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ABSTRACT

The main purpose of this research is to solve a military investment problem by applying
heuristic algorithms to a mean-variance risk model. This problem is essential to national defense not
only in investing a yearly budget efficiently but also in maintaining a stable armed force. Decision
makers need a strategic method in order to maximize the military capability and minimize the risk as
well. This paper presents a new definition on military investment assets to construct the portfolio
selection model. We compare the results of three heuristics based on genetic algorithm, tabu search
and simulated annealing, and explain how the asset allocations are affected by the risk. The empirical
results show that our heuristics are efficient methods in terms of solving the defined military
investment problem.
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1. . INTRODUCTION

National defense budget has been
considered as necessary expense for the national
security, but each country allocates amount of
budget expenditure depending on own needs. In
general, a government or firm always prefers to
have the profit on its portfolio as large as
possible. At the same time, the risk should be as
small as possible. However, a high return always
accompanied with a higher risk. How can we
have either less risk than others for a given level
of return, or have more return than others for the
same risk? It is necessary to find a solution of
weighted allocation method for military
investment assets in a risk scenario and to
provide an objective fact for decision makers in
investment options. Under this trend, the
government sectors and large enterprises
gradually use more reasonable investment tools
to manage investment assets. It is difficult to

present a steady, rational and positive
investment policy for military or large
enterprises  in  diversified  environment.

Therefore these observations motivate authors’
efforts to give a new definition of effectiveness
measure for the military investment assets and
discuss the portfolio selection problem.

The purpose of this paper is to consider
military investment assets can be successfully
solved by the heuristic algorithms if we use the
mean-variance model. Portfolio selection is an
optimization problem that plays a vital part in
financial ~ management and  investment
decision-making. It discusses the problem of
how to allocate one’s capital to a large number
of securities so that the investment can bring a
most profitable return. In past times, investors
talked about risk without a measurable term to
define it. Until 1952, Markowitz [1] stated that
variance could be regarded as risk and numerous
models have been developed based on this
measurement afterward [2-4]. The standard
mean-variance model assumed that the total
return of a portfolio can be described using the
mean return of the assets and the variance of
return (risk) between these assets. The portfolios
that offer the minimum risk for a given level of
return form what is called an efficient frontier.
For every level of desired mean return, this
efficient frontier gives us the best way of
investing our money.

In this paper we apply heuristics approach
in order to trace out the efficient frontier
associated to the portfolio selection problem,
which assume that the return of a portfolio can
be described using the annual amount of budget
and the measure of effectiveness between
military investment assets. In addition, the
mean-variance model is extended to include
cardinality constraints. These constraints ensure
that a given number of different assets are
invested in the portfolio as well as the
proportion of the entire money to be invested in
each asset.

The rest of the paper is organized as
follows. First, we present the standard
mean-variance ~ model  formulation  with
cardinality constraints for the portfolio selection
problem in Section II. Then in Section III we
employ heuristic algorithms to solve the
mean-variance model with military investment
assets. In Section IV we provide return data of a
portfolio, which is effectiveness measure divide
by budget. In Section V, we used data sets
collected in the military investment returns to
illustrate the optimization idea and experimental
results. Finally, we draw some conclusions in
Section VI.

2. 11. MEAN-VARIANCE MODEL
FOR PORTFOLIO SELECTION
PROBLEM

The mean variance model is based upon
assumptions that an investor is risk averse, the
distribution of the rate of return is multivariate
normal and the utility of the investor is quadratic
function of the rate of return.

First of all, let us review the popular
Markowitz mean-variance model [1] for
portfolio selection problem. Let N be the

number of different assets, 44 be the mean
return of asset I, oy be the covariance between
returns assets i and j, 4€{0,1} be the risk
aversion parameter. The decision variable W; is
the proportion (0 <w; <1) of the portfolio held

in asset i. Using this notation, the mean-variance
model for the portfolio selection problem is
formulated as follows.

Minimize
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In equation (1), the case A =0 represents
maximum expected return (without considering
the variance) and A =1 represents minimum
risk (regardless of the mean returns). Values of
A satisfying 0 <A <1 represent an explicit
tradeoff between risk and return, generating
solutions between the two extremes A =0 and
A =1. By solving the above equations (1)-(3)
for varying values of A, we can trace out the
efficient frontier. This efficient frontier is a
curve that lies between the global minimum risk
portfolio and the maximum return portfolio. In
other words, the portfolio optimization problem
is to find all the efficient portfolios along this
frontier.

With the purpose of generalizing the
standard mean-variance model, we use a similar
formulation to include cardinality constraints [5,

6].
Minimize
N N N
ﬂ{zzwiwjaij}_(1_/1)|:zwi:uii| 4)
i=1 j=1 i=1
Subject to
N
2w =1 (5)
IEI
> z;,=K (6)
i=1
&z, <w, <6,z;, i=1..,N (7)
z, €{0,1},i=1..,N ®)

In addition to those notations previously
defined, let

K is the desired number of different assets in
the portfolio with no null investment
g; 1s the minimum proportion that must be

held of asset i (1 =1, ..., N ) if any of assets
i is held
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0, is the maximum proportion that can be
held of asset i (i =1, ..., N ) if any of assets
i is held

z, =1lifanyofasseti(i=1,..., N)isheld
= 0 otherwise

Equation (5) ensures that the proportions
add to one. Equation (6) ensures that exactly K
assets are held. Equation (7) constraints define
lower and upper limits on the proportion of each
asset which can be held in the portfolio. It

ensures that if any of assets i is held (z; =1) its
proportion W, must lie between &; and O ,
while if none of asset i is held (z,=0) its
Equation (8)
integrality constraint. By a risk aversion
parameter A , we could use this program
(equations (4)-(8)) to trace out the cardinality
constrained efficient frontier (CCEF) in an
exactly analogous way.

The portfolio selection problem is an
instance from the family of quadratic
programming problems when the standard
Markowitz mean-variance model is considered.
But if this model is generalized to include
cardinality constraints, then the portfolio
selection problem becomes a mixed quadratic
and integer programming problem. Although
exact algorithms can be tackled using linear
and/or integer programming, the form of the
objective function and/or the constraints of the
optimization problems are restricted (usually
linear) due to the limiting of these exact
algorithms. For other non-linear problems, the
formulations are also required to be
differentiable in order to apply calculus-based
method. These limitations prevent us from
building more realistic models to simulate the
real world problems. Therefore, in recent years
many researchers have emphasized heuristic
methods to overcome the disadvantage of those
classical approaches. The cardinality constrained
portfolio selection problem, as far as we are
aware, has no exact algorithm reported in the
literature. On the other hand, some heuristic
methods based mainly on genetic algorithm
(GA), tabu search (TS) and simulated annealing
(SA) have been well developed and widely
applied in portfolio selection optimization
problems [5, 7, 8].

proportion W, is zero. is
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1. HEURISTIC ALGORITHMS

A heuristic algorithm is a technique which
seeks good solutions at a reasonable
computational cost without being able to
guarantee either feasibility or optimality, or even
in many cases state how close to optimality a
particular feasible solution is. Here we present
three well-known heuristic algorithms which are
GA, TS and SA. There can trace out the CCEF
for the mean-variance model concerning
military investment assets.

3.1 Genetic Algorithm

Based on the Darwin principle “the fittest
survive” in nature, Genetic algorithm was first
initiated by Holland’s [9] and has rapidly
become the best-known evolutionary techniques
[10, 11]. Since the pioneering method by
Holland, numerous related GA-based portfolio
selection approaches have been published.
Arnone, Loraschi and Tettamanzi [12] presented
a GA for the wunconstrained portfolio
optimization problem with the risk associated
with the portfolio being measured by downside
risk. Kyong, Tae and Sungky [13] also used GA
to support portfolio optimization for index fund
management. Lin and Liu [14] proposed that GA
for portfolio selection problems with minimum
transaction lots. Recently, GA has attracted
much attention in portfolio optimization
problems.

In GA, the decision variables of a problem
are usually represented by genes. The possible
outcomes of a variable are named alleles.
Individual solutions are then encoded in a string
called a chromosome, which has a finite length
over a finite alphabet. The alleles of these genes
are often integer values with a range between 0
and 9. These chromosomes then can represent
points in the search space of candidate solutions.
In order to breed better solutions, each
chromosome is evaluated by its fitness which
shows how good it is in solving the optimization
problem. This fitness may come from an
appropriate evaluation or transformation of the
objective function of the problem. The higher
the fitness of a solution, the higher the chance of
being selected for reproduction and hence to
contribute to the subsequent generation.
Therefore, GA can be interpreted as a method

for searching for highly fit chromosomes on a
fitness landscape.

A GA process starts with an initial
population of a fixed number of solutions and
maintains the same size population at each
iteration. The new generation is obtained from
the current one through a four step procedure.
The better individuals from the population are
first selected according to their fitness. Then a
crossover operator is performed on pairs of them
to produce new offspring. In the meantime, a
mutation operator is randomly applied to a small
proportion of these offspring to increase the
variation of solutions. The last step is the
replacement of poor individuals in the current
population by the children. A GA algorithm
repeats this procedure until a predetermined
number of generations (or iterations) have been
performed.

In a GA process, one should adopt a
mechanism to allow the fitter solutions a better
chance of being selected for reproduction. The
crossover operator can be executed by
combining the pieces of chromosomes from the
parents, such as exchanging part of their genes
or choosing each gene one by one randomly
from one of them. Mutation can be achieved by
simply altering some of the genes in a
chromosome. Both the likelihood of crossover
being applied to chromosomes and the chance of
mutation at each position of every chromosome
are defined by rates, called the crossover
probability and the mutation probability. The
useful method of how to apply these four
components is discussed in next section. Here
we show the basic steps of a simple GA:

Generate an initial solution

Evaluate fitness of individuals in the

population

Repeat
Select parents from the population
Recombine parents to produce
children

Evaluate fitness of the children

Replace some or all of the population
by the children
Until a satisfactory solution has been found

3.2 Genetic Algorithm for Portfolio
Optimization
The proposed genetic algorithm for
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portfolio optimization problem based on the GA
steps discussed in the previous section. This
section we will describe in detail how to
implement the proposed method.

3.2.1 Population initialization

This paper used a population size of 100.
Parents were chosen by binary tournament
selection which works by forming two pools of
individuals, each consisting of two individuals
drawn from the population randomly. The
individuals with the best fitness, one taken from
each of the two tournament pools, are chosen to
be parents.

3.2.2 Fitness objective function evaluation

Using fitness objective function evaluation
to try and ensure that the evaluated solution is
feasible. Here we used mean-variance objective
function

N N N
f = /{ ZWinO'"}— (l - ﬁ){ZWiyi} as
i=1 j=1 i=1
a fitness function to calculate the feasible
solution in the portfolio optimization problem.
The chromosome representation of a solution
has two distinct parts, a set Q of K distinct assets

and K real numberss, (0<s, <1),i€Q. Now

given a set Q of K assets a fraction Zg j of
jeQ

the total portfolio is already accounted for and

so we interpret S; as relating to the share of the

free portfolio proportion 1— Zgj associated
jeQ
the proportion

with asset 1€Q . Hence

associated with asset i in the portfolio is given

by W, :gi+(si/Zsjj(l—Zgj], i.e. the
jeQ jeQ

minimum proportion plus the appropriate share
of the free portfolio proportion.

Not all possible solutions correspond to
feasible solutions (because of the constraint
(equation (7)) relating to the limits on the
proportion of an asset that can be held). In GA
evaluation we can automatically ensure that the

constraints relating to the lower limits &; are
satisfied in a single algorithmic step. However
we need an iterative procedure to ensure that the

constraints relating to the upper limits o, are
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satisfied.
3.2.3 Reproduction, Crossover, and Mutation

In this section we describe how the genetic
operators are modified and how they performed
in our algorithm. Children in our GA are
generated by uniform crossover. In uniform
crossover two parents have a single child. If an
asset i is present in both parents it is present in

the child (with an

randomly chosen from one or other parent). If an
asset 1 is present in just one parent it has
probability 0.5 of being present in the child.
Children are also subject to mutation,
multiplying by 0.9 or 1.1 (chosen with equal

probability) the value (&; +S;) of a randomly

associated value S,

selected asset i. This mutation corresponds to
decreasing or increasing this value by 10%.

3.2.4 Replacement

We used a steady-state population
replacement strategy. With this strategy each
new child is placed in the population as soon as
it is generated. We choose to replace the member
of the population with the worst objective
function value.

3.2.5 Termination criterion

With regard to the number of iterations we
used 1000N for GA heuristic. These values
mean that the heuristic evaluates exactly 1000N
solutions for each value of 4 .

3.3 Tabu Search

Compared with genetic algorithm, tabu
search is a rather new method. Tabu search was
first introduced by Glover [15-17]. The word
tabu or taboo has the meaning of being
prohibited. As in its title “tabu”, TS imposes
restrictions via some flexible memory structures
to help the search process avoid local optimum
and explore the search space more efficiently.
TS have been widely applied to different
optimization problems such as nonlinear
covering problems, shop scheduling, quadratic
assignment and traveling salesman problems.
For portfolio optimization problem, Glover,
Mulvey and Hoyland [18] applied TS to the
problem involving rebalancing a portfolio to
maintain a fixed proportion in each asset
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category. Another financial application is
Consiglio and Zenios [19] who implemented TS
to optimize a callable bond design. Recently,
Aldaihani and Aldeehani [20] proposed a
tailored tabu search heuristic algorithm to solve
two mathematical models for balancing the trade
off between risk and return involved in the
portfolio of emerging stock markets.

The main issue in TS is the use of flexible
memory structures for utilizing historical
information. These memories are implemented
with regard to short term and long term
components. In the short term scheme, it guides
the search to escape from local minima. On the
other hand, it diversifies or intensifies the search
by means of the long term memory. To construct
these memories, some attributes from the
solution space are required to attain tabu status
for the search process. These attributes can be
variable values or certain functions. Solutions
containing one or more of these attributes are
considered tabu and usually restricted from
selection.

Handling tabu status in the short term can
be achieved by a recency-based memory
structure called a tabu list. It assigns tabu status
to the attributes of moves just performed and
hold them tabu for a certain period. Thus the
search process can avoid repetition of moves.
The duration of an attribute remaining tabu (i.e.
tabu tenure) is measured in terms of the number
of iterations. Usually tabu tenure is a relatively
small value (say 7) in terms of the number of
search iterations. The implementation of tabu list
may guide the search, but it could also be too
restrictive to some potential moves which
provide a fruitful direction towards the optimal
solution. This situation can be avoided by
certain aspiration criteria. A move with tabu
status is allowed as long as it satisfies these
aspiration conditions. The basic steps of a
simple TS algorithm are can described as
follows:

Generate an initial solution

Initiate the tabu status

Repeat

Search a set of neighbor solutions of
the current solution

Evaluate function values of these
solutions

Apply aspiration criterion
Choose the best one among non-tabu

solutions
Replace the current solution by the
best one

Update tabu status
Until a termination criterion has been met

34 Tabu
Optimization

Search for Portfolio

The tabu search for portfolio optimization
problems based on the TS steps discussed in the
previous section. This section we will describe
in detail how to implement the proposed
method.

3.4.1 Initialize feasible solutions

This procedure first randomly generates
1000 solutions. Each of these solutions consisted
of a set Q of K randomly generated distinct
assets. Associated with each asset 1€Q was a

value S; randomly generated from [0, 1]. We

adopted an algorithm mentioned below to
evaluate each of TS solution into a feasible
solution. The best solution found was as a
starting point.

3.4.2 Fitness objective function evaluation

In our fitness objective function evaluation
we used the same solution representation as in
our proposed GA, as well as 3.2.2 in order to try
and ensure that the evaluated solution was
feasible.

3.4.3 Neighborhood structure

The algorithm starts from a feasible initial
solution, and moves the current solution to the
best neighborhood which is not forbidden. The
move operator corresponds to taking all assets
present in portfolio of K assets and multiplying
their values by 0.9 and 1.1. This means that the
number of neighbors which we need to evaluate
is 2K. The tabu list is a matrix of 2N integer
values which indicates for each of the N assets
whether a particular move (multiplying by 0.9 or
1.1) is currently tabu or not. From the
neighborhood the best solution is chosen to
become the new starting solution for the next
iteration and the process repeats. The best
solution is termed as the local best solution.

3.4.4 Tabu tenure and aspiration criteria
-102 -



In order to prevent cycling a list of “tabu
moves” is employed. It defines a control
mechanism to determine restriction condition in
search processing. Typically this list prohibits
certain moves which would lead to the revisiting
of a previously encountered starting solution.
This list of tabu moves is updated as the
algorithm proceeds so that a move just added to
the tabu list is removed from the tabu list after a
certain number of iterations (the “tabu tenure”)
have passed. It is common to allow tabu moves
to be made if they lead to an improved feasible
solution which is better the current best solution
(an aspiration criterion).

3.4.5 Termination condition

Update tabu status until a termination
condition has been met. With regard to the
number of iterations we used 500(N /K) for
heuristic TS. These values mean that the
heuristic evaluates exactly 1000N solutions for
each value of 4.

3.5 Simulated Annealing

Simulated annealing originated in an
algorithm to simulate the cooling of material in a
heat bath [21] but its use for optimization
problems originated with Kirkpatrick, Gelatt and
Vecchi [22] and Cerny [23].

The major advantage of SA over classical
local search methods is its ability to avoid
getting trapped in local minima while searching
for a global minimum. SA surveys and
descriptions of application can be found in
Osman and Laporte [24], Aarts and Lenstra [25]
or Crama and Schyns [2].

SA searches a new solution by examining a
solution S chosen at random from the

neighborhood of the current solutionS”. The
movement from solution S° to S occurring
or not depends on both function values f(S")

and f(S). The selection rule is: (a) if solution

S does improve the result (i.e. f(S)< f(S")
for a minimization problem), then S replaces
S becoming the next current solution
(ie. ST=S ); (b) otherwise, the selection

between S° and S depends on the
acceptance probability P calculated by some
probabilistic law. More specifically, the

LB RIS % $- P R 99.05
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probability that the neighbor solution S
replaces the current one is P . On the other hand,

solution S” remains as the current one with the
complementary probability 1 — P .

The probability P to accept a deteriorated
solution is a Boltzmann-like distribution which
is usually used as an analogy of the annealing
process. In general, it is opposite to the size of
deterioration and decreased with time (i.e.

iterations). The mathematical term of this

probability can be defined as e T, where A

is the value of objective function deteriorated
from the current solution (i.e. f(S)— f(S7))

and T is the current temperature. The use of
the probability distribution implies that the
solution goes uphill as well as downbhill. Thus,
SA has the ability to avoid being trapped in a
local optimum. Movement towards a
deteriorated solution occurs frequently when the
temperature is high but becomes less likely if the
temperature is low. Hence the temperature
should be a non-increasing function in order to
explore the solution space in the beginning and
to pursue the optimal solution at the end of
optimization process.

The acceptance probability should be
relatively high, for example 0.9, at the start to
allow all possible movements in a neighborhood.
Therefore an initial temperature Ty should also
be properly chosen to ensure the probability is
high enough to perform a random search. The
acceptance of a deteriorated solution becomes
more and more selective when temperature is
gradually decreased through the optimization
process. Eventually the temperature becomes
very close to zero and only the improving move
is allowed in the process (i.e. similar to decent
search). The basic steps of a simple SA
algorithm are shown below.

Generate an initial solution

Select an initial temperature and a cooling

factor

Repeat

Examine a random neighbor solution
of the current solution

Compare function values of both
solutions

If improved, then replace the current
solution by the neighbor solution
Else, draw a random probability and
calculated the acceptance probability
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If accepted, then replace the current
solution by the neighbor

Else, retain the current solution

Cool the temperature by a specific
rule

Until a termination criterion has been met

3.6 Simulated Annealing for Portfolio
Optimization

The approach of our SA for portfolio
optimization problem is similar to those of TS.
We used the same solution representation as
mention in section 3.2.2 to ensure that the
evaluated solution was feasible. This SA
procedure first randomly generates 1000
solutions. Each of these solutions consisted of a
set Q of K randomly generated distinct assets.
Associated with each asset 1€ Q was a value

S; randomly generated from [0, 1] in order to

meet the cardinality constraint. The best solution
found was used as a starting point.

3.6.1 Cooling schedule

In SA the temperature is reduced over the
course of the algorithm according to a “cooling
schedule” which specifies the initial temperature
and the rate at which temperature decreases. A
common cooling schedule is to reduce the
temperature T by a constant factor «o
(0<a<1) using T =aTl at regular intervals.
Therefore, the initial temperature of our SA is
derived from the objective value of initial
starting solution and « is set equal to 0.95.

3.6.2 Neighborhood structure

The move operator corresponds to taking
all assets present in portfolio of K assets and
multiplying their values by 0.9 and 1.1. This
means that the number of neighbors which can
be randomly chosen is 2K. In our SA heuristic,
we did 2N iterations at the same temperature.

3.6.3 Acceptance probability

This probability is related to what is known
as the “temperature”. More precisely, a move
that worsens the objective value by A is
accepted with a probability proportional to e T,

where T is the current temperature. The higher
the temperature T , the higher the probability of

accepting the move. Hence this probability
decreases as the temperature decreases.

The algorithm terminates after evaluating
exactly 1000N solutions for each value of 4.
This implies that the same number of solutions
will be examined in each of the three heuristics.

IV. TEST MILITARY
INVESTMENT ASSETS DATA
SETS

To test our heuristic algorithms we
constructed ten military investment assets by
considering options involved in ten different
national defense items drawn from national
defense report, maneuver exercises and military
conference records. Specifically these items are
defensive counter-measurement weapon system,
armament replenishment, air strike weapon
system, sea strike weapon system, ground force
weapon system, defensive construction, military
training, defensive vehicle, living facility and
CYISR (Command, Control, Communication,
Computer, Intelligence, Surveillance, and
Reconnaissance system). Note that, as far as we
are aware, there are no standard portfolio
selection methods or quantitative analysis
guidelines existed in the present
decision-making of national defense investment.
Through constructing the above ten military
investment assets, we may develop a
quantitative approach and plan annual national
defense investment in a strategic level.

4.1 Annual Investment Budget

In order to find weighted allocation for
portfolio selection regarding military investment
assets, we surveyed and clustered the historical
annual budget data of Ministry of National
Defense R.O.C. from fiscal year Y; to Y.
These data are associated with ten military
investment assets in the following sections.

4.2 Measure of Effectiveness (MOE) on
Military Investment Assets

In general, the MOE of a weapon system
may contain six factors: strike ability,
surveillance ability, mobility, replenishment
ability, command and communication ability,
and stability as criteria of measure. These factors
can affect the decision-making of portfolio
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optimization for military investment. However,
instead of considering all six factors, we only
use strike ability to estimate the simplified MOE
in this paper due to the national defense
confidentiality. A more comprehensive approach
on solving the military investment problem is to
apply probability theory among these six
abilities of MOE according to their definition
and principle.

Here, prior to formulating all the MOE in
the detail for different military assets, we
summarize the notations that are used in these
MOE as below.

A,: is the number of different
investment assets, N=1,...,10.

military

LIFPM: lock & intercept fires per minute
FFPM: firing fires per minute
FFPMC: firing fires per minute contained
FPMI: fires per minute interference
MOE: weapon system measure of effectiveness
Therefore, the MOE of ten military
investment assets can be presented as follows:
A;: Defensive counter-measurement weapon
system (MOE)
= Sum (LIFPM per sq. ft. per vehicle * avg.
effective range * annual procurement
quantity)
A,: Armament replenishment (MOE)
= Sum (FFPM per sq. ft. per vehicle * avg.
effective range * annual procurement
quantity)
Aj;: Air strike weapon system (MOE)
= Sum (FFPM per sq. ft. per vehicle * avg.
effective range * annual procurement
quantity)
Ay4: Sea strike weapon system (MOE)
= Sum (LIFPM per sq. ft. per vehicle * avg.
effective range * annual procurement
quantity)
As: Ground force weapon system (MOE)
= Sum (FFPM per sq. ft. per vehicle * avg.
effective range * annual procurement
quantity)
Ag: Defensive construction (MOE)
=Sum (FFPMC per sq. ft. per facility * avg.
effective period * annual construction
quantity)
A7: Military training (MOE)
=Sum (training capacity per class (Combat,
Logistic, Strategic) * no. of classes per
year)
Ag: Defensive vehicle (MOE)
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= Sum (FFPMC per sq. ft. per vehicle * avg.
effective range * annual procurement
quantity)
Ay: Living facility (MOE)
= Sum (FFPMC per sq. ft. per facility * avg.
effective period * annual construction
quantity)
Aj: C'ISR (MOE)
= Sum (FPMI per sq. ft. per vehicle * avg.
effective range * annual procurement
quantity)

Parameters of all these MOE items were
selected by referencing national defense
consulting firms such as Rand Corporation,
public annual military exercise newscasts, Jane's
Information Group and experienced combat
staffs that are familiar with war game scenario
simulation. Since there is no uniform or standard
model for this decision-making process, we only
choose some major platforms to build the
demonstrating data set for our heuristic
approaches. For example, we pick three major
types of warship on sea strike weapon system,
but anyone may also select 2 or 4 platforms due
to different scenarios.

4.3 Return of investment (ROI)

The parameter settings for ROI are defined
as follow:

ROI = MOE / Budget

The amount of data is a 10*16 square matrix on
ten military investment assets. The normalized
ROI data set is shown in Table 1. We can
acquire an efficient frontier (on risk and return
coordinates) of these ten assets if the ROI data
are applied to the standard mean-variance model
through heuristic algorithms we developed
above.

V. RESEARCH RESULTS

To illustrate the portfolio selection problem
of the military investment assets and to test the
effectiveness of the proposed heuristic
algorithms, we construct the ROI data set for
sixteen fiscal years and program algorithms in
C++ language. All the results are run on a
personal computer. The cardinality constraints
are set to maintain all the assets in our portfolio
with a minimum holding proportion of total
budget being 1% for each asset. We describe all
the figures and tables before a further discussion
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of them. The CCEF of mean-variance risk model
for military investment assets is presented in
Figure 1. It contains graphs of efficient points
generated from three heuristic algorithms. Each
point also reveals the best allocation of budget
under the specific risk and return. Figure 2 is the
compared CCEF of mean-variance model for 99
stocks in S&P100 index. In this case we choose
daily price data from Jan. 2004 to Dec. 2006 and
set the cardinality constraint to be 10. Table 2
shows the computational time (second) in each
heuristic method. In order to compare those
results in Figure 1 further, we adopt the
definition of efficient point (has the higher
return for a given risk or the lower risk for a
desired return) and pool all heuristic results to
form a better distribution of points over the
frontier. The numerical analysis of pooled
results is then illustrated in Table 3. To explain
the influence of risk on decision-making, Table
4 shows the percentages of total budget which
should be allocated to 10 military investment
assets at a series of risk values. These numerical
results are also illustrated in Figure 3 for an
integrated display of the shift in asset
allocations.

The results of three CCEF are nearly the
same if we make a macroscopic comparison in
Figure 1. Similar outcomes are presented in
Figure 2 which draws CCEF with a different
financial data set. These evidences show that our
heuristics based GA, TS and SA can solve the
defined military investment problem adequately.
Note that, although an increase of return will
accompany a rise in risk, the shape of efficient
frontier in Figure 1 has a significant turn along
the curve. A sharp rise in risk follows a steep
increase in return after the turn. Therefore,
efficient points near the turn may be favorable to
decision makers who only consider trade-off
between risk and return of a portfolio. The shape
of CCEF of military investment assets also
varies from that of S&P100 stocks. We believe
this variation is due to the characteristic of ROI
data. They are annual data with restricted
information and more complicated than stock
prices. With a larger sample size and further
substantial war game data, this curve may
become more smoothly.

Obviously every risk value on the CCEF
has an associated return value, but risk values
always have positive correlation with return

values. Since there is no standard criterion for
the selection of risk values, it depends on the
decision  makers’  subjective  preference.
Therefore we select seven different risk values
form CCEF to demonstrate the variation of
weighted allocations. The investors or decision
makers may allocate military investment assets
according to the subfigure of a desired risk value
in Figure 3. These subfigures are arranged in
three rows and the integrated figure of all risk
values is arranged on the right of third row.
Judging from these figures, one may invest more
money on assets Ay, Ag, A7, Ag and Ajy when the
risk value is set to be 0.1 (low risk). Among
them, assets A4 and Ao excess the others in this
portfolio. Both weighted allocations of A, and
Ag will increase with the risk value if it rises up
to 0.19 (turning point). In the meantime, the
allocation in Aj, will decline rapidly by shifting
its share to Ag. Afterward most of asset
distributions will concentrate on Ag till the risk
reaches its maximum (0.29). The analysis of
weighted allocations also can be made from
Table 4 numerically. It is possible to distribute
more weight on different assets if we adjust their
minimum holding proportions to meet the
investor’s requirement. This will prevent the
investment from concentrating in few military
assets.

In Table 2, all the computational times are
no more than 47 seconds for our heuristic
algorithms. It means that these methods can
solve the military investment problem easily
with more items. Among them, the SA is the
most efficient one followed by the TS and GA.

In order to compare the heuristic results of
Figure 1 in detail, we can pool all the efficient
points of these methods together to build a new
efficient frontier. Not only it will improve the
results form individual heuristic, but provide a
benchmark of comparison. Table 3 presents, for
each of the three heuristics, the number of
efficient points that they individually contribute
to the pooled set of efficient points. We also
record the initial number of efficient points in
each heuristic and compare them with the final
numbers of points in the pooled efficient frontier.
The percentage of points that survive the merge
process is shown in the last column for each
heuristic. It can be seen that of the 5234 pooled
efficient points 3342 (63.85%) are contributed
by the SA heuristic, 1881 (35.94%) are
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contributed by the TS heuristic and only 11
(0.21%) are contributed by the GA heuristic.
Therefore, we may suggest that the SA heuristic
is the best choice if only one method is allowed
to solve this problem. Both its computational
capability and performance are the best among
three. Unfortunately the efficient points of GA
are dominated by those of the two heuristics and
almost play no role in the pooled data. Note here
that the performance of heuristics may be related
to the input data. However, in this case, a pooled
efficient frontier of the TS and SA will provide
better information to decision makers.

V1. CONCLUSIONS

In this paper, we stress the importance of
military investment and preset a new approach
to this problem. Ten military investment assets
are defined in order to form a mean-variance
model that takes the risk of investment into
account. Based on the GA, TS and SA, three
heuristic algorithms are developed to solve the
portfolio optimization problem efficiently. Each
method can produce an efficient frontier which
contains different solutions with better return
and risk values. They provide feasible choices
for a decision maker according to his/her
preference.

Although GA performs well in many fields,
the empirical results show that it may not be the
best method in allocating these military
investment assets. In general, an examination of
heuristic solutions is suggested by pooling all
efficient points to form an improved frontier.
Solutions of this frontier will be more attractive
to decision makers. Furthermore, our research
can provide a quantitative analysis which reveals
more information for the proposed problem. Its
potential of dealing with more complex
investment should not be neglected.

The future research will focus on more
realistic problems or more efficient algorithms
such as:

(a) Include more items in military investment
assets to disclose the true value of them.
With these data, the asset allocations will be
more accurate to decision makers.

(b) Take  surveillance  ability, = mobility,
replenishment ability and stability into
consideration gradually to measure more
practical MOE of weapon systems.
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(c) Apply other algorithms to the military
investment problems and compare their
results with ours. We are interested in one
particular method that can outperform the
others.
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Fig. 1 CCEF of mean-variance model for military investment assets.
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Fig. 2 CCEF of mean-variance model for S&P 100 data.
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Table 1. Sixteen annual return of investment

Item
Year A Ay Az Ay As As A; Asg Ag Ao
Y, 0.0782 | 0.0877 | 0.0718 | 0.0777 | 0.0257 | 0.0615 | 0.1475 | 0.0578 | 0.0090 | 0.5842
Y, | 0.1147 | 0.1482 | 0.0627 | 0.0875 | 0.0197 | 0.2506 | 0.3415 | 0.0828 | 0.0187 | 0.8873
Y; |0.2479 | 0.2310 | 0.1276 | 0.1218 | 0.0743 | 0.3308 | 0.1812 | 0.1671 | 0.0488 | 0.8622
Y, |0.5491 | 0.0593 | 0.1707 | 0.1480 | 0.1909 | 0.2108 | 0.1056 | 0.2495 | 0.1496 | 1.0000
Ys 1.0000 | 0.0869 | 0.2468 | 0.1857 | 0.9521 | 1.0000 | 0.2577 | 0.4803 | 0.2642 | 0.7846
Ys | 0.3330 | 0.0931 | 0.6390 | 0.2945 | 1.0000 | 0.2641 | 0.3989 | 0.6554 | 0.9263 | 0.3319
Y; |0.0951 | 0.1026 | 0.3896 | 0.4425 | 0.0236 | 0.4987 | 0.3679 | 0.4343 | 0.6311 | 0.3019
Ys | 0.1045 | 0.0552 | 0.4273 | 0.3726 | 0.0225 | 0.0736 | 0.1740 | 0.6210 | 0.8896 | 0.4804
Yo | 0.3871 | 0.2582 | 0.3726 | 0.3145 | 0.0899 | 0.1436 | 0.3834 | 0.8423 | 0.0119 | 0.4371
Yo | 0.0408 | 0.2218 | 0.8319 | 0.5065 | 0.0980 | 0.0587 | 0.6029 | 1.0000 | 0.0949 | 0.4549
Yy | 0.0630 | 0.0849 | 0.4872 | 0.5493 | 0.0152 | 0.0981 | 0.4235 | 0.4792 | 0.0516 | 0.5660
Y, |0.1223 | 0.3468 | 0.4304 | 0.6141 | 0.0096 | 0.0979 | 0.5710 | 0.6448 | 0.0126 | 0.4979
Y;; | 02370 | 0.1522 | 0.4466 | 0.3943 | 0.0478 | 0.2520 | 0.5893 | 0.7935 | 0.0184 | 0.4524
Y4 | 0.0967 | 0.2047 | 1.0000 | 0.7415 | 0.0659 | 0.0374 | 1.0000 | 0.4302 | 0.0725 | 0.4997
Y;s | 0.0882 | 0.6468 | 0.6126 | 0.8162 | 0.0096 | 0.0907 | 0.5592 | 0.6871 | 1.0000 | 0.6599
Y | 0.1211 | 1.0000 | 0.5552 | 1.0000 | 0.0093 | 0.0734 | 0.5747 | 0.9519 | 0.0509 | 0.5676
Table 2. Computational time (s) of the heuristic algorithms for 10 military investment assets
Time lgorithm Genetic algorithm Tabu search Simulated annealing
second 47 42 40
Table 3. Contribution to the pooled efficient frontier in numerical results
Algorithms Number of points in the Number of points in the Contribution
initial efficient frontier pooled efficient frontier percentage
Genetic Algorithm 2925 11 0.21%
Tabu Search 3418 1881 35.94%
Simulated Annealing 3420 3342 63.85%
Total 5234
Table 4. Allocation of budget to 10 military investment assets (%) at different risk values
Asset i
Allocation
Risk of 1 2 3 4 5 6 7 8 9 10
Values "\ Budget
0.10 1.00 | 1.00 | 1.00 | 4576 | 1.00| 3.57| 327 | 244 | 1.00 | 39.97
0.13 1.57 | 1.00| 1.00 | 6570 | 1.00 | 2.66| 1.00| 838 | 1.00 | 16.69
0.16 262 | 1.00| 1.00 | 7596 | 1.00| 233 | 1.00| 946 | 1.00| 4.63
0.19 1.00 | 1.00 | 1.00 | 71.54 | 1.00 | 1.31 1.00 | 20.16 | 1.00 | 1.00
0.23 1.00 | 1.00| 1.00 | 32.50| 1.00| 1.00| 1.00| 59.50 | 1.00| 1.00
0.26 1.00 | 1.00 | 1.00 | 16.21 1.00 | 1.00 | 1.00 | 75.79 | 1.00 | 1.00
0.29 1.00 | 100| 1.00| 1.00| 1.00| 1.00| 1.00| 91.00| 1.00| 1.00
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