named alleles. 
Individual solutions are then encoded in a string 
called a chromosome, which has a finite length 
over a finite alphabet. The alleles of these genes 
are often integer values with a range between 0 
and 9. These chromosomes then can represent 
points in the search space of candidate solutions. 
In order to breed better solutions, each 
chromosome is evaluated by its fitness which 
shows how good it is in solving the optimization 
problem. This fitness may come from an 
appropriate evaluation or transformation of the 
objective function of the problem. The higher 
the fitness of a solution, the higher the chance of 
being selected for reproduction and hence to 
contribute to the subsequent generation. 
Therefore, GA can be interpreted as a method 

for searching for highly fit chromosomes on a 
fitness landscape. 

A GA process starts with an initial 
population of a fixed number of solutions and 
maintains the same size population at each 
iteration. The new generation is obtained from 
the current one through a four step procedure. 
The better individuals from the population are 
first selected according to their fitness. Then a 
crossover operator is performed on pairs of them 
to produce new offspring. In the meantime, a 
mutation operator is randomly applied to a small 
proportion of these offspring to increase the 
variation of solutions. The last step is the 
replacement of poor individuals in the current 
population by the children. A GA algorithm 
repeats this procedure until a predetermined 
number of generations (or iterations) have been 
performed. 

In a GA process, one should adopt a 
mechanism to allow the fitter solutions a better 
chance of being selected for reproduction. The 
crossover operator can be executed by 
combining the pieces of chromosomes from the 
parents, such as exchanging part of their genes 
or choosing each gene one by one randomly 
from one of them. Mutation can be achieved by 
simply altering some of the genes in a 
chromosome. Both the likelihood of crossover 
being applied to chromosomes and the chance of 
mutation at each position of every chromosome 
are defined by rates, called the crossover 
probability and the mutation probability. The 
useful method of how to apply these four 
components is discussed in next section. Here 
we show the basic steps of a simple GA: 

Generate an initial solution 
Evaluate fitness of individuals in the 
population 
Repeat 

Select parents from the population 
Recombine parents to produce 
children 
Evaluate fitness of the children 
Replace some or all of the population 
by the children 

Until a satisfactory solution has been found 

3.2 Genetic Algorithm for Portfolio 
Optimization 

The proposed genetic algorithm for 
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portfolio optimization problem based on the GA 
steps discussed in the previous section. This 
section we will describe in detail how to 
implement the proposed method. 
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3.2.1 Population initialization 

This paper used a population size of 100. 
Parents were chosen by binary tournament 
selection which works by forming two pools of 
individuals, each consisting of two individuals 
drawn from the population randomly. The 
individuals with the best fitness, one taken from 
each of the two tournament pools, are chosen to 
be parents. 

3.2.2 Fitness objective function evaluation 

Using fitness objective function evaluation 
to try and ensure that the evaluated solution is 
feasible. Here we used mean-variance objective 
function  

 as 

a fitness function to calculate the feasible 
solution in the portfolio optimization problem. 
The chromosome representation of a solution 
has two distinct parts, a set Q of K distinct assets 
and K real numbers
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minimum proportion plus the appropriate share 
of the free portfolio proportion. 

Not all possible solutions correspond to 
feasible solutions (because of the constraint 
(equation (7)) relating to the limits on the 
proportion of an asset that can be held). In GA 
evaluation we can automatically ensure that the 
constraints relating to the lower limits iε  are 
satisfied in a single algorithmic step. However 
we need an iterative procedure to ensure that the 
constraints relating to the upper limits iδ  are 

satisfied. 

3.2.3 Reproduction, Crossover, and Mutation 

In this section we describe how the genetic 
operators are modified and how they performed 
in our algorithm. Children in our GA are 
generated by uniform crossover. In uniform 
crossover two parents have a single child. If an 
asset i is present in both parents it is present in 
the child (with an associated value  
randomly chosen from one or other parent). If an 
asset i is present in just one parent it has 
probability 0.5 of being present in the child. 
Children are also subject to mutation, 
multiplying by 0.9 or 1.1 (chosen with equal 
probability) the value 

is

)( ii s+ε  of a randomly 
selected asset i. This mutation corresponds to 
decreasing or increasing this value by 10%. 

3.2.4 Replacement 

We used a steady-state population 
replacement strategy. With this strategy each 
new child is placed in the population as soon as 
it is generated. We choose to replace the member 
of the population with the worst objective 
function value. 

3.2.5 Termination criterion 

With regard to the number of iterations we 
used 1000N for GA heuristic. These values 
mean that the heuristic evaluates exactly 1000N 
solutions for each value ofλ . 

3.3 Tabu Search 

Compared with genetic algorithm, tabu 
search is a rather new method. Tabu search was 
first introduced by Glover [15-17]. The word 
tabu or taboo has the meaning of being 
prohibited. As in its title “tabu”, TS imposes 
restrictions via some flexible memory structures 
to help the search process avoid local optimum 
and explore the search space more efficiently. 
TS have been widely applied to different 
optimization problems such as nonlinear 
covering problems, shop scheduling, quadratic 
assignment and traveling salesman problems. 
For portfolio optimization problem, Glover, 
Mulvey and Hoyland [18] applied TS to the 
problem involving rebalancing a portfolio to 
maintain a fixed proportion in each asset 
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category. Another financial application is 
Consiglio and Zenios [19] who implemented TS 
to optimize a callable bond design. Recently, 
Aldaihani and Aldeehani [20] proposed a 
tailored tabu search heuristic algorithm to solve 
two mathematical models for balancing the trade 
off between risk and return involved in the 
portfolio of emerging stock markets. 
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The main issue in TS is the use of flexible 
memory structures for utilizing historical 
information. These memories are implemented 
with regard to short term and long term 
components. In the short term scheme, it guides 
the search to escape from local minima. On the 
other hand, it diversifies or intensifies the search 
by means of the long term memory. To construct 
these memories, some attributes from the 
solution space are required to attain tabu status 
for the search process. These attributes can be 
variable values or certain functions. Solutions 
containing one or more of these attributes are 
considered tabu and usually restricted from 
selection. 

Handling tabu status in the short term can 
be achieved by a recency-based memory 
structure called a tabu list. It assigns tabu status 
to the attributes of moves just performed and 
hold them tabu for a certain period. Thus the 
search process can avoid repetition of moves. 
The duration of an attribute remaining tabu (i.e. 
tabu tenure) is measured in terms of the number 
of iterations. Usually tabu tenure is a relatively 
small value (say 7) in terms of the number of 
search iterations. The implementation of tabu list 
may guide the search, but it could also be too 
restrictive to some potential moves which 
provide a fruitful direction towards the optimal 
solution. This situation can be avoided by 
certain aspiration criteria. A move with tabu 
status is allowed as long as it satisfies these 
aspiration conditions. The basic steps of a 
simple TS algorithm are can described as 
follows: 

Generate an initial solution 
Initiate the tabu status 
Repeat 

Search a set of neighbor solutions of 
the current solution 
Evaluate function values of these 
solutions 
Apply aspiration criterion 
Choose the best one among non-tabu 

solutions 
Replace the current solution by the 
best one 
Update tabu status 

Until a termination criterion has been met 

3.4 Tabu Search for Portfolio 
Optimization 

The tabu search for portfolio optimization 
problems based on the TS steps discussed in the 
previous section. This section we will describe 
in detail how to implement the proposed 
method. 

3.4.1 Initialize feasible solutions 

This procedure first randomly generates 
1000 solutions. Each of these solutions consisted 
of a set Q of K randomly generated distinct 
assets. Associated with each asset  was a 
value  randomly generated from [0, 1]. We 
adopted an algorithm mentioned below to 
evaluate each of TS solution into a feasible 
solution. The best solution found was as a 
starting point. 

Qi∈

is

3.4.2 Fitness objective function evaluation 

In our fitness objective function evaluation 
we used the same solution representation as in 
our proposed GA, as well as 3.2.2 in order to try 
and ensure that the evaluated solution was 
feasible.  
3.4.3 Neighborhood structure  

The algorithm starts from a feasible initial 
solution, and moves the current solution to the 
best neighborhood which is not forbidden. The 
move operator corresponds to taking all assets 
present in portfolio of K assets and multiplying 
their values by 0.9 and 1.1. This means that the 
number of neighbors which we need to evaluate 
is 2K. The tabu list is a matrix of 2N integer 
values which indicates for each of the N assets 
whether a particular move (multiplying by 0.9 or 
1.1) is currently tabu or not. From the 
neighborhood the best solution is chosen to 
become the new starting solution for the next 
iteration and the process repeats. The best 
solution is termed as the local best solution. 

3.4.4 Tabu tenure and aspiration criteria 
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In order to prevent cycling a list of “tabu 
moves” is employed. It defines a control 
mechanism to determine restriction condition in 
search processing. Typically this list prohibits 
certain moves which would lead to the revisiting 
of a previously encountered starting solution. 
This list of tabu moves is updated as the 
algorithm proceeds so that a move just added to 
the tabu list is removed from the tabu list after a 
certain number of iterations (the “tabu tenure”) 
have passed. It is common to allow tabu moves 
to be made if they lead to an improved feasible 
solution which is better the current best solution 
(an aspiration criterion). 
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3.4.5 Termination condition  

Update tabu status until a termination 
condition has been met. With regard to the 
number of iterations we used 500(N /K) for 
heuristic TS. These values mean that the 
heuristic evaluates exactly 1000N solutions for 
each value ofλ . 

3.5 Simulated Annealing  

Simulated annealing originated in an 
algorithm to simulate the cooling of material in a 
heat bath [21] but its use for optimization 
problems originated with Kirkpatrick, Gelatt and 
Vecchi [22] and Cerny [23]. 

The major advantage of SA over classical 
local search methods is its ability to avoid 
getting trapped in local minima while searching 
for a global minimum. SA surveys and 
descriptions of application can be found in 
Osman and Laporte [24], Aarts and Lenstra [25] 
or Crama and Schyns [2]. 

SA searches a new solution by examining a 
solution  chosen at random from the 
neighborhood of the current solution . The 
movement from solution  to  occurring 
or not depends on both function values  
and . The selection rule is: (a) if solution 

 does improve the result (i.e.  
for a minimization problem), then  replaces 

 becoming the next current solution 
(i.e. ); (b) otherwise, the selection 
between  and  depends on the 
acceptance probability 

S

S
S

*S

f

f≤

*S S

)(S
S

)( *S

)( *S
)(Sf

S =*

S

*S

f

* S
P  calculated by some 

probabilistic law. More specifically, the 

probability that the neighbor solution    
replaces the current one is

S
P . On the other hand, 

solution  remains as the current one with the 
complementary probability . 

*S
P−1

The probability P  to accept a deteriorated 
solution is a Boltzmann-like distribution which 
is usually used as an analogy of the annealing 
process. In general, it is opposite to the size of 
deterioration and decreased with time (i.e. 
iterations). The mathematical term of this 
probability can be defined as , where T/Δe− Δ  
is the value of objective function deteriorated 
from the current solution (i.e. ) 
and 

)*f () Sf−(S
T  is the current temperature. The use of 

the probability distribution implies that the 
solution goes uphill as well as downhill. Thus, 
SA has the ability to avoid being trapped in a 
local optimum. Movement towards a 
deteriorated solution occurs frequently when the 
temperature is high but becomes less likely if the 
temperature is low. Hence the temperature 
should be a non-increasing function in order to 
explore the solution space in the beginning and 
to pursue the optimal solution at the end of 
optimization process. 

The acceptance probability should be 
relatively high, for example 0.9, at the start to 
allow all possible movements in a neighborhood. 
Therefore an initial temperature T0 should also 
be properly chosen to ensure the probability is 
high enough to perform a random search. The 
acceptance of a deteriorated solution becomes 
more and more selective when temperature is 
gradually decreased through the optimization 
process. Eventually the temperature becomes 
very close to zero and only the improving move 
is allowed in the process (i.e. similar to decent 
search). The basic steps of a simple SA 
algorithm are shown below. 

Generate an initial solution  
Select an initial temperature and a cooling 
factor 
Repeat 

Examine a random neighbor solution 
of the current solution 
Compare function values of both 
solutions 
If improved, then replace the current 
solution by the neighbor solution 
Else, draw a random probability and 
calculated the acceptance probability 



Tun-Jen Chang, etc.  
Heuristics Approach for Portfolio Selection with Military Investment Assets 

If accepted, then replace the current 
solution by the neighbor 
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Else, retain the current solution 
Cool the temperature by a specific    
rule 

Until a termination criterion has been met 

3.6 Simulated Annealing for Portfolio 
Optimization 

The approach of our SA for portfolio 
optimization problem is similar to those of TS. 
We used the same solution representation as 
mention in section 3.2.2 to ensure that the 
evaluated solution was feasible. This SA 
procedure first randomly generates 1000 
solutions. Each of these solutions consisted of a 
set Q of K randomly generated distinct assets. 
Associated with each asset  was a value 

 randomly generated from [0, 1] in order to 
meet the cardinality constraint. The best solution 
found was used as a starting point. 

Qi∈

is

3.6.1 Cooling schedule 

In SA the temperature is reduced over the 
course of the algorithm according to a “cooling 
schedule” which specifies the initial temperature 
and the rate at which temperature decreases. A 
common cooling schedule is to reduce the 
temperature T  by a constant factor α  
(0<α <1) using TT α=  at regular intervals. 
Therefore, the initial temperature of our SA is 
derived from the objective value of initial 
starting solution and α  is set equal to 0.95. 

3.6.2 Neighborhood structure 

The move operator corresponds to taking 
all assets present in portfolio of K assets and 
multiplying their values by 0.9 and 1.1. This 
means that the number of neighbors which can 
be randomly chosen is 2K. In our SA heuristic, 
we did 2N iterations at the same temperature. 

3.6.3 Acceptance probability 

This probability is related to what is known 
as the “temperature”. More precisely, a move 
that worsens the objective value by Δ  is 
accepted with a probability proportional to , 
where 

T/e Δ−

T  is the current temperature. The higher 
the temperatureT , the higher the probability of 

accepting the move. Hence this probability 
decreases as the temperature decreases. 

The algorithm terminates after evaluating 
exactly 1000N solutions for each value ofλ . 
This implies that the same number of solutions 
will be examined in each of the three heuristics.  

IV. TEST MILITARY 
INVESTMENT ASSETS DATA 

SETS 
To test our heuristic algorithms we 

constructed ten military investment assets by 
considering options involved in ten different 
national defense items drawn from national 
defense report, maneuver exercises and military 
conference records. Specifically these items are 
defensive counter-measurement weapon system, 
armament replenishment, air strike weapon 
system, sea strike weapon system, ground force 
weapon system, defensive construction, military 
training, defensive vehicle, living facility and 
C4ISR (Command, Control, Communication, 
Computer, Intelligence, Surveillance, and 
Reconnaissance system). Note that, as far as we 
are aware, there are no standard portfolio 
selection methods or quantitative analysis 
guidelines existed in the present 
decision-making of national defense investment. 
Through constructing the above ten military 
investment assets, we may develop a 
quantitative approach and plan annual national 
defense investment in a strategic level. 

4.1 Annual Investment Budget 
In order to find weighted allocation for 

portfolio selection regarding military investment 
assets, we surveyed and clustered the historical 
annual budget data of Ministry of National 
Defense R.O.C. from fiscal year Y1 to Y16. 
These data are associated with ten military 
investment assets in the following sections. 
4.2 Measure of Effectiveness (MOE) on 
Military Investment Assets 

In general, the MOE of a weapon system 
may contain six factors: strike ability, 
surveillance ability, mobility, replenishment 
ability, command and communication ability, 
and stability as criteria of measure. These factors 
can affect the decision-making of portfolio 
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optimization for military investment. However, 
instead of considering all six factors, we only 
use strike ability to estimate the simplified MOE 
in this paper due to the national defense 
confidentiality. A more comprehensive approach 
on solving the military investment problem is to 
apply probability theory among these six 
abilities of MOE according to their definition 
and principle. 

   = Sum (FFPMC per sq. ft. per vehicle * avg. 
effective range * annual procurement 
quantity) 

A9: Living facility (MOE) 
   = Sum (FFPMC per sq. ft. per facility * avg. 

effective period * annual construction 
quantity) 

A10: C4ISR (MOE) 
  = Sum (FPMI per sq. ft. per vehicle * avg. 

effective range * annual procurement 
quantity) 

Here, prior to formulating all the MOE in 
the detail for different military assets, we 
summarize the notations that are used in these 
MOE as below. 

Parameters of all these MOE items were 
selected by referencing national defense 
consulting firms such as Rand Corporation, 
public annual military exercise newscasts, Jane's 
Information Group and experienced combat 
staffs that are familiar with war game scenario 
simulation. Since there is no uniform or standard 
model for this decision-making process, we only 
choose some major platforms to build the 
demonstrating data set for our heuristic 
approaches. For example, we pick three major 
types of warship on sea strike weapon system, 
but anyone may also select 2 or 4 platforms due 
to different scenarios. 

An: is the number of different military 
investment assets, . 10,...,1=n

LIFPM: lock & intercept fires per minute 
FFPM: firing fires per minute 
FFPMC: firing fires per minute contained 
FPMI: fires per minute interference 
MOE: weapon system measure of effectiveness 

Therefore, the MOE of ten military 
investment assets can be presented as follows: 
A1: Defensive counter-measurement weapon 

 system (MOE) 
   = Sum (LIFPM per sq. ft. per vehicle * avg. 

effective range * annual procurement 
quantity) 

4.3 Return of investment (ROI) 

A2: Armament replenishment (MOE)  The parameter settings for ROI are defined 
as follow:    = Sum (FFPM per sq. ft. per vehicle * avg. 

effective range * annual procurement 
quantity) 

      ROI = MOE / Budget 
The amount of data is a 10*16 square matrix on 
ten military investment assets. The normalized 
ROI data set is shown in Table 1. We can 
acquire an efficient frontier (on risk and return 
coordinates) of these ten assets if the ROI data 
are applied to the standard mean-variance model 
through heuristic algorithms we developed 
above. 

A3: Air strike weapon system (MOE) 
   = Sum (FFPM per sq. ft. per vehicle * avg. 

effective range * annual procurement 
quantity) 

A4: Sea strike weapon system (MOE) 
   = Sum (LIFPM per sq. ft. per vehicle * avg. 

effective range * annual procurement 
quantity) 

A5: Ground force weapon system (MOE) V. RESEARCH RESULTS    = Sum (FFPM per sq. ft. per vehicle * avg. 
effective range * annual procurement 
quantity) 

To illustrate the portfolio selection problem 
of the military investment assets and to test the 
effectiveness of the proposed heuristic 
algorithms, we construct the ROI data set for 
sixteen fiscal years and program algorithms in 
C++ language. All the results are run on a 
personal computer. The cardinality constraints 
are set to maintain all the assets in our portfolio 
with a minimum holding proportion of total 
budget being 1% for each asset. We describe all 
the figures and tables before a further discussion 

A6: Defensive construction (MOE)  
   =Sum (FFPMC per sq. ft. per facility * avg. 

effective period * annual construction 
quantity) 

A7: Military training (MOE) 
   =Sum (training capacity per class (Combat, 

Logistic, Strategic) * no. of classes per 
year) 

A8: Defensive vehicle (MOE) 
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of them. The CCEF of mean-variance risk model 
for military investment assets is presented in 
Figure 1. It contains graphs of efficient points 
generated from three heuristic algorithms. Each 
point also reveals the best allocation of budget 
under the specific risk and return. Figure 2 is the 
compared CCEF of mean-variance model for 99 
stocks in S&P100 index. In this case we choose 
daily price data from Jan. 2004 to Dec. 2006 and 
set the cardinality constraint to be 10. Table 2 
shows the computational time (second) in each 
heuristic method. In order to compare those 
results in Figure 1 further, we adopt the 
definition of efficient point (has the higher 
return for a given risk or the lower risk for a 
desired return) and pool all heuristic results to 
form a better distribution of points over the 
frontier. The numerical analysis of pooled 
results is then illustrated in Table 3. To explain 
the influence of risk on decision-making, Table 
4 shows the percentages of total budget which 
should be allocated to 10 military investment 
assets at a series of risk values. These numerical 
results are also illustrated in Figure 3 for an 
integrated display of the shift in asset 
allocations. 

The results of three CCEF are nearly the 
same if we make a macroscopic comparison in 
Figure 1. Similar outcomes are presented in 
Figure 2 which draws CCEF with a different 
financial data set. These evidences show that our 
heuristics based GA, TS and SA can solve the 
defined military investment problem adequately. 
Note that, although an increase of return will 
accompany a rise in risk, the shape of efficient 
frontier in Figure 1 has a significant turn along 
the curve. A sharp rise in risk follows a steep 
increase in return after the turn. Therefore, 
efficient points near the turn may be favorable to 
decision makers who only consider trade-off 
between risk and return of a portfolio. The shape 
of CCEF of military investment assets also 
varies from that of S&P100 stocks. We believe 
this variation is due to the characteristic of ROI 
data. They are annual data with restricted 
information and more complicated than stock 
prices. With a larger sample size and further 
substantial war game data, this curve may 
become more smoothly.  

Obviously every risk value on the CCEF 
has an associated return value, but risk values 
always have positive correlation with return 

values. Since there is no standard criterion for 
the selection of risk values, it depends on the 
decision makers’ subjective preference. 
Therefore we select seven different risk values 
form CCEF to demonstrate the variation of 
weighted allocations. The investors or decision 
makers may allocate military investment assets 
according to the subfigure of a desired risk value 
in Figure 3. These subfigures are arranged in 
three rows and the integrated figure of all risk 
values is arranged on the right of third row. 
Judging from these figures, one may invest more 
money on assets A4, A6, A7, A8 and A10 when the 
risk value is set to be 0.1 (low risk). Among 
them, assets A4 and A10 excess the others in this 
portfolio. Both weighted allocations of A4 and 
A8 will increase with the risk value if it rises up 
to 0.19 (turning point). In the meantime, the 
allocation in A10 will decline rapidly by shifting 
its share to A8. Afterward most of asset 
distributions will concentrate on A8 till the risk 
reaches its maximum (0.29). The analysis of 
weighted allocations also can be made from 
Table 4 numerically. It is possible to distribute 
more weight on different assets if we adjust their 
minimum holding proportions to meet the 
investor’s requirement. This will prevent the 
investment from concentrating in few military 
assets. 

In Table 2, all the computational times are 
no more than 47 seconds for our heuristic 
algorithms. It means that these methods can 
solve the military investment problem easily 
with more items. Among them, the SA is the 
most efficient one followed by the TS and GA.  

In order to compare the heuristic results of 
Figure 1 in detail, we can pool all the efficient 
points of these methods together to build a new 
efficient frontier. Not only it will improve the 
results form individual heuristic, but provide a 
benchmark of comparison. Table 3 presents, for 
each of the three heuristics, the number of 
efficient points that they individually contribute 
to the pooled set of efficient points. We also 
record the initial number of efficient points in 
each heuristic and compare them with the final 
numbers of points in the pooled efficient frontier. 
The percentage of points that survive the merge 
process is shown in the last column for each 
heuristic. It can be seen that of the 5234 pooled 
efficient points 3342 (63.85%) are contributed 
by the SA heuristic, 1881 (35.94%) are 
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contributed by the TS heuristic and only 11 
(0.21%) are contributed by the GA heuristic. 
Therefore, we may suggest that the SA heuristic 
is the best choice if only one method is allowed 
to solve this problem. Both its computational 
capability and performance are the best among 
three. Unfortunately the efficient points of GA 
are dominated by those of the two heuristics and 
almost play no role in the pooled data. Note here 
that the performance of heuristics may be related 
to the input data. However, in this case, a pooled 
efficient frontier of the TS and SA will provide 
better information to decision makers. 

VI. CONCLUSIONS 

In this paper, we stress the importance of 
military investment and preset a new approach 
to this problem. Ten military investment assets 
are defined in order to form a mean-variance 
model that takes the risk of investment into 
account. Based on the GA, TS and SA, three 
heuristic algorithms are developed to solve the 
portfolio optimization problem efficiently. Each 
method can produce an efficient frontier which 
contains different solutions with better return 
and risk values. They provide feasible choices 
for a decision maker according to his/her 
preference. 

Although GA performs well in many fields, 
the empirical results show that it may not be the 
best method in allocating these military 
investment assets. In general, an examination of 
heuristic solutions is suggested by pooling all 
efficient points to form an improved frontier. 
Solutions of this frontier will be more attractive 
to decision makers. Furthermore, our research 
can provide a quantitative analysis which reveals 
more information for the proposed problem. Its 
potential of dealing with more complex 
investment should not be neglected. 

The future research will focus on more 
realistic problems or more efficient algorithms 
such as: 
(a) Include more items in military investment 

assets to disclose the true value of them. 
With these data, the asset allocations will be 
more accurate to decision makers. 

(b) Take surveillance ability, mobility, 
replenishment ability and stability into 
consideration gradually to measure more 
practical MOE of weapon systems. 

(c) Apply other algorithms to the military   
investment problems and compare their 
results with ours. We are interested in one 
particular method that can outperform the 
others. 
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Fig. 1 CCEF of mean-variance model for military investment assets. 
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Fig. 2 CCEF of mean-variance model for S&P 100 data. 
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Fig. 3 Weighted allocations at different risk values for military investment assets. 
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Table 1. Sixteen annual return of investment 

 

  Item 
Year A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 

Y1 0.0782 0.0877 0.0718 0.0777 0.0257 0.0615 0.1475 0.0578 0.0090 0.5842
Y2 0.1147 0.1482 0.0627 0.0875 0.0197 0.2506 0.3415 0.0828 0.0187 0.8873
Y3 0.2479 0.2310 0.1276 0.1218 0.0743 0.3308 0.1812 0.1671 0.0488 0.8622
Y4 0.5491 0.0593 0.1707 0.1480 0.1909 0.2108 0.1056 0.2495 0.1496 1.0000
Y5 1.0000 0.0869 0.2468 0.1857 0.9521 1.0000 0.2577 0.4803 0.2642 0.7846
Y6 0.3330 0.0931 0.6390 0.2945 1.0000 0.2641 0.3989 0.6554 0.9263 0.3319
Y7 0.0951 0.1026 0.3896 0.4425 0.0236 0.4987 0.3679 0.4343 0.6311 0.3019
Y8 0.1045 0.0552 0.4273 0.3726 0.0225 0.0736 0.1740 0.6210 0.8896 0.4804
Y9 0.3871 0.2582 0.3726 0.3145 0.0899 0.1436 0.3834 0.8423 0.0119 0.4371
Y10 0.0408 0.2218 0.8319 0.5065 0.0980 0.0587 0.6029 1.0000 0.0949 0.4549
Y11 0.0630 0.0849 0.4872 0.5493 0.0152 0.0981 0.4235 0.4792 0.0516 0.5660
Y12 0.1223 0.3468 0.4304 0.6141 0.0096 0.0979 0.5710 0.6448 0.0126 0.4979
Y13 0.2370 0.1522 0.4466 0.3943 0.0478 0.2520 0.5893 0.7935 0.0184 0.4524
Y14 0.0967 0.2047 1.0000 0.7415 0.0659 0.0374 1.0000 0.4302 0.0725 0.4997
Y15 0.0882 0.6468 0.6126 0.8162 0.0096 0.0907 0.5592 0.6871 1.0000 0.6599
Y16 0.1211 1.0000 0.5552 1.0000 0.0093 0.0734 0.5747 0.9519 0.0509 0.5676

 
Table 2. Computational time (s) of the heuristic algorithms for 10 military investment assets 

 
 Algorithm 

Time Genetic algorithm Tabu search  Simulated annealing 

second 47 42 40 
 
 

Table 3. Contribution to the pooled efficient frontier in numerical results 
 

Algorithms Number of points in the 
initial efficient frontier

Number of points in the 
pooled efficient frontier 

Contribution 
percentage 

Genetic Algorithm 2925 11 0.21% 
Tabu Search 3418 1881 35.94% 

Simulated Annealing 3420 3342 63.85% 
Total  5234  

 
 

Table 4. Allocation of budget to 10 military investment assets (%) at different risk values 
 

 

1 2 3 4 5 6 7 8 9 10 

0.10 1.00 1.00 1.00 45.76 1.00 3.57 3.27 2.44 1.00 39.97
0.13 1.57 1.00 1.00 65.70 1.00 2.66 1.00 8.38 1.00 16.69
0.16 2.62 1.00 1.00 75.96 1.00 2.33 1.00 9.46 1.00 4.63
0.19 1.00 1.00 1.00 71.54 1.00 1.31 1.00 20.16 1.00 1.00
0.23 1.00 1.00 1.00 32.50 1.00 1.00 1.00 59.50 1.00 1.00
0.26 1.00 1.00 1.00 16.21 1.00 1.00 1.00 75.79 1.00 1.00
0.29 1.00 1.00 1.00 1.00 1.00 1.00 1.00 91.00 1.00 1.00

Asset i 

Allocation 
of 

Budget 
Risk 
Values 
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