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ABSTRACT

Choosing suitable buffer setups for production lines to augment throughputs is a pragmatic issue.
Previous studies mainly centered on the buffer allocation problem with a single product in static
machine layouts. When production lines have frequent product changes and setup adjustments, the
buffer allocations have to be altered accordingly to meet the required production rate. Hence, it is
more crucial to create a balance between effectiveness (by using the mathematical method) and
efficiency (by using the heuristic method). Artificial intelligence (Al) is widely applied to
accommodate many problems with appropriate solutions. In this study, an Al based method is
proposed to investigate the buffer allocation of unbalanced-unreliable flow type production lines.
Genetic Algorithm (GA) combined with simulation method is used in attempting to quickly figure out
the best solutions. In turn, these optimal solutions are fed into an Artificial Neural Network (ANN) for
predicting buffer layouts. Through the well-trained ANN, the preferable buffer allocation can be
predicted promptly.

Keywords: genetic algorithm, simulation, artificial neural network, unbalance production line,
unreliable production line
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I. INTRODUCTION

A production line (transfer line) is a series
of machines or workstations that are connected
one-by-one and which perform sequential tasks.
An ideal production line is able to produce
maximum yield with great flexibility with
frequent product change and unexpected order
change. Two main concerns arise when
production lines are constituted: the process time
balance and the reliability of work centers.
Basically, it is very rare to perfectly balance a
production line in terms of process time and its

variances. In addition, every production
system is subject to stoppage, machine
breakdown, unscheduled maintenance, job

interruption, machine setup, and many other
factors. To reduce the impact of stoppage and
process time variation, manufacturers usually
put buffers between workstation to maintain the
integrity of production.

For smooth production, the intermachine
buffers should maintain certain amounts of
work-in-process (WIP) to neutralize the effect of
machine stoppage. However, most of the shops
contain limited space and it is not economical to
keep too much WIP. Thus, properly arranging
the intermachine buffer becomes a very
important issue. Substantial research shows
that carefully arranging buffers can achieve
better production levels. Buzacott [1] uses
Markov chain models to solve this problem.
El-Rayah [2] studies the behavior of production

lines with different interstage buffer assignments.

Likewise, the study proves that assigning larger
interstage buffers capacities to the middle
workstation will be more efficient while
unbalancing the production line in terms of
buffer capacities. Choong and Gershwin [3]
develop a decomposition method to reduce the
state space in this problem and prove it to be
accurate. Hillier and So [4] study the effects of
machine breakdowns and interstage buffer
capacity on performance of the production line.
Kouikoglou and Phillis [5] present a
simulation-based model for minimizing buffer
size while meeting demand constraints for finite
buffers and wunreliable production line.
Gershwin and Schor [6] propose a two-ply
algorithm; first, to maximize the production rate,
and second, to find out the minimum buffer

allocation for  the production  rate.
Papadopoulos and Vidalis [7] develop a heuristic
method for wunreliable and unbalanced
production lines to find reasonable good initial
buffer allocation. Sorensen and Janssens [8]
form an unreliable machine, with finite buffer
allocation  problem as the non-linear
programming problem and with cost and buffer
usage minimization as the objectives.
Macgregor and Cruz [9] develop closed-form
expressions for production line with series,
merge, and splitting topologies. Nahas et al.
[10] use degraded ceiling search techniques to
find the maximum throughput for an
unbalanced-unreliable production line.

Research also applies soft
computing-related methods to solve this problem.
Bulgak et al. [11] and Wellman and Gemmill [12]
use the GA method to study the buffer allocation
in close-loop production line. Lutz et al. [13]
combine the Tabu search and simulation
methods to find out the maximum output for a
given storage level. Spinellis  and
Papadopoulos [14] use simulated annealing and
decomposition method to maximize the average
throughput for buffer allocation problem in a
reliable production line. Dolgui et al. [15]
propose a GA and Markov-based model for
finite buffer/unreliable production line buffer
allocation problems. Shi and Men [16] present
a hybrid method by combining Tabu search and
nested partition for large production problem.
Bulgak [17] extends previous studies, develops a
GA-ANN-based metamodeling approach for
split-and-merge asynchronous assembly systems
(AAS) with fixed cycle time. Altiparmak et al.
[18] further extend Bulgak’s research into single
close-loop AAS with three different machine
failure occurrences: same failure rate, zero and
non-zero failure rate, and low- and high failure
rate, respectively. Lee and Wang [19] apply the
GA-based method in a just-in-time environment
with unreliable machines and investigate the
minimum kanban required.

Inasmuch as a production line needs to
frequently adapt to the changing environment, it
is essential to decide a suitable buffer layout at a
desirable production rate in a very short period
of time. In this research, the GA-ANN-based
method developed by Bulgak et a/ [11] has been
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modified to extend Lee and Wang’s [19] studies.
The studied problem is a general finite buffer
production line with total buffer limitation, in
which the machine breakdown and production
rate varies according to products and a suitable
buffer allocation has to be decided quickly.

II. PROBLEM STATEMENT

The system has N unreliable workstations
and N-1 interstage buffers. This is shown as
Figure 1. The interstage buffer is utilized to
neutralize the possible stoppage and the
capacities (quantity of each buffer) need to be
adjusted according to product assignment.

Some of the characters for this production line

are listed as follows:

1. All items enter at the first workstation and
leave at the last workstation.

2. All machines are subject to breakdown.

3. Each machine has product-dependent
production and breakdown rates.

4.  The total buffer space is limited.

There is an infinite source for the

production system, and an infinite storage

capacity at the end. In other words, the
first machine never starves, and the last
machine can never be blocked.

6. Blockage (starvation) exists when the
machine in the upstream (downstream) is
ready but there is no kanban to authorize
production activity. This situation may
occur when the downstream (upstream)
machine breaks down and the buffers are
full (empty). Breakdown cannot occur at a
starved or blocked workstation.

7. The process time, failure rates, and
recovery rates of workstations and their
endurance follow statistical distributions.

W

Intuitively, the throughput will reach the
maximum if the interstage buffers are infinite.

M1 B1 M2 B2

Machine1 Machine 2 [\ Bufferg—  ®» ~~~~~~°~ Machine n— Machine n
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However, it is not economical.  The
objective of this research is to find out the
minimum  buffer sizes associated with
workstation that maximize throughput with
respect to total buffer space constraints for each
product. For each product, the problem can be
formulated as a two-phase optimization problem
as follows:

Phase 1
Maximize THR
Subject to:

”i B, <K
i=1
B <k,

(production rate limitation for machine i)
(breakdown rate for machine i)

Where:
THR is the throughput of each
product
B; is the buffer size between machine
iand it/

K is the total buffer space
k; is the maximum buffer allowed for
B;

Phase 2
n—1
Minimize Z B, (total buffer used)
i=l1
Subject to:
(System throughput unchanged from phase 1)

It is difficult to develop a heuristic or
analytical  solution  for  this = NP-hard
combinatorial optimization problem (Garey and
Johnson [20]). In addition, flexible adaption to
product changes and quick adjustment of the
buffer sizes to achieve maximum throughput
make the problem even more difficult.

Bn-2 Mn-1 Bn-1 Mn

Fig. 1. The topology of the production system.
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1. METHODOLOGY

Inspired by Bulgak’s research [11, 17], a

soft computing-based two-stage algorithm is

proposed to achieve the goal of this research.

The two-stage algorithm is described as follows:

Table 1. Research methodology

Stage Step
1. Searching for buffer allocation for each 1. Randomly generate populations for each
product production line.

2. Build up a simulation model for each buffer
layout; simulate the production rate.

3. Apply GA operations for new buffer
layout.

4. Repeat steps 2 to 3 until optimal or near
optimal buffer layout have been found.

5. Repeat steps 1 to 4 for all products.

2. Build an ANN to predict buffer allocation | 6. Build up an ANN by using the results from

step 5.

7. Train the ANN.

8. Validate the ANN.

The flowchart of this algorithm is depicted
in Figure 2. The feature of each stage is
described in Sections 3-1 and 3-2; a numerical
example with detail is illustrated in Sections 4-1

For all possible products,
enter production line parameters

Step 1
Generate buffer
for each production line

I

Step 2
Build up a simulation model for each population;
simulate the production rate for each population

!

Step 3
Apply GA operations to
generate new buffer layout

Stage 1

Combine GA and Simulation
to find the buffer layout with
preferred production rate

no no

Step 4
Reach the terminal conditions
of GA?

yes
Step 5
Finish all production lines?

yes
Step 6
Build up an ANN

Step 7
Train the ANN until terminal conditions

Step 8
Validate the trained ANN

Fig. 2. Flowchart of the Buffer Allocation Searching
algorithm.

Stage 2

Build an ANN capable of
predicting buffer allocation
for different products

3.1 Stage 1: Searching for buffer
allocation for each product

The state space of the aforementioned
phase 1 optimization problem has NS number of
states; and

_ (K+N-=-2)!
(K-N+D!2N-1)!

when non-zero individual buffer is assumed.
This research proposes a non-mathematical
approach  other than the conventional
decomposition method by combining the
advantages of GA and simulation method. The
simulation models serves as the fitness function
of GA and an improved algorithm is used to
expedite the search processes of GA while
keeping the buffer at a minimum. The details
can be described as follows:

Step 1: For each product, where the production
rate and breakdown rate are assigned,
randomly generate a group of buffer
layouts where the total summation of
buffer should not exceed the total buffer
limitation.

Step 2: Build up a simulation model to simulate
the throughput for each buffer layout.

Step 3: Use the GA operators to generate new
offspring (buffer layouts) with better
throughput.
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Step 3.1: Use binary code to represent

the size of buftfer.

Step 3.2: Use elitist strategy mentioned
by Bean [21] and roulette wheel
selection as the reproduction
operator.

Step 3.3: Use two-point crossover to
generate offspring.

Step 3.4: Apply buffer adjustment while
the result from crossover
exceeds total buffer limitation.

Step 3.5: Use a suitable mutation rate as
Bean [21] recommends.

Step 4: Repeat steps 2 and 3 until terminating
condition is reached.

Step 5: Repeat stepsl through 4 for all possible
products.

3.2 Stage 2: Build an ANN to predict
buffer allocation

ANN simulates human information passing
behavior with artificial neurons interconnecting
with weights. By adjusting the associated
weights, ANN can transform a set of inputs into
a set of desired outputs. The method is widely
adopted into many applications and provides
satisfactory results. In this research, an ANN is
trained and used to predict the desired buffer
layout. The steps are as followed.

Step 6: Build up an ANN where the inputs are:
production rate, and breakdown rate; the
outputs are buffer allocation.

Step 7: Train the ANN with partial results from
Step 5.

Step 8: Validate the ANN with the remaining
results from Step 5.

IV. NUMERICAL EXAMPLE
4.1 Numerical example 1

In this example, the result from
GA-simulation based method is compared to the
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results from benchmark researches. The
benchmark researches chosen here are: Ho et al.
[22] which was among the earliest to introduce
perturbation analysis in transfer line, and
Gershwin and Schor [6] which used primal and
dual method to consider maximizing production
rate and minimizing buffer size simultaneously.
A five-machine, four-buffer, unreliable production
line is considered. = The parameters of the
production line are listed in Table 2.

The  GA-simulation based method
described in section 3-1 is used. The details of
each step are listed as followed.

Step 1: Randomly generate 30 sets of buffer
layout as the initial population; the
individual buffer limitation is set to be 15.

Step 2: Use simulation software (Flexsim 4.3) to
model 30 production lines according to the
buffer layout generated in Stepl; simulate
each production line for 5000 minutes
which require less than 2 minutes in
computer time; obtain the throughput for
all production lines.

Step 3: The offspring of buffer layout are
generated according GA operations, and
the throughputs obtained in Step 2 are the
fitness of production lines.

Step 3.1: Coding: Use binary coding for

each buffer layout. Since the
individual buffer limitation is 15,
by using binary coding schema,
the length of each buffer is 4, and
the chromosome length of the
four-buffer system is 16. Figure
3 illustrated the coding schema
for a {7, 10, 10, 4} buffer
allocation.

Step 3.2: Selection: Use roulette wheel
and elitist strategy for mating
selection. The elitist percent is
set to be 20%, in other word, the
production line with top 20% of
fitness will enter the mating pool
automatically

Table 2. Parameters of the five-machine benchmark problem

Machine parameter
Machine 1 Machine 2 Machine 3 Machine 4 Machine 5
MTBF 20 167 22 22 26
MTTR 11 19 12 7 7
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Buffer 1
Buffer size 7
Binary code 0111

Buffer 2 Buffer 3 Buffer 4
10 10 4
1010 1010 0100

Fig. 3. Illustration of a 6-8-14-10-2 buffer coding.

Parent 1

Parent 2

Offspring 1
Offspring 2

Randomly select crossover point, for example 2 and 3

916 7

Fig. 4. Illustration of two-point crossover operation.

Step 3.3: Crossover: Use two-point
crossover method with 0.6
crossover rate. The two-point
crossover method is illustrated
in Figure 4.
Step 3.4: Buffer adjustment: Since the
examined problem has no total
buffer limitation, there is no
need for buffer adjustment.
Step 3.5: Mutation: Use 0.033 mutation
rate.
Step 4: Repeat Steps 2 and 3 until terminating
condition is reached. The termination
conditions are as followed.
B Minimum generation= 15, and
maximum generation= 150

B Best fitness sought unchanged for 5
generations and the difference
between the best fitness and the
average of fitness is less than 0.5%

B Best fitness sought unchanged for 10

cycles

Since the selected chromosome with best

fitness could be draw from elitist group

for generations, the later two conditions
are built to allow enough mixture for the
crossover operation and prevent early
stop. The flowchart of terminating
conditions is depicted in Figure 5.

Apply GA operators
as Step 3

Reach the minimum
generations?
(Min=15)

no

yes Reach the terminating
generations?
(Max=150)

s the difference between the
aximum and average fitness

¢!
terminated

Fig. 5. The terminating conditions of GA..

Step 5: Repeat Steps 1 to 4 for all possible
product. There is only one product in
the benchmark research, thus the
calculation terminated here.

The optimal buffer allocations suggested
by Ho et al s and Gershwin and Schor’s
algorithms are {5, 11, 8, 7} and {7, 10, 10, 4},
respectively. The output for buffer layout {7, 10,
10, 4} is 3119 units. In contrast, the buffer
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layout {5, 11, 8, 7} is 3092 units. Applying the
GA-simulation algorithm from Step 1 through 4,
the optimal/near optimal solution is obtained in
generation 15 and the four buffers are {7, 10, 10,
4%.  The output of proposed algorithm is
coherent with Gershwin and Schor’s result and it
out performs the result from Ho et al. §.

4.2 Numerical example 2

A six-machine five-buffer production line
appeared in Bulgak’s research is chosen for the
buffer allocation ANN building. The other
characteristics of this production line are listed
as follows:

®  Product type: 100 products of different
production  rate combination are
considered.

®  Production rate: cycle times of machines
for different product are randomly
generated between two to four minutes.

®  Machine breakdown rate: 2% and 4% of
breakdown rate are randomly assigned to
each machine.

® Machine failure clear time: is set at 50
minutes.

® Buffer limitations: the total buffer
limitation is set at 40, and the individual
buffer limitation is set at 15.

The details for each step are listed as followed.

Stage 1: Searching for buffer allocation for
each product

Step 1: Generate 30 populations under the total
buffer limitation for each product.

Step 2: Build model for each population;
simulate for 5000 minutes; obtain the
throughput for all production lines.

Step 3: Generate offspring.

Step 3.1: Coding: Use binary coding for
the five-buffer system; the
length of chromosome is 20.

Step 3.2: Selection: Use roulette wheel
and elitist strategy for mating

selection. The elitist percent is
set to be 20%.

Step 3.3: Crossover: Use two-point
crossover method with 0.6

YLEEE FZ A% S-B AR ISIL
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crossover rate.

Step 3.4: Buffer adjustment: The
crossover  operation  could
generate buffer layouts exceed
the total buffer limitation, thus
buffer adjustment must be
performed.  For example, a
{15, 12, 4, 8, 10} buffer layout
after crossover has the total
buffer of 48, which exceeds the
buffer limitation of 40. The
modified buffer according to
weight is {12, 10, 3, 6, 8}.

Step 3.5: Mutation: Use 0.033 mutation
rate.

Step 4: Repeat Steps 2 and 3 until terminating
condition is reached. The termination
conditions are the same as the previous
example. Table 3 lists one of the
parameter set of the production lines, and
Figure 6 demonstrates its solution
procedures of GA. Notice that the
calculation procedures reach stopping
condition at the 18™ generation because
of the best outputs that remained
unchanged for five generations. In
addition, the average output of
generation 18 is 2461.2 and the
difference is within the predetermined
range (=0.5%) to the best output. Table
4 lists the best results of each generation.

Step 5: Repeat Steps 1 to 4 for all 100 products.

Stage 2: Fast predict buffer allocation and
result validation

Step 6: A three-layer back propagation network
is built for this example, and the Neural
Network Toolbox 4.0 in MATLAB 7.0 is
used to assist the model building. The
input layer consists of 12 neurons and
they are the production rate and
breakdown rate for each machine. The
hidden layer contains 10 neurons. The
output layer is the buffer sizes (five
neurons). A momentum term was
considered in this study to avoid trapping
in the local minimum. The total sum of
squared error (TSS) is set at 0.05 and the
maximum iteration is set at 100.
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Table 3. Sample Machine Parameters

Machine parameter
Machine 1 | Machine 2 | Machine 3 | Machine 4 | Machine 5 | Machine 6
Cycle time 3 39 33 2.9 34 3
Breakdown rate 4% 4% 4% 2% 4% 2%
B1 B2 B3 B4 BS Output Bl B2 B3 B4 BS Output B1 B2 B3 B4 BS Output
11 13 3 10 1 2440 11 15 3 10 1 2444 12 11 12 2 3 2473
14 5 10 5 6 2433 9 9 10 2 9 2441 12 11 12 2 3 2473
2 12 12 10 2 2416 11 13 3 10 1 2440 12 11 12 2 3 2473
20%
. 9 15 1 5 5 2412 14 5 10 5 6 2433 14 11 12 1 2 2471
Elite group|
11 11 7 1 8 2412 13 4 10 4 5 2427 13 10 12 1 3 2466
9 10 4 15 2 2412 2 12 12 10 2 2416 13 10 11 1 3 2464
2 9 13 9 5 2411 9 3 10 9 6 2415 13 10 11 1 3 2464
13 10 4 9 2 2410 9 15 1 5 5 2412 13 10 12 2 3 2462
12 9 8 1 8 2408 11 11 7 1 8 2412 14 9 12 1 2 2461
11 1 9 6 10 2406 9 10 4 15 2 2412 13 11 12 2 2 2460
3 7 10 8 1 2399 9 10 4 15 2 2412 12 11 12 1 2 2459
1 9 11 3 2 2398 9 15 1 5 5 2412 12 11 12 1 3 2459
11 5 7 5 10 2395 6 13 3 10 1 2410 12 11 11 1 2 2457
13 7 3 13 2 2394 10 10 1 12 6 2408 |:| |:| 14 10 12 2 2 2456
12 10 1 1 13 2389 15 1 9 7 8 2405 13 8 12 1 3 2456
6 11 1 13 7 2386 10 9 3 5 10 2403 13 8 11 1 3 2454
4 11 9 11 2 2385 12 5 7 1 13 2394 12 10 12 1 3 2454
12 8 3 1 13 2383 5 2 15 13 1 2386 12 10 11 1 2 2452
8 1 15 13 1 2382 3 3 8 10 9 2386 12 11 12 2 2 2451
10 7 9 1 10 2380 6 11 1 13 7 2385 12 10 10 1 3 2450
8 3 8 5 5 2365 10 8 1 8 11 2381 11 10 12 1 2 2448
7 7 1 8 13 2358 2 12 8 10 2 2358 13 8 12 6 1 2447
11 2 4 7 14 2353 7 7 1 8 13 2350 14 10 11 1 1 2446
5 1 8 12 4 2337 11 2 4 6 14 2347 11 8 9 1 8 2445
7 2 10 13 2 2331 8 2 5 7 5 2344 12 7 10 7 1 2444
10 1 3 15 10 2329 5 3 8 5 4 2344 10 11 12 1 1 2439
5 2 5 7 4 2327 1 7 9 1 2 2333 10 9 10 1 8 2433
8 1 6 2 2 2311 7 2 10 13 2 2331 12 10 8 1 2 2414
1 3 5 3 7 2301 8 1 5 7 4 2331 11 8 9 7 2 2395
2 1 1 9 5 2262 11 2 3 13 10 2331 8 10 4 2 3 2394

Generation 1

Generation 2

Generation 18

Fig. 6. The generational results of GA procedures.

Step 7: Randomly select 80 sets of results
obtained from previous steps as the
training group.

Step 8: The remaining sets are served as the
testing group. The buffer allocations
predicted by the trained ANN and their
results from GA-simulation method are
listed in Table 5. The throughputs for
each buffer layout are quite close. The
worst prediction is in group 17, while the
difference is reasonably small at 2.3%.
Figure 7 shows a best linear-fit
regression between the outputs of the two
methods. An F-test for the lack of fit
verified the adequacy of the regression
model performed and showed no

significant difference between the results.

V. CONCLUSION

Nowadays, it is very important to promptly
adapt to production changes while maintaining
adequate outputs. Traditional methods for
buffer allocation are either time consuming or
problem-oriented. The GA-simulation-
oriented method can produce effective result
for most Dbuffer allocation problems.
Traditionally, it needs a lengthy period of time
to complete a calculation routine for a
six-machine buffer allocation problem on a
Pentium 4 personal computer and the problem
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becomes more complicated when product

increases. Through the proposed method, a Table 4. The best results of each GA generation
well-trained ANN can accurately predict the
buffer allocation. Shop engineers can simply Buffer allocation Max.
enter the production rate and maintenance Gene- Through-
. Bl [ B2 | B3 | B4 | B5
(breakdown) rate of a product and the ANN can ration put
provide satisfactory buffer layout in a very 1 1111373 ]10] 1 2440
short period of time. 2 1111513 |10] 1 2444
3 11115 3 [10] 1 2444
4 9 |11 10| 2 5 2451
_ 5 o |11 [10] 2[5 2451
S 3400 ~
£ 6 12| 8 [ 12| 2 3 2458
Z 3200 7 12| 8122 |3 2458
g 00 . 8 15[ 1110 ] 1 | 2| 2467
z 20 9 15 110 1 [ 2] 2467
& 2000 T 10 12 10|12 | 2 3 2468
2400 11 12110121 2 3 2468
2400 2600 2800 3000 3200 3400 3600 2 5111 11111 ) 2469
Results from GA-simulation method 13 12 10 13 2 3 2470
14 12 |11 | 12| 2 3 2473
Fig. 7. Regression analysis of results from two 15 1211121213 2473
methods. 16 1211112 2 3 2473
17 12111 (121 2 3 2473
18 12 |11 | 12| 2 3 2473

Table 5. The outputs and buffer allocation comparison

Buffer allocation predicted by ANN | Buffer allocation obtained from stage 1
Group | Bl | B2 | B3 | B4 | BS | Output | Bl | B2 | B3 | B4 | B5 | Output

1 3112 11 6] 8 2609 41 10 8 9 2612
2] 5] 6] 13/ 10] 6 2643 2 11 ] 10| 11 5 2658
3] 6 12| 8| 2| 12 2480 50 12 11 7 2499
41 4| 71 11| 12| 6 2836 1 8|1 10| 14 7 2839
5] 613112 6| 3 2507 6| 14| 12 3 5 2507
6] 3 8|1 13 12 4 2461 31 10 91 14 3 2495
71 8| 7|11 71 7 2937 9 41 11 9 7 2951
8 10| 8] 8| 8] 5 2547 5 81 13| 10 4 2575
9] 911010 8| 3 2629 | 11| 13 7 8 1 2641
10 7] 11 81 91 5 2515 6 81 13| 10 3 2531
11 41 91 9] 6] 11 2639 1 3] 14 91 11 2665
12| 6| 13] 10| 10 1 2510 3] 10 15 9 1 2527
13 8] 9110 8| 4 2519 5] 12 5 9 8 2558
14| 2] 13] 11 6] 8 2721 1| 13| 13| 11 1 2740
15| 7] 13]12] 5] 2 2450 5] 14| 15 4 2 2462
16| 1110 9] 7] 3 3443 3] 13 5] 13 5 3477
17 3] 1112 4] 9 2766 2 9 7| 14 6 2832
18] 7] 4] 11]12] 6 2463 | 10 1| 13] 12 4 2492
190 7] 9] 10] 9] 3 2427 71 10 9 9 1 2431
200 10 7] 8] 8] 7 24321 10 5 71 12 5 2478
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