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ABSTRACT 
 

Choosing suitable buffer setups for production lines to augment throughputs is a pragmatic issue. 
Previous studies mainly centered on the buffer allocation problem with a single product in static 
machine layouts.  When production lines have frequent product changes and setup adjustments, the 
buffer allocations have to be altered accordingly to meet the required production rate. Hence, it is 
more crucial to create a balance between effectiveness (by using the mathematical method) and 
efficiency (by using the heuristic method).  Artificial intelligence (AI) is widely applied to 
accommodate many problems with appropriate solutions.  In this study, an AI based method is 
proposed to investigate the buffer allocation of unbalanced-unreliable flow type production lines.  
Genetic Algorithm (GA) combined with simulation method is used in attempting to quickly figure out 
the best solutions. In turn, these optimal solutions are fed into an Artificial Neural Network (ANN) for 
predicting buffer layouts.  Through the well-trained ANN, the preferable buffer allocation can be 
predicted promptly.       

Keywords: genetic algorithm, simulation, artificial neural network, unbalance production line, 
unreliable production line 
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摘    要 
 

當生產線面臨頻繁的產品調整或更改，如何配置適合的緩衝區大小以提昇產能是一個產

業界亟需解決的問題。本研究使用人工智慧方法，來解決緩衝區動態配置的問題。首先使用

基因演算法和模擬軟體搭配，快速找出一系列的最佳解，接著再將最佳解套入類神經網路做

訓練，所產生的類神經網路模型可即時找出緩衝區最佳配置之情形。研究結果證實，經完整

訓練的類神網路模型，可取代傳統方法快速且成功的找出接近最佳的緩衝區配置。 

關鍵詞：基因演算法，模擬，類神經網路，不平衡生產線，故障生產線 
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I. INTRODUCTION 

    A production line (transfer line) is a series 
of machines or workstations that are connected 
one-by-one and which perform sequential tasks.  
An ideal production line is able to produce 
maximum yield with great flexibility with 
frequent product change and unexpected order 
change.  Two main concerns arise when 
production lines are constituted: the process time 
balance and the reliability of work centers.  
Basically, it is very rare to perfectly balance a 
production line in terms of process time and its 
variances.  In addition, every production 
system is subject to stoppage, machine 
breakdown, unscheduled maintenance, job 
interruption, machine setup, and many other 
factors.  To reduce the impact of stoppage and 
process time variation, manufacturers usually 
put buffers between workstation to maintain the 
integrity of production.   
 

For smooth production, the intermachine 
buffers should maintain certain amounts of 
work-in-process (WIP) to neutralize the effect of 
machine stoppage.  However, most of the shops 
contain limited space and it is not economical to 
keep too much WIP. Thus, properly arranging 
the intermachine buffer becomes a very 
important issue.  Substantial research shows 
that carefully arranging buffers can achieve 
better production levels.  Buzacott [1] uses 
Markov chain models to solve this problem.  
El-Rayah [2] studies the behavior of production 
lines with different interstage buffer assignments. 
Likewise, the study proves that assigning larger 
interstage buffers capacities to the middle 
workstation will be more efficient while 
unbalancing the production line in terms of 
buffer capacities.  Choong and Gershwin [3] 
develop a decomposition method to reduce the 
state space in this problem and prove it to be 
accurate.  Hillier and So [4] study the effects of 
machine breakdowns and interstage buffer 
capacity on performance of the production line.  
Kouikoglou and Phillis [5] present a 
simulation-based model for minimizing buffer 
size while meeting demand constraints for finite 
buffers and unreliable production line.  
Gershwin and Schor [6] propose a two-ply 
algorithm; first, to maximize the production rate, 
and second, to find out the minimum buffer 

allocation for the production rate.  
Papadopoulos and Vidalis [7] develop a heuristic 
method for unreliable and unbalanced 
production lines to find reasonable good initial 
buffer allocation.  Sörensen and Janssens [8] 
form an unreliable machine, with finite buffer 
allocation problem as the non-linear 
programming problem and with cost and buffer 
usage minimization as the objectives.  
Macgregor and Cruz [9] develop closed-form 
expressions for production line with series, 
merge, and splitting topologies.  Nahas et al. 
[10] use degraded ceiling search techniques to 
find the maximum throughput for an 
unbalanced-unreliable production line. 
 

Research also applies soft 
computing-related methods to solve this problem.  
Bulgak et al. [11] and Wellman and Gemmill [12] 
use the GA method to study the buffer allocation 
in close-loop production line.  Lutz et al. [13] 
combine the Tabu search and simulation 
methods to find out the maximum output for a 
given storage level.  Spinellis and 
Papadopoulos [14] use simulated annealing and 
decomposition method to maximize the average 
throughput for buffer allocation problem in a 
reliable production line.  Dolgui et al. [15] 
propose a GA and Markov-based model for 
finite buffer/unreliable production line buffer 
allocation problems.  Shi and Men [16] present 
a hybrid method by combining Tabu search and 
nested partition for large production problem.  
Bulgak [17] extends previous studies, develops a 
GA-ANN-based metamodeling approach for 
split-and-merge asynchronous assembly systems 
(AAS) with fixed cycle time.  Altiparmak et al. 
[18] further extend Bulgak’s research into single 
close-loop AAS with three different machine 
failure occurrences: same failure rate, zero and 
non-zero failure rate, and low- and high failure 
rate, respectively. Lee and Wang [19] apply the 
GA-based method in a just-in-time environment 
with unreliable machines and investigate the 
minimum kanban required. 
 

Inasmuch as a production line needs to 
frequently adapt to the changing environment, it 
is essential to decide a suitable buffer layout at a 
desirable production rate in a very short period 
of time.  In this research, the GA-ANN-based 
method developed by Bulgak et al [11] has been 
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modified to extend Lee and Wang’s [19] studies.  
The studied problem is a general finite buffer 
production line with total buffer limitation, in 
which the machine breakdown and production 
rate varies according to products and a suitable 
buffer allocation has to be decided quickly. 

II. PROBLEM STATEMENT 

The system has N unreliable workstations 
and N-1 interstage buffers. This is shown as 
Figure 1.  The interstage buffer is utilized to 
neutralize the possible stoppage and the 
capacities (quantity of each buffer) need to be 
adjusted according to product assignment. 
Some of the characters for this production line 
are listed as follows: 
1. All items enter at the first workstation and 

leave at the last workstation. 
2. All machines are subject to breakdown. 
3. Each machine has product-dependent 

production and breakdown rates. 
4. The total buffer space is limited. 
5. There is an infinite source for the 

production system, and an infinite storage 
capacity at the end.  In other words, the 
first machine never starves, and the last 
machine can never be blocked. 

6. Blockage (starvation) exists when the 
machine in the upstream (downstream) is 
ready but there is no kanban to authorize 
production activity. This situation may 
occur when the downstream (upstream) 
machine breaks down and the buffers are 
full (empty). Breakdown cannot occur at a 
starved or blocked workstation. 

7. The process time, failure rates, and 
recovery rates of workstations and their 
endurance follow statistical distributions. 

 
Intuitively, the throughput will reach the 

maximum if the interstage buffers are infinite.  

However, it is not economical.  The 
objective of this research is to find out the 
minimum buffer sizes associated with 
workstation that maximize throughput with 
respect to total buffer space constraints for each 
product.  For each product, the problem can be 
formulated as a two-phase optimization problem 
as follows: 
 
Phase 1 
Maximize THR 
Subject to: 

 KB
n

i
i∑

−

=

≤
1

1

  

 ii kB ≤    
 (production rate limitation for machine i) 
 (breakdown rate for machine i)  
 

Where: 
THR is the throughput of each 
product 
Bi is the buffer size between machine 
i and i+1 
K is the total buffer space 
ki is the maximum buffer allowed for 
Bi 

  
Phase 2 

Minimize ∑
−

=

1

1

n

i
iB  (total buffer used) 

Subject to: 
(System throughput unchanged from phase 1) 

 

It is difficult to develop a heuristic or 
analytical solution for this NP-hard 
combinatorial optimization problem (Garey and 
Johnson [20]).  In addition, flexible adaption to 
product changes and quick adjustment of the 
buffer sizes to achieve maximum throughput 
make the problem even more difficult.

 

Fig. 1. The topology of the production system. 
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III. METHODOLOGY 

Inspired by Bulgak’s research [11, 17], a

soft computing-based two-stage algorithm is 
proposed to achieve the goal of this research.  
The two-stage algorithm is described as follows:

 

Table 1. Research methodology 

Stage Step 
1. Searching for buffer allocation for each 

product 
1. Randomly generate populations for each 

production line. 
2. Build up a simulation model for each buffer 

layout; simulate the production rate. 
3. Apply GA operations for new buffer 

layout.  . 
4. Repeat steps 2 to 3 until optimal or near 

optimal buffer layout have been found. 
5. Repeat steps 1 to 4 for all products. 

2. Build an ANN to predict buffer allocation 
 

6. Build up an ANN by using the results from 
step 5. 

7. Train the ANN. 
8. Validate the ANN. 

 

The flowchart of this algorithm is depicted 
in Figure 2.  The feature of each stage is 
described in Sections 3-1 and 3-2; a numerical 
example with detail is illustrated in Sections 4-1 
and 4-2. 

For all possible products, 
enter production line parameters

Step 1
Generate buffer populations

for each production line

Step 2
Build up a simulation model for each population;
simulate the production rate for each population 

Step 3
Apply GA operations to 

generate new buffer layout

Step 4
Reach the terminal conditions

of GA?

Step 5
Finish all production lines?

Step 6
Build up an ANN 

Step 7
Train the ANN until terminal conditions

Step 8
Validate the trained ANN 

yes

yes

no no

Stage 1
Combine GA and Simulation 
to find the buffer layout with 
preferred production rate  

Stage 2
Build an ANN capable of 
predicting buffer allocation 
for different products 

 
 

Fig. 2. Flowchart of the Buffer Allocation Searching 
algorithm. 

 

 
3.1 Stage 1: Searching for buffer 
allocation for each product 
 

The state space of the aforementioned 
phase 1 optimization problem has NS number of 
states; and  

)!12()!1(
)!2(
−+−

−+
=

NNK
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when non-zero individual buffer is assumed.  
This research proposes a non-mathematical 
approach other than the conventional 
decomposition method by combining the 
advantages of GA and simulation method.  The 
simulation models serves as the fitness function 
of GA and an improved algorithm is used to 
expedite the search processes of GA while 
keeping the buffer at a minimum.  The details 
can be described as follows: 
Step 1: For each product, where the production 

rate and breakdown rate are assigned, 
randomly generate a group of buffer 
layouts where the total summation of 
buffer should not exceed the total buffer 
limitation. 

Step 2: Build up a simulation model to simulate 
the throughput for each buffer layout. 

Step 3: Use the GA operators to generate new 
offspring (buffer layouts) with better 
throughput. 
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Step 3.1: Use binary code to represent 
the size of buffer. 

Step 3.2: Use elitist strategy mentioned 
by Bean [21] and roulette wheel 
selection as the reproduction 
operator. 

Step 3.3: Use two-point crossover to 
generate offspring. 

Step 3.4: Apply buffer adjustment while 
the result from crossover 
exceeds total buffer limitation. 

Step 3.5: Use a suitable mutation rate as 
Bean [21] recommends. 

Step 4: Repeat steps 2 and 3 until terminating 
condition is reached.   

Step 5: Repeat steps1 through 4 for all possible 
products. 

 
3.2 Stage 2: Build an ANN to predict 
buffer allocation 
 

ANN simulates human information passing 
behavior with artificial neurons interconnecting 
with weights.  By adjusting the associated 
weights, ANN can transform a set of inputs into 
a set of desired outputs.  The method is widely 
adopted into many applications and provides 
satisfactory results.  In this research, an ANN is 
trained and used to predict the desired buffer 
layout.  The steps are as followed. 
Step 6: Build up an ANN where the inputs are: 

production rate, and breakdown rate; the 
outputs are buffer allocation. 

Step 7: Train the ANN with partial results from 
Step 5. 

Step 8: Validate the ANN with the remaining 
results from Step 5. 

 
IV. NUMERICAL EXAMPLE 

 
4.1 Numerical example 1 
 

In this example, the result from 
GA-simulation based method is compared to the 

results from benchmark researches.  The 
benchmark researches chosen here are: Ho et al. 
[22] which was among the earliest to introduce 
perturbation analysis in transfer line, and 
Gershwin and Schor [6] which used primal and 
dual method to consider maximizing production 
rate and minimizing buffer size simultaneously.  
A five-machine, four-buffer, unreliable production 
line is considered.  The parameters of the 
production line are listed in Table 2.   

The GA-simulation based method 
described in section 3-1 is used.  The details of 
each step are listed as followed. 
Step 1: Randomly generate 30 sets of buffer 

layout as the initial population; the 
individual buffer limitation is set to be 15. 

Step 2: Use simulation software (Flexsim 4.3) to 
model 30 production lines according to the 
buffer layout generated in Step1; simulate 
each production line for 5000 minutes 
which require less than 2 minutes in 
computer time; obtain the throughput for 
all production lines. 

Step 3: The offspring of buffer layout are 
generated according GA operations, and 
the throughputs obtained in Step 2 are the 
fitness of production lines. 
Step 3.1: Coding: Use binary coding for 

each buffer layout.  Since the 
individual buffer limitation is 15, 
by using binary coding schema, 
the length of each buffer is 4, and 
the chromosome length of the 
four-buffer system is 16.  Figure 
3 illustrated the coding schema 
for a {7, 10, 10, 4} buffer 
allocation. 

Step 3.2: Selection: Use roulette wheel 
and elitist strategy for mating 
selection.  The elitist percent is 
set to be 20%, in other word, the 
production line with top 20% of 
fitness will enter the mating pool 
automatically

Table 2. Parameters of the five-machine benchmark problem 

Machine parameter  

Machine 1 Machine 2 Machine 3 Machine 4 Machine 5 

MTBF 20 167 22 22 26 

MTTR 11 19 12 7 7 



Hsu-Tung Lee etc. 
A Meta-heuristic Approach to Buffer Allocation in Production Line 
 

 - 172 -

 
 Buffer 1 Buffer 2 Buffer 3 Buffer 4 

Buffer size 7 10 10 4 

Binary code 0111 1010 1010 0100 

Fig. 3. Illustration of a 6-8-14-10-2 buffer coding. 

 
Parent 1 9 4 5 4 
Parent 2 5 6 7 8 

Randomly select crossover point, for example 2 and 3 

Offspring 1 9 6 7 8 
Offspring 2 5 4 5 4 

Fig. 4. Illustration of two-point crossover operation.

 
Step 3.3: Crossover: Use two-point 

crossover method with 0.6 
crossover rate.  The two-point 
crossover method is illustrated 
in Figure 4. 

Step 3.4: Buffer adjustment: Since the 
examined problem has no total 
buffer limitation, there is no 
need for buffer adjustment. 

Step 3.5: Mutation: Use 0.033 mutation 
rate. 

Step 4: Repeat Steps 2 and 3 until terminating 
condition is reached.  The termination 
conditions are as followed. 

 Minimum generation= 15, and 
maximum generation= 150 

 Best fitness sought unchanged for 5 
generations and the difference 
between the best fitness and the 
average of fitness is less than 0.5%  

 Best fitness sought unchanged for 10 
cycles 

Since the selected chromosome with best 
fitness could be draw from elitist group 
for generations, the later two conditions 
are built to allow enough mixture for the 
crossover operation and prevent early 
stop.  The flowchart of terminating 
conditions is depicted in Figure 5. 

Apply GA operators 
as Step 3 

Reach the minimum 
generations? 

(Min=15)

Is the best fitness sought 
unchanged for 5 generations? 

Is the difference between the 
maximum and average fitness 

less than 0.5%? 

Is the best fitness 
unchanged for 10 generations? 

Calculation 
terminated 

no

no

no

yes

yes

yesyes

Reach the terminating 
generations? 

(Max=150)

no

yes

no

 
Fig. 5. The terminating conditions of GA.. 

Step 5: Repeat Steps 1 to 4 for all possible 
product.  There is only one product in 
the benchmark research, thus the 
calculation terminated here. 

The optimal buffer allocations suggested 
by Ho et al.’s and Gershwin and Schor’s 
algorithms are {5, 11, 8, 7} and {7, 10, 10, 4}, 
respectively.  The output for buffer layout {7, 10, 
10, 4} is 3119 units.  In contrast, the buffer 
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layout {5, 11, 8, 7} is 3092 units.  Applying the 
GA-simulation algorithm from Step 1 through 4, 
the optimal/near optimal solution is obtained in 
generation 15 and the four buffers are {7, 10, 10, 
4}.  The output of proposed algorithm is 
coherent with Gershwin and Schor’s result and it 
out performs the result from Ho et al.’s. 

 
4.2 Numerical example 2 
 

A six-machine five-buffer production line 
appeared in Bulgak’s research is chosen for the 
buffer allocation ANN building.  The other 
characteristics of this production line are listed 
as follows: 
 

 Product type: 100 products of different 
production rate combination are 
considered. 

 Production rate: cycle times of machines 
for different product are randomly 
generated between two to four minutes. 

 Machine breakdown rate: 2% and 4% of 
breakdown rate are randomly assigned to 
each machine. 

 Machine failure clear time: is set at 50 
minutes. 

 Buffer limitations: the total buffer 
limitation is set at 40, and the individual 
buffer limitation is set at 15. 

 
The details for each step are listed as followed. 
 
Stage 1: Searching for buffer allocation for 
each product 
 
Step 1: Generate 30 populations under the total 

buffer limitation for each product.  
Step 2: Build model for each population; 

simulate for 5000 minutes; obtain the 
throughput for all production lines. 

Step 3: Generate offspring. 
Step 3.1: Coding: Use binary coding for 

the five-buffer system; the 
length of chromosome is 20. 

Step 3.2: Selection: Use roulette wheel 
and elitist strategy for mating 
selection.  The elitist percent is 
set to be 20%. 

Step 3.3: Crossover: Use two-point 
crossover method with 0.6 

crossover rate. 
Step 3.4: Buffer adjustment: The 

crossover operation could 
generate buffer layouts exceed 
the total buffer limitation, thus 
buffer adjustment must be 
performed.  For example, a 
{15, 12, 4, 8, 10} buffer layout 
after crossover has the total 
buffer of 48, which exceeds the 
buffer limitation of 40.  The 
modified buffer according to 
weight is {12, 10, 3, 6, 8}. 

Step 3.5: Mutation: Use 0.033 mutation 
rate. 

 
Step 4: Repeat Steps 2 and 3 until terminating 

condition is reached.  The termination 
conditions are the same as the previous 
example.  Table 3 lists one of the 
parameter set of the production lines, and 
Figure 6 demonstrates its solution 
procedures of GA.  Notice that the 
calculation procedures reach stopping 
condition at the 18th generation because 
of the best outputs that remained 
unchanged for five generations.  In 
addition, the average output of 
generation 18 is 2461.2 and the 
difference is within the predetermined  
range (=0.5%) to the best output.  Table 
4 lists the best results of each generation. 

Step 5: Repeat Steps 1 to 4 for all 100 products.   
 
Stage 2: Fast predict buffer allocation and 
result validation 
 
Step 6: A three-layer back propagation network 

is built for this example, and the Neural 
Network Toolbox 4.0 in MATLAB 7.0 is 
used to assist the model building.  The 
input layer consists of 12 neurons and 
they are the production rate and 
breakdown rate for each machine.  The 
hidden layer contains 10 neurons.  The 
output layer is the buffer sizes (five 
neurons).  A momentum term was 
considered in this study to avoid trapping 
in the local minimum.  The total sum of 
squared error (TSS) is set at 0.05 and the 
maximum iteration is set at 100.



Hsu-Tung Lee etc. 
A Meta-heuristic Approach to Buffer Allocation in Production Line 
 

 - 174 -

Table 3. Sample Machine Parameters 
Machine parameter  

Machine 1 Machine 2 Machine 3 Machine 4 Machine 5 Machine 6
Cycle time 3 3.9 3.3 2.9 3.4 3 

Breakdown rate 4% 4% 4% 2% 4% 2% 
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Fig. 6. The generational results of GA procedures. 

Step 7: Randomly select 80 sets of results 
obtained from previous steps as the 
training group. 

Step 8: The remaining sets are served as the 
testing group.  The buffer allocations 
predicted by the trained ANN and their 
results from GA-simulation method are 
listed in Table 5.  The throughputs for 
each buffer layout are quite close.  The 
worst prediction is in group 17, while the 
difference is reasonably small at 2.3%.  
Figure 7 shows a best linear-fit 
regression between the outputs of the two 
methods.  An F-test for the lack of fit 
verified the adequacy of the regression 
model performed and showed no 

significant difference between the results. 
 

V. CONCLUSION 
 

Nowadays, it is very important to promptly 
adapt to production changes while maintaining 
adequate outputs.  Traditional methods for 
buffer allocation are either time consuming or 
problem-oriented.  The GA-simulation- 
oriented method can produce effective result 
for most buffer allocation problems.  
Traditionally, it needs a lengthy period of time 
to complete a calculation routine for a 
six-machine buffer allocation problem on a 
Pentium 4 personal computer and the problem 
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becomes more complicated when product 
increases.  Through the proposed method, a 
well-trained ANN can accurately predict the 
buffer allocation.  Shop engineers can simply 
enter the production rate and maintenance 
(breakdown) rate of a product and the ANN can 
provide satisfactory buffer layout in a very 
short period of time. 
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Fig. 7. Regression analysis of results from two 
methods. 

 

Table 4. The best results of each GA generation 

Buffer allocation  
Gene-
ration B1 B2 B3 B4 B5 

Max. 
Through-
put 

1 11 13 3 10 1 2440 
2 11 15 3 10 1 2444 
3 11 15 3 10 1 2444 
4 9 11 10 2 5 2451 
5 9 11 10 2 5 2451 
6 12 8 12 2 3 2458 
7 12 8 12 2 3 2458 
8 15 11 10 1 2 2467 
9 15 11 10 1 2 2467 
10 12 10 12 2 3 2468 
11 12 10 12 2 3 2468 
12 15 11 11 1 2 2469 
13 12 10 13 2 3 2470 
14 12 11 12 2 3 2473 
15 12 11 12 2 3 2473 
16 12 11 12 2 3 2473 
17 12 11 12 2 3 2473 
18 12 11 12 2 3 2473 

 

Table 5. The outputs and buffer allocation comparison 

Buffer allocation predicted by ANN Buffer allocation obtained from stage 1 
Group B1 B2 B3 B4 B5 Output B1 B2 B3 B4 B5 Output 

1 3 12 11 6 8 2609 4 10 8 9 9 2612
2 5 6 13 10 6 2643 2 11 10 11 5 2658
3 6 12 8 2 12 2480 5 12 11 4 7 2499
4 4 7 11 12 6 2836 1 8 10 14 7 2839
5 6 13 12 6 3 2507 6 14 12 3 5 2507
6 3 8 13 12 4 2461 3 10 9 14 3 2495
7 8 7 11 7 7 2937 9 4 11 9 7 2951
8 10 8 8 8 5 2547 5 8 13 10 4 2575
9 9 10 10 8 3 2629 11 13 7 8 1 2641

10 7 11 8 9 5 2515 6 8 13 10 3 2531
11 4 9 9 6 11 2639 1 3 14 9 11 2665
12 6 13 10 10 1 2510 3 10 15 9 1 2527
13 8 9 10 8 4 2519 5 12 5 9 8 2558
14 2 13 11 6 8 2721 1 13 13 11 1 2740
15 7 13 12 5 2 2450 5 14 15 4 2 2462
16 11 10 9 7 3 3443 3 13 5 13 5 3477
17 3 11 12 4 9 2766 2 9 7 14 6 2832
18 7 4 11 12 6 2463 10 1 13 12 4 2492
19 7 9 10 9 3 2427 7 10 9 9 1 2431
20 10 7 8 8 7 2432 10 5 7 12 5 2478
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