

Dissemination of Methicillin-resistant *Staphylococcus aureus* among Healthy Children in Northern Taiwan

Wen-Tsung Lo, Wei-Jen Lin, Min-Hua Tseng, Sheng-Ru Wang, and Chih-Chien Wang*

Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China

Background: We previously reported the incidence of community-associated methicillin-resistant *Staphylococcus aureus* (CA-MRSA) infections among children in Taiwan was increasing. This study examined the extent of MRSA colonization in the healthy pediatric population existed in parallel with this trend. **Method:** In this prospective observational study, nasal swabs were obtained from healthy children presenting for child healthcare visits or attending one of seven kindergartens during a 2-year period. A case-control study and molecular typing studies were performed. **Results:** Of 1195 children, 89 (7.4%) had nares cultures positive for MRSA. Risk factors for MRSA colonization included household contact with a high-risk individual (odds ratio [OR], 8.971; 95% confidence interval [CI], 2.968-27.117) and recent antibiotic use (OR, 5.997; 95% CI, 3.605-9.976). Staphylococcal cassette chromosome *mec* (SCC*mec*) typing showed most community MRSA strains were SCC*mec* types IV and type V_T. Pulsed-field gel electrophoresis revealed MRSA clones distinct from nosocomial MRSA isolates have disseminated in healthy children, and Panton-Valentine leukocidin genes were present in 15 of 89 MRSA isolates (16.9%). **Conclusions:** As colonization typically precedes infection, the characteristics of children with MRSA nasal carriage may be useful for distinguishing those who may be at risk of MRSA infection.

Key words: nasal colonization, methicillin-resistant Staphylococcus aureus, Taiwan

INTRODUCTION

The traditional notion of methicillin-resistant Staphylococcus aureus (MRSA) as a pathogen that is seemingly confined to the nosocomial arena has been recently challenged with the recognition of community-associated MRSA (CA-MRSA) in children and adults lacking traditional risk factors¹⁻⁴. Additionally, reports of pediatric deaths resulting from CA-MRSA infection further alerted medical professionals to face the seriousness of this emergence³. Due to the geographic diversity of the prevalence and genetic backgrounds of the colonizing MRSA strains, as well as probable transmission from any asymptomatically colonized individual, an understanding of the epidemiology of MRSA nasal carriage in the community would be helpful to estimate the potential for spread of CA-MRSA. Further, it would be crucial for primary care physicians to appropriately manage children

Received: September 21, 2009; Revised: October 26, 2009; Accepted: November 11, 2009

*Corresponding author: Chih-Chien Wang, Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Cheng-gong Road, Taipei 114, Taiwan, Republic of China. Tel: +886-2-87927025; Fax: +886-2-87927293; E-mail: ndmcccw@yahoo.com.tw.

with suspected CA-MRSA infections.

The purpose of our study was to determine the prevalence of and risk factors for MRSA colonization among healthy community children. In addition, we also characterized these colonizing MRSA strains through molecular analyses.

METHODS

Study Design, Population and Location

This prospective observational survey was conducted during a 2-year study period at Tri-Service General Hospital, a tertiary medical center in northern Taiwan. The study proposal was reviewed and approved by the National Defense Medical Center Institutional Review Board. All children 14 years of age or younger with no acute medical problem, who either presented for a child healthcare visit or attended one of seven kindergartens in different districts in Taipei, were considered eligible to participate. Participants and their guardians were approached by the same investigative team throughout the study period. After written consent was obtained, study personnel verbally administered a questionnaire to the guardian regarding the participant's age, gender, medical history, and risk factors for MRSA colonization including hospitalization or antibiotic use in the previous 12 months, underlying chronic disorder (e.g., atopic dermatitis), household contact with an individual with an identified risk factor (e.g., long-term care facility residence, intravenous drug abuse, recurrent skin infections, history of MRSA infection or colonization) or a worker in a health care environment in the 12 months preceding the culture.¹

Microbiological Analysis

Nasal samples were obtained with a sterile cotton swab, placed in a transport medium (Venturi Transystem, Copan Diagnostics, Corona, CA, USA), and then transported to and processed in our microbiology laboratory within 4 hours. S. aureus isolates were identified according to the methods previously described^{6,7} and further screened for methicillin resistance following the Clinical Laboratory Standards Institute (CLSI; formerly known as the NCCLS) guidelines⁸. All MRSA isolates were frozen at -70°C for additional testing of organism characteristics. These tests included antimicrobial susceptibility testing using the disk-diffusion method⁹, double-disk diffusion assay (D test) for detecting in vitro macrolidelincosamide-streptogramin (MLS) inducible phenotype¹⁰, singleplex polymerase chain reaction (PCR) for detection of genes encoding Panton-Valentine leukocidin (PVL) toxin¹¹ and MLS resistance^{12,13}, staphylococcal cassette chromosome mec (SCCmec) typing by PCR14,15, and strain typing by pulsed-field gel electrophoresis (PFGE) using SmaI enzyme (New England Biolabs, Beverly, Mass, USA)¹⁶. To identify PFGE polymorphisms, band patterns were analyzed using Molecular Analyst Fingerprinting, Fingerprinting Plus, and Fingerprinting DST software (Bio-Rad Laboratories, Richmond, CA, USA). The grouping method was performed to deduce a dendrogram from the matrix by the unweighted pair group method with the arithmetic averages clustering technique after calculating the similarities using the Pearson correlation coefficient between each pair of organisms; the PFGE patterns were distinguished at the 70% similarity level.17

Case-control Study

A case-control study was performed to identify the risk factors for colonization with MRSA. Cases were defined as children with results of nasal cultures revealing colonization with MRSA. Controls were defined as children who were not colonized with MRSA (i.e., they were either colonized with methicillin-susceptible *S. aureus* or had negative culture results).

Statistical Analysis

Data were entered into Microsoft Access XP software and exported to the SPSS statistical software, version 10.0 (SPSS), which was used for data analyses. Identification of potential risk factors for MRSA colonization was initially determined by univariate analyses. Variables statistically significantly associated with MRSA colonization in the univariate analysis were entered into a multivariate unconditional logistic regression model controlling for age and sex. All analyses were 2-tailed, and a *P* value of < .05 was considered statistically significant.

RESULTS

Population Characteristics and Prevalence of MRSA Nasal Colonization

A total of 1195 children with ages ranging from 1 month to 12 years participated in the study: 552 were from child healthcare visits and 643 were from seven kindergartens. The median age of the children was 3.6 years, and 600 (50.2%) were male. Of the 1195 nares cultures, 89 (7.4%) were positive for MRSA, 211 (17.7%) were positive for MSSA, and 895 (74.9%) were culture negative. The percentage of MRSA isolates among all *S. aureus* isolates was 29.7%. In addition, MRSA colonization rates among children attending the seven different kindergartens were similar and the children were not linked on review of epidemiologic data derived from the medical records.

Risk Factors for MRSA Nasal Colonization

In the univariate analyses, there were no differences in MRSA colonization based on age, gender, presence of atopic dermatitis, or hospitalization during the previous year (Table 1). Risk factors for colonization with MRSA in the univariate analysis are also shown in Table 1.

In multivariate analysis, factors independently associated with an increased risk of MRSA colonization included household contact with an individual with an identified risk factor within the past 12 months (odds ratio [OR], 8.971; 95% confidence interval [CI], 2.968-27.117), and antibiotic use within the 12 months preceding sampling (OR, 5.997; 95% CI, 3.605-9.976). Children with a family member who worked in a hospital were at significant risk of MRSA colonization, according to the univariate analysis (P = 0.003); however, this factor did not remain significant on multivariate analysis.

Antibiotic Susceptibility Profiles of MRSA Colonization Isolates

Table 1 Characteristics of enrolled children and results of univariable analysis of risk factors for nasal colonization with MRSA

	No. (%) of children			
	With MRSA nasal carriage (n = 89)	Without MRSA nasal carriage (n = 1106)	OR (95% CI)	P value*
<1	21 (24)	262 (24)	1.0	
1-5	27 (30)	459 (41)	0.734 (0.407-1.324)	.303
>5	41 (46)	385 (35)	1.329 (0.767-2.300)	.309
Sex				
Female	47 (53)	548 (49.5)	1.0	
Male	42 (47)	558 (50.5)	0.878 (0.569-1.353)	.554
Antibiotic use in past 12 months				
Yes	32 (36)	81 (7)	7.104 (4.359-11.579)	<.001
No	57 (64)	1025 (93)		
Diagnosis of atopic dermatitis				
Yes	1(1)	29 (3)	0.422 (0.057-3.135)	.385
No	88 (99)	1077 (97)		
Hospitalization in past 12 months				
Yes	18 (20)	203 (18)	1.128 (0.658-1.934)	.662
No	71 (80)	903 (82)		
Household contact with hospital staff**				
Yes	6 (7)	21 (2)	3.735 (1.467-9.507)	.003
No	83 (93)	1085 (98)		
Household contact with an individual with a	n			
identified risk factor***				
Yes	8 (9)	8 (1)	13.556 (4.959-37.056)	<.001
No	81 (91)	1098 (99)		

^{*}P value by Mantel-Haenszel test.

Antimicrobial susceptibility testing of the 89 colonizing MRSA isolates showed uniform susceptibility to vancomycin, teicoplanin, and fusidic acid. Erythromycin resistance was present among 81 (91%) of 89 isolates and the results of PCR for macrolide resistance gene detection demonstrated all 81 isolates had an *erm* determinant. Overall, *ermB* was found in 93.8% (76/81) of these isolates and *ermA* in 6.2% (5/81). None had *ermC*, *msrA*, or more than one *erm* determinant. In addition, clindamycin resistance was present among 77 of 89 isolates (87% total, 85% constitutive and 2% inducible). Inducible clindamycin resistance (positive D test) was detected in two (50%) of the four clindamycin-susceptible but erythromycin-resistant isolates.

Molecular Characterization of MRSA Community Colonizing Isolates

All 89 community colonizing MRSA isolates had the mecA gene. SCCmec type IV (77/89; 86.5%) was the most common type among the community colonizing isolates; one isolate each had SCCmec type II, type III, or type IIIA. The remaining nine (10.1%) isolates carried SCCmec type V_T. Additionally, PCR amplification of the PVL toxin genes was detected in only 15 (16.9%) of the 89 colonizing MRSA isolates. Most of the PVLpositive MRSA colonizing isolates carried SCCmec V_T (9/15; 60%), whereas a high prevalence of SC-Cmec IV was found among PVL-negative MRSA colonizing isolates (71/74; 95.9%). With regard to the antibiotic susceptibility profiles, both PVL-positive and PVL-negative MRSA colonizing isolates had consistent antibiograms.

All MRSA isolates including four predominant nosocomial MRSA strains

from our institution matched by area and study period were further analyzed for epidemiologic relatedness using PFGE. A wide diversity of pulsotypes was found among the 93 MRSA isolates subjected to PFGE typing, as shown in Fig. 1. Four clusters that included 61 (65.6%) isolates were distinguished at the 70% similarity level, and their banding patterns demonstrated they differed from one another by fewer than 4 bands. Except for one isolate from a kindergarten child (corresponding to isolate C82) in MRSA cluster IV, all the remaining 88 (98.9%) colonizing MRSA isolates tested differed from those of the four predominant nosocomial MRSA isolates from our institution.

^{**}Lived with a health care worker within 1 year.

^{***}Lived with a person with chronic disease (diabetes mellitus, asthma, chronic obstructive pulmonary disease, dialysis, vascular disease, organ transplant) or a person who was admitted to a hospital within 1 year.

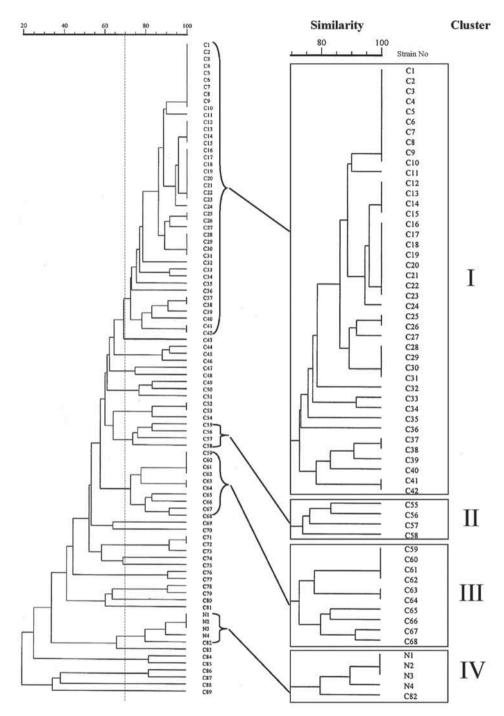


Fig. 1 Dendrogram of pulsed-field gel electrophoresis banding patterns of 93 methicillin-resistant *Staphylococcus aureus* (MRSA) isolates including 89 community colonizing MRSA isolates and four predominant nosocomial MRSA isolates from our institution. Banding patterns were digitalized and analyzed using Molecular Analyst Fingerprinting, Fingerprinting Plus, and Fingerprinting DST software (Bio-Rad Laboratories, Richmond, Calif). The grouping method was performed to deduce a dendrogram from the matrix by the unweighted pair group method with arithmetic averages clustering technique after calculation of similarities using the Pearson correlation coefficient between each pair of organisms. The scale indicates the level of pattern similarity. Similarities greater than 70% represent the clonal spread of strains. The first letter of each isolate designation indicates the type of the isolate. Abbreviations: C, colonizing MRSA isolate; N, nosocomial MRSA isolate.

DISCUSSION

The MRSA prevalence in our community pediatric population in northern Taiwan was 7.4%, a relatively high rate compared to those (0.2 to 9.2%) reported in previous surveys of healthy children and outpatients 1,7,18-20. However, without additional data points, it is impossible to determine whether this finding represents the trend in the prevalence of colonization or simply short-term modulation due to sampling variability or fluctuations in unmeasured variables, such as temperature or humidity. Further, PFGE revealed three clusters of MRSA isolates were mainly from colonized children in the community and no predominant nosocomial MRSA strain from our institution was in these clusters, indicating the occurrence of transmission of MRSA was mainly outside the health care setting. Therefore, our study clearly showed MRSA isolates are now endemic in the community, and a reservoir of asymptomatic nasal colonization exists among healthy children in northern Taiwan.

In the present study, we found 87% of MRSA nasal isolates expressed either constitutive or inducible resistance to clindamycin; moreover, half of the clindamycin-susceptible but erythromycin-resistant colonizing MRSA isolates actually possessed inducible resistance. From the management standpoint, clindamycin is currently unsuitable for treating children with putative CA-MRSA infections in Taiwan. Further, *ermB* was more widespread than *ermA* among our colonizing MRSA isolates, a finding that differs from the reports of Almer et al. and other investigators the reports of Almer et al. and other investigators who concluded *ermA* is the dominant *erm* gene among their MRSA isolates, and the prevalence of *ermB* in staphylococci was less than 2%.

In the multivariate analysis, children living with an individual who had an identified risk factor and those who were treated with antimicrobial agents in the prior year were more likely to have MRSA recovered. The finding that recent household contact with a high-risk individual was one of the major factors associated with childhood MRSA colonization in the community concurs with the results of the meta-analysis conducted by Salgado et al. but is contrary to other reports hot showing any predictable risk factor associated with MRSA carriage. In addition, the association between recent antibiotic use and MRSA nasal colonization may be explained, in part, by the previously reported excessive use of antibiotics in Taiwan presence of strong selective pressure from antimicrobial use in the community.

Highly virulent CA-MRSA strains carrying PVL genes exist and PVL genes seem to be a stable genetic

marker for CA-MRSA²⁷, which explain the frequency of primary skin infections and, occasionally, necrotizing pneumonia associated with these strains¹¹. Nonetheless, until recently, few studies documented the prevalence of the PVL locus among MRSA colonizing asymptomatic individuals in non-outbreak settings. The results of our study show only 16.9% of nasal carriage MRSA isolates in the healthy pediatric population carried PVL genes, which is within the range (0%-58%) from colonization isolates previously reported elsewhere^{7,19,28-32}.

In conclusion, we found MRSA colonization is already prevalent among healthy children in northern Taiwan. The emergence of the multiply resistant MRSA as a common cause of community-associated staphylococcal infections ^{33,34} and nares colonization has important implications for the practical treatment of MRSA infections, as well as for the judicious use of antimicrobial agents to reduce antibiotic selective pressure. Comprehensive large-scale prospective surveillance is warranted to further clarify the molecular epidemiology of community MRSA colonization, to improve understanding of the pathogenesis of CA-MRSA infection, and finally, to guide the development of more effective prevention strategies.

ACKNOWLEDGMENTS

We are grateful to L. K. Siu at the National Health Research Institute (Taipei, Taiwan) for laboratory support. We thank Shu-Ying Tsai for providing assistance with and maintaining the MRSA database. This study was supported by the National Science Council (grant NSC94-2314-B-016-029, and NSC95-2314-B-016-052) and Tri-Service General Hospital (grant TSGH-C92-77, TSGH-C94-12, TSGH-C95-11-S01, TSGH-C96-12-S01, TSGH-C97-21, TSGH-C98-19, and TSGH-C98-20).

REFERENCES

- Hussain FM, Boyle-Vavra S, Daum RS. Communityacquired methicillin-resistant *Staphylococcus aureus* colonization in healthy children attending an outpatient pediatric clinic. Pediatr Infect Dis J 2001;20:763-767.
- 2. Moreno F, Crisp C, Jorgensen JH, Patterson JE. Methicillin-resistant *Staphylococcus aureus* as a community organism. Clin Infect Dis 1995;21:1308-1312.
- Gorak EJ, Yamada SM, Brown JD. Community-acquired methicillin-resistant *Staphylococcus aureus* in hospitalized adults and children without known risk factors. Clin Infect Dis 1999;29:797-800.

- Salmenlinna S, Lyytikäinen O, Vuopio-Varkila J. Community-acquired methicillin-resistant *Staphylo-coccus aureus*, Finland. Emerg Infect Dis 2002;8:602-607.
- Centers for Disease Control and Prevention. Four pediatric deaths from community-acquired methicillinresistant *Staphylococcus aureus*: Minnesota and North Dakota, 1997-1999. JAMA 1999;282:1123-1125.
- Nakamura MM, Rohling KL, Shashaty M, Lu H, Tang YW, Edwards KM. Prevalence of methicillinresistant *Staphylococcus aureus* nasal carriage in the community pediatric population. Pediatr Infect Dis J 2002:21:917-922.
- 7. Creech II CB, Kernodle DS, Alsentzer A, Wilson C, Edwards KM. Increasing rate of nasal carriage of methicillin-resistant *Staphylococcus aureus* in healthy children. Pediatr Infect Dis J 2005;24:617-621.
- Clinical and Laboratory Standards Institute. Methods for disk diffusion: approved standard M02-A10 and M07-A8: performance standards for antimicrobial disk susceptibility tests. Wayne, PA: The Committee; 2009.
- Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: nineteenth informational supplement M100-S19.
 Wayne, PA: The Committee; 2009.
- 10. Weisblum B, Demohn V. Erythromycin-inducible resistance in *Staphylococcus aureus*: survey of antibiotic classes involved. J Bacteriol 1969:98:447-452.
- 11. Lina G, Piémont Y, Godail-Gamot F, Bes M, Peter MO, Gauduchon V, Vandenesch F, Etienne J. Involvement of Panton-Valentine leukocidin-producing *Staphylococcus aureus* in primary skin infections and pneumonia. Clin Infect Dis 1999;29:1128-1132.
- Almer LS, Shortridge VD, Nilius AM, Beyer JM, Soni NB, Bui MH, Stone GG, Flamm RK. Antimicrobial susceptibility and molecular characterization of community-acquired methicillin-resistant Staphylococcus aureus. Diagn Microbiol Infect Dis 2002;43:225-232.
- 13. Shortridge VD, Flamm RK, Ramer N, Beyer J, Tanaka SK. Novel mechanism of macrolide resistance in *Streptococcus pneumoniae*. Diagn Microbiol Infect Dis 1996;26:73-78.
- 14. Oliveira DC, de Lencastre H. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant *Staphylococcus aureus*. Antimicrob Agents Chemother 2002; 46:2155-2161.
- 15. Boyle-Vavra S, Ereshefsky B, Wang CC, Daum RS.

- Successful multiresistant community-associated methicillin-resistant Staphylococcus aureus lineage from Taipei, Taiwan, that carries either the novel staphylococcal chromosome cassette mec (SCCmec) type V_T or SCCmec type IV. J Clin Microbiol 2005;43:4719-4730.
- 16. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B. Interpreting chromosomal DNA restriction patterns produced by pulse-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 1995;33:2233-2239.
- 17. Lu PL, Chin LC, Peng CF, Chiang YH, Chen TP, Ma L, Siu LK. Risk factors and molecular analysis of community methicillin-resistant *Staphylococcus aureus* carriage. J Clin Microbiol 2005;43:132-139.
- 18. Suggs AH, Maranan MC, Boyle-Vavra S, Daum RS. Methicillin-resistant and borderline methicillin-resistant asymptomatic *Staphylococcus aureus* colonization in children without identifiable risk factors. Pediatr Infect Dis J 1999;18:410-414.
- 19. Hisata K, Kuwahara-Arai K, Yamanoto M, Ito T, Nakatomi Y, Cui L, Baba T, Terasawa M, Sotozono C, Kinoshita S, Yamashiro Y, Hiramatsu K. Dissemination of methicillin-resistant staphylococci among healthy Japanese children. J Clin Microbiol 2005;43:3364-3372.
- 20. Huang YC, Hwang KP, Chen CJ, Lin TY. Prevalence of methicillin-resistant *Staphylococcus aureus* nasal colonization among Taiwanese children in 2005 and 2006. J Clin Microbiol 2007;45:3992-3995.
- 21. Marshall SA, Wilke WW, Pfaller MA, Jones RN. *Staphylococcus aureus* and coagulase-negative staphylococci from blood stream infections: frequency of occurrence, antimicrobial susceptibility, and molecular (*mecA*) characterization of oxacillin resistance in the SCOPE program. Diagn Microbiol Infect Dis 1998;30:205-214.
- 22. Lina G, Quaglia A, Reverdy ME, Leclercq R, Vandenesch F, Etienne J. Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among staphylococci. Antimicrob Agents Chemother 1999;43:1062-1066.
- 23. Salgado CD, Farr BM, Calfee DP. Community-acquired methicillin-resistant *Staphylococcus aureus*: a meta-analysis of prevalence and risk factors. Clin Infect Dis 2003;36:131-139.
- 24. Cheng Immergluck L, Kanungo S, Schwartz A, McIntyre A, Schreckenberger PC, Diaz PS. Prevalence of Streptococcus pneumoniae and Staphylococcus aureus nasopharyngeal colonization in healthy children

- in the United States. Epidermiol Infect 2004;132:159-166
- 25. Liu YC, Huang WK, Huang TS, Kunin CM. Extent of antibiotic use in Taiwan shown by antimicrobial activity in urine. Lancet 1999;354:1360.
- 26. Chang SC, Shiu MN, Chen TJ. Antibiotic usage in primary care units in Taiwan after the institution of national health insurance. Diagn Microbiol Infect Dis 2001;40:137-143.
- 27. Vandenesch F, Naimi T, Enright MC, Lina G, Nimmo GR, Heffernan H, Liassine N, Bes M, Greenland T, Reverdy ME, Etienne J. Community-acquired methicillin-resistant *Staphylococcus aureus* carrying Panton-Valentine leukocidin genes: worldwide emergence. Emerg Infect Dis 2003;9:978-984.
- Ellis MW, Hospenthal DR, Dooley DP, Gray PJ, Murray CK. Natural history of community-acquired methicillin-resistant *Staphylococcus aureus* colonization and infection in soldiers. Clin Infect Dis 2004;39:971-979.
- 29. Kuehnert MJ, Kruszon-Moran D, Hill HA, McQuillan G, McAllister SK, Fosheim G, McDougal LK, Chaitram J, Jensen B, Fridkin SK, Killgore G, Tenover FC. Prevalence of *Staphylococcus aureus* nasal colonization in the United States, 2001-2002. J Infect Dis 2006;193:172-179.

- Gorwitz RJ, Kruszon-Moran D, McAllister SK, McQuillan G, McDougal LK, Fosheim GE, Jensen BJ, Killgore G, Tenover FC, Kuehnert MJ. Changes in prevalence of nasal colonization with *Staphylococcus aureus* in the United States, 2001-2004. J Infect Dis 2008;197:1226-1234.
- 31. Graham PL 3rd, Lin SX, Larson EL. A U.S. population-based survey of *Staphylococcus aureus* colonization. Ann Intern Med 2006;144:318-325.
- 32. Lo WT, Lin WJ, Tseng MH, Wang SR, Chu ML, Wang CC. Risk factors and molecular analysis of Panton-Valentine leukocidin-positive methicillin-resistant *Staphylococcus aureus* colonization in healthy children. Pediatr Infect Dis J 2008;27:713-718.
- 33. Wang CC, Lo WT, Chu ML, Siu LK. Epidemiological typing of community-acquired methicillin-resistant *Staphylococcus aureus* isolates from children in Taiwan. Clin Infect Dis 2004;39:481-487.
- 34. Lo WT, Lin WJ, Tseng MH, Wang SR, Chu ML, Wang CC. Community-acquired methicillin-resistant *Staphylococcus aureus* in children, Taiwan. Emerg Infect Dis 2006;12:1267-1270.